微积分基本公式和基本定理
微积分基本公式

微积分公式D x sinh -1(ax)=221x a + cosh -1(ax)=221ax - tanh -1(a x)= 22a a x -coth -1(a x)=22a a x -- sech -1(a x )= 22x a x a -- csch -1(a x )=22xa x a+-⎰ sinh -1 x dx = x sinh -1 x-21x ++ C ⎰ cosh -1 x dx = x cosh -1 x-12-x + C⎰ tanh -1 x dx = x tanh -1 x+ ½ ln | 1-x 2|+ C ⎰ coth -1 x dx = x coth -1 x- ½ ln | 1-x 2|+ C⎰ sech -1 x dx = x sech -1 x- sin -1 x + C ⎰ csch -1 x dx = x csch -1 x+ sinh -1 x + Csin 3θ=3sin θ-4sin 3θ cos3θ=4cos 3θ-3cos θ →sin 3θ= ¼ (3sin θ-sin3θ) →cos 3θ=¼(3cos θ+cos3θ)sin x = j e e jx jx 2-- cos x = 2jxjx e e -+sinh x = 2x x e e -- cosh x = 2xx e e -+正弦定理:αsin a= βsin b =γsin c =2R余弦定理: a 2=b 2+c 2-2bc cos αb 2=a 2+c 2-2ac cos βc 2=a 2+b 2-2ab cos γsin (α±β)=sin α cos β ± cos α sin β cos (α±β)=cos α cos β μsin α sin β 2 sin α cos β = sin (α+β) + sin (α-β) 2 cos α sin β = sin (α+β) - sin (α-β) 2 cos α cos β = cos (α-β) + cos (α+β) 2 sin α sin β = cos (α-β) - cos (α+β)sin α + sin β = 2 sin ½(α+β) cos ½(α-β)sin α - sin β = 2 cos ½(α+β) sin ½(α-β) cos α + cos β = 2 cos ½(α+β) cos ½(α-β) cos α - cos β = -2 sin ½(α+β) sin ½(α-β) tan (α±β)=βαβαtan tan tan tan μ±, cot (α±β)=βαβαcot cot cot cot ±μe x=1+x+!22x +!33x +…+!n x n+ …sin x = x-!33x +!55x -!77x +…+)!12()1(12+-+n x n n + …cos x = 1-!22x +!44x -!66x +…+)!2()1(2n x n n -+ …ln (1+x) = x-22x +33x -44x +…+)!1()1(1+-+n x n n + …tan -1x = x-33x +55x -77x +…+)12()1(12+-+n x n n + …(1+x)r=1+r x+!2)1(-r r x 2+!3)2)(1(--r r r x 3+… -1<x<1 ∑=ni 11= n∑=ni i 1= ½n (n +1)∑=ni i 12=61n (n +1)(2n +1) ∑=ni i13= [½n (n +1)]2Γ(x) =⎰∞t x-1e -t d t = 2⎰∞t 2x-12t e -d t =⎰∞)1(ln tx-1 d t β(m , n ) =⎰10x m -1(1-x)n -1 d x =2⎰20sin π2m -1x cos 2n -1x d x=⎰∞+-+01)1(nm m x x d x 希腊字母 (Greek Alphabets)大写小写读音 大写 小写读音 大写 小写读音 Α α alpha Ι ι iota Ρ ρrhoΒ β beta Κ κ kappa Σ σ, ς sigmaΓ γ gamma Λ λ lambda Τ τtau Δ δ delta Μ μ mu Υ υ upsilonΕ ε epsilon Ν ν nu Φ φphi ΖζzetaΞξxiΧχkhi a bcαβγ R倒数关系: sin θcsc θ=1; tan θcot θ=1; cos θsec θ=1 商数关系: tan θ=θθcos sin ; cot θ= θθsin cos 平方关系: cos 2θ+ sin 2θ=1; tan 2θ+ 1= sec 2θ; 1+ cot 2θ= csc 2θ順位低順位高; ⎰ 顺位高d 顺位低 ;1 000 000 000 000 000 000 000 000 10 yotta Y 1 000 000 000 000 000 000 000 1021 zetta Z1 000 000 000 000 000 000 1018 exa E1 000 000 000 000 000 1015 peta P1 000 000 000 000 1012 tera T 兆1 000 000 000 109 giga G 十亿1 000 000 106 mega M 百万1 000 103 kilo K 千100 102 hecto H 百10 101 deca D 十0、1 10-1 deci d 分,十分之一0、01 10-2 centi c 厘(或写作「厘」),百分之一0、001 10-3 milli m 毫,千分之一0、000 001 10-6 micro ? 