幂的运算复习课
七年级数学下册:第八章 幂的运算复习课 (共12张PPT)

你知道吗?
1、同底数幂的乘法:同底数幂相乘,底数不变,指数相加。 am· an=am+n . (m n为正整数) 2、幂的乘方,底数不变,指数相乘。 (an)m=amn. (m n为正整数) 3、积的乘方,等于把积中每一个因式分别乘方,再把所得 的幂相乘。 (ab)n=anbn . (m n为正整数) 4、同底数幂的除法:同底数幂相除,底数不变,指数相减。 am÷an=am-n.(a≠0,m n为正整数)) 5、a0=1(a≠0),a-n=(1/a)n=1/an( 0 , n 为正整数)时,要特别注意各式子成立的条件 .
1 n a
◆注意上述各式的逆向应用.如计算,可先逆用同底数幂的乘法法 则将写成,再逆用积的乘方法则计算,由此不难得到结果为1.
●在运用 a m a n a m n ( m 、 n 为正整数) , a m a n a mn ( a 0 , m 、 n 为正整数且 m > n ) , (a m ) n a mn ( m 、 n 为 正整数) , (ab) a b ( n 为正整数) , a 1(a 0) , a
练一练: 计算: 3 2 (1)x x x 3 2 (2)( x) x ( x) 2 10 (3) (a b) (a b) (b a) 2 n1 3 n 2 5 n 4 (4) y y y y 2 y y 解:(1)x6 (2)-x6 (3)(b-a)13 (4)0
本章需关注的几个问题
●在运用 a m a n a m n ( m 、 n 为正整数) , a m a n a mn ( a 0 , m 、 n 为正整数且 m > n ) , (a m ) n a mn ( m 、 n 为 正整数) , (ab) a b ( n 为正整数) , a 1(a 0) , a
七年级数学《幂的运算》复习课件人教新课标版.pptx

例3:计算
(1)计算位上的数字是几? (3)5811 、 7318的个位上的数字分别 是几?
例4:
(1)下列算式中,①a3·a3=2a3;②10×109=1019; ③(xy2)3=xy6;④a3n÷an=a3.其中错误的是( ) A、1个 B、2个 C、3个 D、4个
地球上海洋总面积约3.6×108km2,海洋 总面积是地球表面积的百分之几?
按海洋的海水平均深度3.7×103m计算, 求地球上海水的体积(用科学记数法表示).
例2:计算
(1)4×22×84;(2)0.24×0.44×12.54;
(3)( 1 )100 3101
3
(4)2.110 34
0.311 710
第八章 小结与思考
回顾:
• 1、同底数幂的乘法:同底数幂相乘,底数 不变,指数相加。am·an=am+n
• 2、幂的乘方:幂的乘方,底数不变,指数 相乘。(an)m=amn
• 3、积的乘方:积的乘方,等于把积中每一 个因式分别乘方,再把所得的幂相乘。 (ab)n=anbn
• 4、同底数幂的除法:同底数幂相除,底数 不变,指数相减。am÷an=am-n.(a≠0)
求ab的值。
解:∵210=a2 ∴(25)2=a2 即a=25=32
又∵210=4b ∴(22)5=45=4b 即b=5
∴ab=325
本节课你学到了什么? 小结
布置作业:
课本52页复习题8.3 1、2
补充习题28页 小结与思考
(2)在xm-1·( ) =x2m+1中,括号内应填写的代 数式是( ) A、x2m B、x2m+1 C、x2m+2 D、xm+2
(3)(- 3)100 ×(- 3)101
幂的运算复习课

1 2
1 22 1 23
为
。
图(1)
(2)请你利用图(2),再设计一个能求 1 1 1 1 2 3 n 的值的几何图形。
2 2 2 2
(2)
(3)请仿照上述方法计算下列式子:
2 2 2 2 3 3 3 3
2 n 3
已知a、b为有理数,且ab=1, 求a 、b
(2)求整数的位数
求N=212×58是几位整数.
(3)确定幂的末尾数字
求7100-1的末尾数字.
(4)比较实数的大小
比较750与4825的大小.
ቤተ መጻሕፍቲ ባይዱ
(5)求代数式的值 已知10m=4,10n=5. 求103m-2n+1的值.
(6)求参数 1、已知162×43×26=22a-1, (102)b=1012,求a+b的值。
;
5 -8a (7) (-2 a = ; (8) 2×2m+1÷2m = 4 ;
)3
÷a-2
科学记数法表示: 5 1.26 × 10 (9) 126000 = ; (10) 0.00000126 = 1.26×10-6;
(1) 下列命题( C )是假命题. A. (a-1)0 = 1 a≠1 B. (-a )n = - an n是奇数 C. n是偶数 , (- an )3 = a3n D. 若a≠0 ,p为正整数, 则ap =1/a-p (2) [(-x ) 3 ] -2 · [(-x ) -2 ] 3 的结果是( C ) A. x-10 B. - x-10 C. x-12 D. - x-12
(3) 1纳米 = 0.000000001 m ,则2.5纳 米用科学记数法表示为( B )米. A. 2.5×10-8 B. 2.5×10-9 C. 2.5×108 D. 2.5×109 (4) am = 3 , an = 2, 则am-n 的值是 (A ) A. 1.5 B. 6 C. 9 D. 1
幂的运算复习教案

