高二化学平衡知识点归纳总结
高中化学平衡重点知识复习

高中化学平衡重点知识复习化学平衡是高中化学课程中的重要部分,是理解化学反应过程和掌握化学方程式平衡的核心内容之一。
在学习化学平衡知识时,有一些重点内容需要特别关注和复习,以确保对这一部分知识点的掌握。
本篇文章将针对高中化学平衡的重点知识进行复习总结和讲解。
一、化学平衡的定义化学平衡是指在一定条件下,反应物与生成物的浓度达到一定比例关系,反应速率相等,系统呈现动态平衡的状态。
在化学平衡时,反应物会不断被消耗,生成物不断生成,但总物质的量保持不变。
二、平衡常数平衡常数K是用来描述在特定温度下,反应物与生成物的浓度之比的关系,用数值来表示平衡状态的稳定程度。
对于一般的反应aA + bB ⇌ cC + dD,其平衡常数的表达式为K = [C]c[D]d / [A]a[B]b,其中括号内的字母表示各物质的摩尔浓度。
三、影响平衡位置的因素1. 温度:温度的升高会使化学平衡朝向吸热反应的方向移动,也就是方程式的右侧,反之则向左侧移动。
2. 压力:对固态和液态反应体系而言,增加压力会使平衡位置移向物质较少的一侧;而对气态反应体系而言,增加压力会使平衡位置移向气体分子数较少的一侧。
3. 浓度改变:当向不活动方向加入反应物或生成物浓度时,平衡位置会移向反应物或生成物的方向。
四、平衡常数和反应商的关系反应商Q是用来描述反应物与生成物浓度之比的量,在平衡状态下,Q值等于平衡常数K。
若Q<K,则说明生成物浓度较低,系统朝向生成物的方向移动以达到平衡;若Q=K,则系统处于平衡状态;若Q>K,则说明生成物浓度较高,系统朝向反应物的方向移动以达到平衡。
五、Le Chatelier原理Le Chatelier原理是指当外界对处于平衡状态的系统施加影响时,系统会通过反应方式减小这种影响,使平衡得以保持或者移向新的平衡状态。
Le Chatelier原理包括温度、压力、浓度等对平衡位置的影响,通过调整这些因素可以控制反应的方向和速率。
高二化学《化学反应速率与化学平衡》知识点总结

1.速率——时间图像
反应mA(g)+nB(g) pC(g)+qD(g),m+n>p+q,且ΔH>0
2. 转化率(或含量)——间图像
反应mA(g)+nB(g) pC(g)+qD(g),m+n>p+q,且ΔH>0
(1)图甲表示压强对反应物转化率的影响;
(2)图乙表示温度对反应物转化率的影响;
(2)对于有固、液参加的反应,改变压强不会影响其反应速率和平衡移动。
(3)使用催化剂,反应速率增大。但催化剂的改变不影响平衡移动。
(4)充入“惰气”对反应速率和平衡的影响
①恒温恒容,充入“惰气”,不改变反应速率和平衡移动。
②恒温恒压,充入“惰气”导致体积增大(相当于压强减小,浓度减小),故v正、v逆均减小,平衡向气体分子数增多(气体化学计量数增大)的方向移动。
(3)图丙表示催化剂对反应物转化率的影响,催化剂只能改变化学反应速率,不能改变反应物的转化率。
3.恒压(温)线
反应mA(g)+nB(g) pC(g)+qD(g),m+n>p+q,且ΔH>0
分析时可沿横轴作一条平行于纵轴的虚线,即为等压线或等温线,然后分析另一条件变化对该反应的影响。
4.“五看”分析图像
2.三段式突破反应速率与平衡的有关计算
mA(g)+nB(g) pC(g)+qD(g)
起始/(mol·L-1)ab00
变化/(mol·L-1)mxnxpx qx
平衡/(mol·L-1)a-mxb-nxpxqx
(1)反应速率v(A)=
(2)转化率α(A)= ×100%
(3)平衡常数K=
①同一可逆反应中,K正·K逆=1;
②几个可逆反应方程式相加,得总方程式,则总反应的平衡常数等于分步反应平衡常数之积。
高中化学平衡知识点总结