微,百万分之一0、000 000 001 10-9 nano n 奈,十亿分之一0、000 000 000 001 10-12 pico p 皮,兆分之一0、000 000 000 000 001 10-15 femto f 飞(或作「费」),千兆分之一0、000 000 000 000 000 001 10-18 atto a 阿0、000 000 000 000 000 000 001 10-21 zepto z0、000 000 000 000 000 000 000 001 10-24 yocto y。
微积分常用公式及运算法则(上册)

0,
π 2
1
lim nn = 1
n→∞
1
lim x x = 1
x→+∞
lim
x→∞
1
+
1 x x
=
e,
lim
x→∞
1
−
1 x x
=
1 , lim (1+
e x→0
1
x)x
=e
等价无穷小: 当x → 0时, x ∼ sin x ∼ tan x ∼ arcsin x ∼ arctan x ∼ ln(1+ x) ∼ ex −1; 1− cos x ∼ x2 ;(1+ x)a −1 ∼ ax(a ≠ 0);
2!
n!
sin x = x − 1 x3 + 1 x5 −⋯ 3! 5!
柯西中值定理: 若f , g ∈C[a,b],并且f , g ∈ D(a,b),在(a,b)内 g(x) ≠ 0, 那么至少存在一点ξ ∈ (a,b),使 f (b) − f (a) = f ′(ξ ) g(b) − g(a) g′(ξ )
泰勒中值定理:
如果函数f (x)在含x0的某个开区间(a, b) 内具有(n +1)阶导数,即f ∈ Dn+1(a,b),
u v
′
=
u′v − uv′ v2
设x = ϕ ( y),它的反函数是y = f (x),则有
f
′( x)
=
1 ϕ′( y)
链式求导法则:d y = d y id u dx du dx
对数求导法则:
求幂指函数y = [u(x)]v(x)的导数时,
可先取对数,得 ln y = v(x) ln u(x),
微积分的公式大全

微积分的公式大全1.极限的基本公式:(1)常数规则:lim(c) = c (c 为常数)(2)零规则:lim(0) = 0(3)单位规则:lim(x) = x (x 为自变量)(4)和差规则:lim(f(x) ± g(x)) = lim(f(x)) ± lim(g(x))(5)乘法规则:lim(f(x) * g(x)) = lim(f(x)) * lim(g(x))(6)除法规则:lim(f(x) / g(x)) = lim(f(x)) / lim(g(x)) (若lim(g(x)) ≠ 0)2.导数的基本公式:(1)常数函数的导数:(c)'=0(c为常数)(2)幂函数的导数:(x^n)' = nx^(n-1) (n 为实数)(3)指数函数的导数:(e^x)'=e^x(4)对数函数的导数:(ln(x))' = 1/x(5)三角函数的导数:(sin(x))' = cos(x)、(cos(x))' = -sin(x)、(tan(x))' = sec^2(x)(6)反三角函数的导数:(arcsin(x))' = 1/√(1-x^2)、(arccos(x))' = -1/√(1-x^2)、(arctan(x))' = 1/(1+x^2)3.基本积分公式:(1)幂函数的积分:∫(x^n)dx = (x^(n+1))/(n+1) + C (n ≠ -1)(2)指数函数的积分:∫(e^x)dx = e^x + C(3)对数函数的积分:∫(1/x)dx = ln,x, + C(4)三角函数的积分:∫sin(x)dx = -cos(x) + C、∫cos(x)dx = sin(x) + C、∫tan(x)dx = -ln,cos(x), + C(5)反三角函数的积分:∫(1/√(1-x^2))dx = arcsin(x) + C、∫(-1/√(1-x^2))dx = arccos(x) + C、∫(1/(1+x^2))dx = arctan(x)+ C4.微分中值定理:(1)罗尔定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,并且f(a)=f(b),则存在一个c(a<c<b),使得f'(c)=0。
课件:微积分基本公式

二、积分上限函数及其导数
设f ( x)在[a,b]上连续, x [a,b],
记 ( x) ax f (t)dt ----积分上限函数
◆积分上限函数的重要性质:
定理1 若f ( x)在[a,b]上连续,则积分上限函数
( x) ax f (t )dt在[a,b]上可导,且x (a,b)有 :
( x)
其中: I可以为任意形式的区间.
d
x
x
f (t)dt [ f (t)dt] f (x)
dx a
a
例1 已知f ( x) 0x t 2 sin tdt,求f ( x). 解 f ( x) [0x t 2 sin tdt ] x2 sin x.