幂的运算复习教案一、教学目标1.知识目标:复习幂的概念和运算方法,包括幂的乘法、幂的除法、幂的乘方和幂的负指数。
2.能力目标:能够灵活运用幂的运算法则进行计算,并能解决与幂相关的实际问题。
3.情感目标:培养学生对数学的兴趣和好奇心,促进学生的思维发展和逻辑思维能力。
二、教学重点1.幂的乘法运算和除法运算。
2.幂的乘方运算。
三、教学难点1.幂的负指数,并结合实际问题进行思考和解答。
2.将实际问题转化为幂的运算。
四、教学过程1.复习幂的概念和符号表示。
通过问答和示范板书复习幂的概念和符号表示,引导学生回顾相关知识点。
2.幂的乘法运算和除法运算2.1幂的乘法运算通过例题展示幂的乘法运算法则,引导学生进行讨论和总结,确保学生理解该法则。
例题1:计算并化简:2²×2³。
例题2:计算并化简:(3×10⁴)×(4×10²)。
2.2幂的除法运算通过例题展示幂的除法运算法则,引导学生进行讨论和总结,确保学生理解该法则。
例题3:计算并化简:16⁴÷16²。
例题4:计算并化简:(2²×3³)÷(2³×3²)。
3.幂的乘方运算3.1幂的乘方法则通过例题展示幂的乘方运算法则,引导学生进行讨论和总结,确保学生理解该法则。
例题5:计算并化简:(5⁴)²。
例题6:计算并化简:(10⁵)⁴。
3.2幂的乘方与乘法的关系通过例题展示幂的乘方与乘法的关系,引导学生进行讨论,确保学生理解该关系。
例题7:计算并化简:3⁴×3⁵。
例题8:计算并化简:5⁸÷5³。
4.幂的负指数通过例题展示幂的负指数运算法则,引导学生进行讨论和总结,确保学生理解该法则。
例题9:计算并化简:2⁻³。
例题10:计算并化简:(5⁻²)²。
5.综合练习通过一些综合性的练习题,引导学生运用所学知识解决实际问题。
幂的运算复习课