高中化学平衡知识点总结一、化学平衡的基本概念1. 化学平衡是指在封闭的容器内,反应物与生成物浓度不再发生明显变化的状态。
在平衡状态下,反应物和生成物的浓度保持不变,但是反应仍然在进行。
2. 平衡状态下,正向反应的速率等于反向反应的速率,正向反应和反向反应达到动态平衡。
3. 平衡常数(K)描述了反应在特定温度下达到平衡时,正向反应和反向反应中各个组分的浓度之间的比例关系。
二、平衡常数1. 平衡常数K是在反应达到平衡时,反应物和生成物的浓度之比的一个指标。
2. 平衡常数可以通过平衡反应的速率常数得到,对于一般的平衡反应aA + bB ⇌ cC + dD,其平衡常数表达式为K = [C]^c [D]^d / [A]^a [B]^b。
3. 平衡常数K与反应进行的速率无关,只与反应物和生成物的数量有关。
4. 平衡常数K只与温度有关,与反应物和生成物的浓度、压强、催化剂等无关。
5. 平衡常数的大小可以达到10^12数量级,也可以非常小,接近零。
三、影响化学平衡的因素1. 温度温度对反应平衡常数K值的影响是显著的,通常而言,反应温度越高,平衡常数越大;反之,反应温度越低,平衡常数越小。
化学反应的平衡常数与与温度的关系通过Gibbs自由能与温度的关系来解释。
2. 浓度改变反应物的浓度,可以导致平衡移动到反向或正向。
通常来说,增加反应物的浓度会导致反应向正向移动以达到新的平衡状态。
反之,减少反应物的浓度会导致反应向反向移动以达到新的平衡状态。
3. 压力对于气相反应,改变反应物分子的压力会影响平衡的位置。
通常来说,增加压力会导致反应向物质分子数量较少的方向移动;减小压力则会导致反应向物质分子总数较多的方向移动。
4. 添加催化剂催化剂可以加速反应达到平衡状态,但催化剂对平衡常数K无影响。
四、化学平衡的应用1. 工业生产在工业反应中,通过控制反应条件,可以合理利用化学平衡来提高产品的产率。
2. 环境化学通过对环境中各种物质的化学平衡研究,可以更好地了解环境中的化学反应过程。
高中化学平衡移动知识点总结

高中化学平衡移动知识点总结:
1. 平衡常数(Kc)和平衡表达式:
-平衡常数是表示在平衡时各物质浓度的关系,通常用Kc表示。
-平衡表达式根据反应物和生成物的摩尔比例关系写出,每个物质的浓度用方括号表示。
2. 影响平衡的因素:
-反应物浓度:增加反应物浓度会驱使反应向生成物方向移动,减少反应物浓度则会导致反应向反应物方向移动。
-生成物浓度:增加生成物浓度会导致反应向反应物方向移动,减少生成物浓度则会促使反应向生成物方向移动。
-温度:温度升高通常会使反应向吸热方向移动,降低温度则使反应向放热方向移动。
-压力(对于气体反应):增加压力会使反应向分子数较少的方向移动,减小压力则会促使反应向分子数较多的方向移动。
3. Le Chatelier原理:
-当系统处于平衡状态下,当外界对系统进行扰动时,系统会通过移动平衡来减小扰动。
- Le Chatelier原理指出,当系统受到温度、浓度或压力等因素
的改变时,系统会通过移动平衡来抵消这种改变。
4. 平衡移动的影响:
-加热反应体系:增加温度会使平衡向吸热方向移动,即吸热反应向前进。
-压缩气体反应体系:增加压强会使平衡向分子数较少的方向移动,减小压强则促使平衡向分子数较多的方向移动。
-改变浓度:增加某个物质的浓度会使平衡向相应生成物的方向移动,减小浓度则导致平衡向反应物的方向移动。
5. 平衡移动的时间:
-平衡移动并不是瞬间发生的,它需要一定的时间。
具体时间取决于反应速率和反应机制。
理解平衡移动知识点对于理解化学反应的平衡态及其变化非常重要,帮助我们预测和解释实验结果,并在实际应用中优化反应条件。
关于高二化学平衡知识点归纳总结