例2
已知f
(
x)
x2
0
t2
sintdt,求f
证 x (a,b),
y
( x x) axx f (t )dt
( x x) ( x)
axx f (t )dt ax f (t )dt
( x) (x)
o a x x x b x
x
f (t)dt
x x
f (t)dt
x
f (t)dt
x x
f (t)dt,
a
x
a
x
由积分中值定理得:
sin x
arctan x
xf
(t )dt ,
求g( x).
思考题解答
1. 已知f ( x)在[a,b]上连续,问ax f (t )dt与xb f (u)du 是 谁 的 函 数? 它 们 在[a , b]上 可 导 吗? 如可导, 求其导数.
解: 都是x的函数; 可导;
d dx
ax
微积分的基本定理

如果 f ( x ) 在[a , b] 上连续,则积分上限的函 数 ( x ) a f ( t )dt 就是 f ( x ) 在[a , b] 上的一个 原函数.
定理的重要意义: (1)肯定了连续函数的原函数是存在的.
x
(2)初步揭示了积分学中的定积分与原函数之 间的联系.
补充 如果 f (t ) 连续,a( x )、b( x ) 可导,
1 2 0 1
o
1
2
x
例6
求 2 max{ x , x }dx.
2 2
y
解
由图形可知
y x2
2
f ( x ) max{ x , x }
y x
2
x 2 x 0 x 0 x 1 , x2 1 x 2
2
0 2 1 2 0 1
o
1
2
x
原式 x dx xdx x 2dx
所以F ( x ) 0 即原方程在 0,1] 上只有一个解. [
1 1
三、牛顿—莱布尼茨公式
定理 3(微积分基本公式)
[ 如果F ( x ) 是连续函数 f ( x ) 在区间 a , b] 上
的一个原函数,则a f ( x )dx F (b) F (a ) .
证 已知F ( x ) 是 f ( x ) 的一个原函数,
又 ( x )
b
a
x
f ( t )dt 也是 f ( x ) 的一个原函数,
F ( x ) ( x ) C
x [a , b ]
F ( x ) f (t )dt c,
a
x
令
xa
F (a ) C ,
微积分学基本定理

(4)性质 : 1) Cf ( x )dx C f ( x )dx 2) f ( x ) g ( x )dx
a b
b
a
f ( x )dx g ( x )dx
a b c
b
3) f ( x )dx
a
b
c
a
f ( x )dx f ( x )dx
x ln x x (7 ) log a xdx ln a (9) cos xdx sin x C
计算不定积分: (1) ( x 3)( x 2)dx; ( x 1)( x 2) ( 2) dx; x cos 2 x ( 3) dx cos x sin x
b
a
f ( x )dx F ( x ) | F ( b ) F ( a )
b a
计算定积分的方法: f ( x )dx
aபைடு நூலகம்
b
(1)定义法 ( 2)面积法(曲边梯形面积 ) ( 3)公式法( 微积分基本定理 )F ( x ) f ( x )
/
b
a
f ( x )dx F ( x ) | F ( b ) F ( a )
微积分学基本定理
一、问题的提出
变速直线运动中位置函数与速度函数的联系
设某物体作直线运动,已知速度v v ( t ) 是时 t 的一个连续函数,且v ( t ) 0 , 间间隔[T1 , T2 ]上 求物体在这段时间内所经过的路程.