幂的运算复习课学习目标1. 能说出同底数幂的乘(除)法、幂的乘方、积的乘方运算性质;知道它们的联系和区别,并能运用它们熟练进行有关计算。
2.熟练掌握零指数幂、负整数指数幂的意义, 能与幂的运算法则一起进行运算,并能解决有关问题。
学习重点 :运用幂的运算性质进行计算.一.复习提问, 知识聚会:1.幂的运算性质有哪些?用字母如何表示?2.零指数幂和负整指数幂是怎样规定的?用字母如何表示?二.数学“诊所”,寻找“病原”考眼力,辨真伪:(1)a 3+a 3=a 6; ( )(2)a 3·a 2=a 6; ( )(3)(x 4)4=x 8; ( )(4)a ·a 3·a 2=a 5 ( )(5)(ab 2)5=ab 10 ( )(6)(-a 2)3=a 6 ( )(7)x 2n+1÷x n ÷x n =x 2n+1÷1=x 2n+1 ( )(8)-2-2=4; ( )三.知识练习,快速作答1.抢答: (1)x 3·x ·x 2 (2)[(x +y )4]5 (3)(-a 5b 2)32.计算: (1)22·(-2)3·(-2)4 (2)(-x 3)2·(x 2)4忽视指数“1”所致符号混淆所致 法则混淆导致 违背运算顺序所致 忽视指数幂的意义所致(3)(x4)3÷(-x3)2÷(-x3)2 (4)(m-n)9· (n-m)8÷(m-n)2(5)(-x)8÷x5+(-2x)·(-x)2 (6)y2y n-1+y3y n+2-2y5y n四.巧用性质,融会贯通1.填空:若a m=3,a n=2,则a m+n的值等于a12=( )2=( )3=( )4 若x2n=2,则x6n=(-0.25)2010×42011= 若23×82=2n ,则n=2.求值:(1)已知10m=4,10m=5,求103m+2n的值.3. 计算:(-2)2010+(-2) 20094.比较大小:(1)2100与375 (2)355、444与533(3)已知:4m= a,8n = b求:①22m+3n的值;②24m-6n的值.课堂反馈:一.填空:1.―y2·y5=; (-2 a ) 3÷a-2=;2×2m+1÷2m =.2. a12=( )2=( )3=( )4;若x2n=2,则x6n=.3. 若a=355,b=444,c=533,请用“<”连接a、b、c.4. 把-2360000用科学计数法表示;1纳米= 0.000000001 m,则2.5纳米用科学记数法表示为m. 二.选择:1. 若a m=3,a n=2,则a m+n的值等于()A.5B.6C.8D.92. -x n与(-x)n的正确关系是()A.相等B.当n为奇数时它们互为相反数,当n为偶数时相等C.互为相反数D.当n为奇数时相等,当n为偶数时互为相反数3.如果a=(-99)0,b=(-0.1)-1,c=(-)-2,那么a、b、c三数的大小为()A. a>b>cB. c>a>bC. a>c>bD. c>b>a 三.计算:(1)(-a3)2 · (-a2)3 (2)-t3·(-t)4·(-t)5(3) (p-q)4÷(q-p)3 · (p -q)2(4)(-3a)3-(-a)· (-3a)2 (5)4-(-2)-2-32÷(3.14—π)0四.解答:1.已知a x=3,a y=2,分别求①a2x+3y的值②a3x-2y的值2.已知3×9m×27m=316,求m的值.3.已知x3=m,x5=n用含有m、n的代数式表示x14.思维体操:①若x=2m+1,y=3+4m,请用x的代数式表示y.。
新华师大版八年级数学上册《幂的运算复习》公开课课件

基础练习:
1.填空:⑴ x2 4 ______⑵ 2x2 y 3 ______
⑶ a2 3 a3 ______
2.填上适当的指数:
⑴ a2 a a5⑵ a5 a a2⑶ a3 a9
3.填上适当的代数式:⑴ x3 x4 x8
⑵x
y5 y x4
5.a0 =1 (a≠0)
6.a-n=
1 an
=( 1 )n a
a≠o,
n是整数
1.同底数幂的乘法法则: 文字叙述:同底数幂相乘,底不变,指数相加 公式表示: 2.幂的乘方法则: 文字叙述:底数不变,指数相乘 公式表示: 3.积的乘方法则: 文字叙述: 积的乘方等于乘方的积 公式表示: 4.同底数幂的除法法则: 文字叙述:同底数幂相除,底不变,指数相减 公式表示:
2、(2)3 ( 2009)0 ( 1)2
2
填空
① 已已知知::aa mm 22,,aann33,则,则aa2m2m3n3n_____________
② (2)2008 (0.5)2009 _______________
③ 当n ______时,3n 1 27
判断
① 102 106 10 108
1 )2005 2
3.已知x3 ·xn ·x2n+1=x31,求n的值.
4.已知xm =3,xn =4,求xm+n及x3m+2n的值。
随堂练习三
(1)3×27×9×3m= 3m+6
(2) (x-2y)4·(2y-x) 5·(x-
2y)6=
(2y-x)15
二、精选例题
例1.计算
1、(xy 2 z 3 ) 2 (x 2 y)3
2555 25 111 32111 3333 33 111 27111 5222 52 111 25111
【数学课件】幂的运算复习课

(6) (x5)5
x25
(8)(y3)2·(y2)3
= y 6 ·y 6 = y 12
练习一 2. 计算:
①10m·10m-1·100= 102m+1 ②3×27×9×3m= 3m+6 ③(m-n)4·(m-n) 5·(n-m)6 = (m-n)15 ④ (x-2y)4·(2y-x) 5·(x-2y)6 = (2y-x)15
积的乘方
试猜想:
(ab)n=? 其中 n是正整数
证明:
(ab)n= (ab) (ab) (ab)
n个( )
=(a a a)( • b b b)
n个
n个
= a nbn ∴(ab)n = a nbn (n为正整数)
语言叙述:积的乘方,等于各因数Байду номын сангаас方的积。
-8x3
2.计算:
页 练
(1)(3a)2 =32a2=9a2
习
(2)(-3a)3 =(-3)3a3=-27a3
(3)(ab2)2 =a2(b2)2=a2b4
(4)(-2×103)3 =(-2)3×(103)3=-8×109
(2)(-
(1)24×44×0.1254
4)2005×(0.25)2005
逆 = (2×4×0.125)4
同底数幂相乘
am·an=am+n
指数相加 底数不变 指数相乘
(a ) =a 其中m , n都是
m n mn
正整数
幂的乘方
练习一 1. 计算:( 口答)
(1) 105×106 1011
(3) a7 ·a3 a10
(5) x5 ·x5
x10 (7) x5 ·x ·x3
《幂的运算复习》课件

幂的除法运算:a^m/a^n=a^(m-n)
幂的除法运算:a^m/a^n=a^(m-n)
乘方运算
概念:乘方运算是一种特殊的乘法运算,表示一个数自乘若干次
符号:乘方运算的符号为“^”,如2^3表示2的3次方
运算规则:a^m * a^n = a^(m+n),如2^3 * 2^2 = 2^5
幂的运算方法:包括加法、减法、乘法、除法、乘方、开方等
《幂的运算复习》PPT课件
单击添加副标题
Ppt
汇报人:PPT
目录
01
单击添加目录项标题
03
幂的运算方法
05
幂的运算注意事项
02
幂的定义与性质
04
幂的运算应用
06
幂的运算易错点分析
07
幂的运算练习题与答案解析
添加章节标题
01
幂的定义与性质
02
幂的定义
幂是指一个数自乘若干次
幂的表示方法:a^n,其中a是底数,n是指数
幂的运算分配律:a^m*(b+c)=a^mb+a^mc
幂的运算结合律:a^m*a^n=a^(m+n)
幂的运算优先级:乘方>乘除>加减
底数与指数的符号问题
底数与指数的符号对幂的运算结果有重要影响
底数为负数时,幂的运算结果也为负数
指数为负数时,幂的运算结果也为负数
底数为正数时,指数为正数或负数,幂的运算结果都为正数
指数方程的解法:利用指数函数的性质和指数方程的性质进行求解
指数方程的性质:指数函数的单调性、奇偶性、周期性等
指数方程的求解步骤:确定指数方程的类型、利用指数函数的性质进行求解、验证解的正确性
幂函数的性质与图像
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)(- 3)100 ×(- 3)101
例5:比较550与2425的大小。
解:∵550=(52)25=2525 2425<2525
∴550>2425
例6:已知210=a2=4b(其中a,b为正整数),
(3)( 1 )100 3101
3
(4)2.110 34
0.311 710
例3:计算
(1)计算:15,25,35,45, …,195;
(2)1275的个位上的数字是几? (3)5811 、 7318的个位上的数字分别 是几?
例4:
(1)下列算式中,①a3·a3=2a3;②10×109=1019; ③(xy2)3=xy6;④a3n÷an=a3.其中错误的是( ) A、1个 B、2个 C、3个 D、4个
(2)地球可以近似地看成球体,半径约为 6.37×103km,地球的体积大约为多少?
地球上海洋总面积约3.6×108km2,海洋 总面积是地球表面积的百分之几?
按海洋的海水平均深度3.7×103m计算, 求地球上海水的体积(用科学记数法表示).
例2:计算
(1)4×22×84;(2)0.24×0.44×12.54;
求ab的值。
解:∵210=a2 ∴(25)2=a2 即a=25=32
又∵210=4b ∴(22)5=45=4b 即b=5
∴ab=325
本节课你的收获是什么?
布置作业:
课本52页复习题8.3 1、2
补充习题28页 小结与思考
谢谢观赏!
建湖县实验初中
பைடு நூலகம்
❖ 4、同底数幂的除法:同底数幂相除,底数 不变,指数相减。am÷an=am-n.(a≠0)
❖ 5、a0=1(a≠0), a-n = a1n(a≠0)
例1 (1)地球可以近似地看成球体,半径约
为6.37×103km,地球的体积大约为多少?
你会计算地球的表面积吗? 请你查阅资料,找出计算球体表面积的公 式,再进行计算。
初中数学七年级下册 (苏科版)
第八章 期中复习
沭阳如东实验学校数学组
回顾:
❖ 1、同底数幂的乘法:同底数幂相乘,底数 不变,指数相加。am·an=am+n
❖ 2、幂的乘方:幂的乘方,底数不变,指数 相乘。(an)m=amn
❖ 3、积的乘方:积的乘方,等于把积中每一 个因式分别乘方,再把所得的幂相乘。 (ab)n=anbn