变速直线运动中路程为
T
T2
1
v ( t )dt
另一方面这段路程可表示为 s(T2 ) s(T1 )
微积分基本定理

1
2
x ,0 ≤ x < 1 , 例8 设 f ( x ) = x,1 ≤ x ≤ 2
2
上的表达式. 求 Φ( x ) = ∫0 f (t )dt ,在 [0,2] 上的表达式
x
解
当 0 ≤ x < 1 时,
Φ( x ) = ∫0 f (t )dt = ∫0 t dt
x x 2
1 t 3 = 1 x 3 = 3 0 3
3 2
3x 2 2x = − 12 1+ x 1 + x8
x 0 “ 型未定式,可利用洛必达法 型未定式, 解 这是一个 ” 0 1 −t cos x −t e 则计算, 则计算,分子为 ∫cos x dt=-∫1 e dt
2 2
例4
e ∫cos x 求 limt
由法则2得 由法则 得
(2)定理2 (2)定理2 定理
分上限函数Φ ( x ) = ∫ f (t )dt 是 f ( x ) 在区间
x
上连续, 若函数 f ( x ) 在 [a, b]上连续,则积
a
上的一个原函数. [a, b] 上的一个原函数.
此定理一方面说明了连续函数一定存在原函数, 此定理一方面说明了连续函数一定存在原函数, 另一方面也说明了定积分与原函数之间的关系, 另一方面也说明了定积分与原函数之间的关系, 从而可能用原函数来计算定积分. 从而可能用原函数来计算定积分
3.法则3 3.法则3 法则
α ( x ) ∈ [a , , β ( x ) ∈ [a , b] 且α ( x ) 与 β ( x ) b] ,
都可微, 都可微,则有
若函数 f ( x )在区间 [a, b]上连续, 上连续,
微积分基本公式和基本定理

(14) sh xdx ch x C
sh x ex ex 2
ch x ex ex 2
(15) ch xdx sh x C
23
例11. 求
dx . x3 x
解: 原式 =
x
4 3
dx
x
4 3
1
4 3
1
C
3x13 C
例12 求
sin
x 2
cos
x 2
dx
.
解: 原式=
xdx,
于是
2 e xdx
2
xdx.
2
2
0
0
例9
证明2e
1 4
2 e x2 xdx 2e2 .
0
2
第二节
第三章
微积分基本公式与基本定理
一、微积分基本公式 二、微积分基本定理 三、不定积分
3
一、微积分基本公式
在变速直线运动中, s(t) v(t) 物体在时间间隔
内经过的路程为 vT2 (t)d t s(T2 ) s(T1 ) T1
定理 2.1 ( Newton Leibniz公式)
b f (x)dx F(b) F(a) F(x) b
a
a
----微积分基本公式
4
注意
当a
b时, b a
f
(
x)dx
F
(b)
F
(a ) 仍成立.
解(1)
6
例2
求
2 0
(
2
cos
x
sin
x
1)dx
.
解
原式
2sin
x
cos
x
x2 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
sec2
xdx
tan
x
C
(9)
d sin
x
2
x
csc 2
xdx
cot
x
C
(10) sec x tan xdx sec x C
(11) csc x cot xdx csc x C
(12) ex dx ex C (13) a xdx a x C
ln a
(14) sh xdx ch x C
2
xdx.
2
2
0
0
例9
证
明2 e
1 4
2 e x2 xdx 2e2 .
0
第二节
第三章
微积分基本公式与基本定理
一、微积分基本公式 二、微积分基本定理 三、不定积分
一、微积分基本公式
在变速直线运动中, s(t) v(t) 物体在时间间隔
内经过的路程为 vT2 (t)d t s(T2 ) s(T1 ) T1
例10
1 et2 dt
求
lim
x0
cos x
x2
.
解 d 1 et2dt d cos x et2dt,
dx cos x
dx 1
ecos2 x (cos x) sin x ecos2 x ,
1 et2 dt
lim
x0
cos x
x2
lim sin x ecos2 x
x0
2x
1. 2e
ln
x
C
x 0时 ( ln x ) [ ln(x) ] 1
(4)
1
dx x
2
arctan
x
C
x
或 arccot x C
(5)
dx 1 x2
arcsin x C
或
arccos x C
(6) cos xdx sin x C
(7) sin xdx cos x C
(8)
dx cos 2
sh x ex ex 2
ch x ex ex 2
(15) ch xdx sh x C
例11. 求 d x .
x3 x
解: 原式 =
x
4 3
dx
x341
4 3
1
C
3x13 C
例12 求
sin
x 2
cos
x 2
dx
.
解: 原式=
1 2
sin
x
dx
1 2
cos
x
C
检验积分结果是否正确,只要把结果求导,看 其导数是否等于被积函数.
1dx. x
ln |
x
|
1 2
ln1
ln 2
ln 2.
例4 1 cos2x dx 2 | cos x | dx
0
0
2 0
2 cos xdx
2 cos xdx
2
2 [sin x]02 2 [sin x] 2 2
2
例5 设
f
(
x)
2 5
x
0
x
1
,
求
1 x2
2
0
f
( x)dx.
x2 1
dx
解: d d x21 f (t)dt f ( x2 1) 2 x dx dx b
总结:变限积分求导:
d
(x)
f (t)dt
f [( x)]( x)
dx a
d
dx
(x)
f (t)d t
(x)
d dx
a (x)
f (t)d t
(x)
a
f (t)d t
f [( x)]( x) f [ ( x)] ( x)
dt,求
dy dx
.
sin x
例7 y x2 sintdt,求 dy . sin x2 2x
0
dx
例8 y arcsinx (sint )2 dt,求 dy .
0
dx
y uv x
dy sin2( arcsin x )
1
1
dx
2 arcsin x 1 x2
例9( x) b f (t)dt,求 d .
例13 求 2x (e x 5)dx .
解: 原式 = [(2e)x 5 2x )dx
(2e)x 5 2x ln(2e) ln 2
C
2x
ex ln 2 1
5 ln 2
C
例14 求
1 x x x (1 x2
2
)
dx
.
解: 原式 =
xx
( x x) a f (t)dt
y
( x)
o a x x x b x
推论2.1 若f ( x)C[a, b], 则f ( x)有原函数
x
f (t)dt.
a
推论2.1的意义:
(1)肯定了连续函数的原函数是存在的.
(2)初步揭示了积分学中的定积分与原函数之 间的联系.
例6 y x 0
sint
1. 积分上限的函数
则变上限的定积分
x
( x) a f (t)d t,
是上限x的函数 .
x [a,b]
x
( x) a f (t)dt
变上限定积分
2. 变上限定积分对积分上限x的导数.
定理2.2 (微积分第一基本定理)
由( x)
x
f (t)dt
a
证 x [a, b], 取x 0,
使得x x [a, b].
解 闭 区 间 上 具 有 有 限 个 间断 点 的 有 界 函 数 可 积.
y
2 f ( x)dx存在. 0
2
0
f
( x)dx
1 0
f
( x)dx
2
1
f
( x)dx
o
原式
1
2xdx
0
2
5dx
1
[ x 2 ]10
[5 x]12
6
1 2x
问: f(x)什么时候存在原函数?如何求原函数?
二、微积分基本定理
2 lim
sin 3
f
( )
2 lim 3 f ( ) 6.
例8
比较积分值 2 e xdx 和 2 xdx 的大小.
0
0
解 令 f ( x) e x x, x [2, 0]
f ( x) 0,
0 (e x x)dx 0, 2
0 e xdx
0
xdx,
于是
2 e xdx
回答: 如何求f(x)的全部原函数?
定理 2.3 (微积分第二基本定理)
则 F C 就是 f 在 I 上的所
证明: 设
三、不定积分
1.定义
2.不定积分与微分的关系
互逆
3 基本积分表 (P186)
(1) kdx kx C ( k 为常数)
(2)
x
dx
1
1
x
1
C
( 1)
(3)
dx x
例 7 设 f ( x)可导,且 lim f ( x) 1, x
求 lim
x2
t
sin
3
f
(t )dt
.
x x
t
解 由积分中值定理知有 [ x, x 2],
使
x2 t sin x
3 t
f
(t )dt
sin 3 f ()( x 2 x),
lim x2 t sin
x x
3 t
f
(t )dt
定理2.1(Newton Leibniz公式)
b f (x)dx F(b) F(a) F(x) b
a
a
----微积分基本公式
注意
当a
b时, b a
f
(
x)dx
F
(b)
F
(a ) 仍成立.
解(1)
例2
求
2 0
(2
cos
x
sin
x
1)dx
.解原式2Fra bibliotekinx
cos
x
x2 0
3. 2
例3
求
1 2