关于高二化学平衡知识点归纳总结高二化学平衡知识点归纳总结化学平衡是高中化学中的重要概念之一,它涉及化学反应中物质的转化和它们所占比例的变化。
了解和掌握化学平衡知识点对于高二学生来说至关重要。
本文将对高二化学平衡知识点进行归纳总结,帮助学生们更好地理解和应用。
一、化学反应与化学平衡的基本概念1. 化学反应:化学反应是指物质在发生变化时,原有的物质被转化为产物的过程。
2. 反应物与产物:反应物是发生化学反应时消耗的物质,产物是反应后生成的物质。
3. 化学平衡的定义:化学反应达到动态平衡时,反应物与产物的浓度、压力等宏观性质保持一定的稳定状态。
二、化学平衡的表达式1. 平衡常数:平衡常数(K)描述了在给定温度下反应物与产物浓度之间的关系,用于定量表达平衡状态。
2. 平衡常数表达式:平衡常数表达式由各物质的浓度或气体的分压的乘积所组成。
三、平衡常数的计算与应用1. 平衡常数的计算:平衡常数可以通过实验数据和反应物与产物浓度之间的关系求解,常见的计算方法有反应物比例法和逆数法。
2. 平衡常数的应用:平衡常数可以用来预测反应的进行方向、判断平衡位置的靠近程度以及浓度的影响等。
四、平衡常数与反应条件的关系1. 温度对平衡常数的影响:温度的升高或降低会改变平衡常数的大小,而且不同的反应对温度的依赖性有所区别。
2. 压力对平衡常数的影响:对于气体反应,压力的改变可能会导致平衡常数的改变。
3. 浓度对平衡常数的影响:浓度的变化也会对平衡常数产生影响,特别是对于涉及到稀释和浓缩反应物的反应。
五、Le Chatelier原理及应用1. Le Chatelier原理的基本原理:Le Chatelier原理指出当化学体系受到外界影响时,会倾向于产生反应使体系恢复平衡。
2. Le Chatelier原理的应用:利用Le Chatelier原理可以预测改变温度、压力和浓度等条件对化学平衡的影响,并合理调节反应条件以控制反应。
六、酸碱平衡1. 酸碱平衡的基本特征:酸碱反应也符合化学平衡的特征,具有化学平衡的表达式和相关计算方法。
高中化学平衡知识点整理

高中化学平衡知识点整理在高中化学学习中,平衡是一个十分重要且基础的概念。
平衡反应是指在一个封闭系统中,反应物转变为生成物的速率相等时达到的一种动态平衡状态。
平衡反应又可以细分为物理平衡和化学平衡。
下面对高中化学平衡知识点进行整理。
1. 平衡反应的特点在平衡反应中,反应物和生成物的浓度保持不变,但它们仍在转化,并处于动态平衡状态。
平衡反应的速率恒定且相等,这也是动态平衡的一种表现。
2. 平衡常数平衡常数是用来描述一个反应达到平衡时反应物和生成物浓度的比例。
平衡常数通常用Kc、Kp来表示,取决于反应方程式中各物质的浓度或分压。
3. 影响平衡位置的因素平衡位置的位置取决于平衡常数以及反应温度、压力等因素。
当平衡常数Kc大于1时,表示生成物浓度较高;当Kc小于1时,表示生成物浓度较低。
4. 平衡常数的计算平衡常数的计算需要通过反应方程式来确定各物质浓度或分压,从而得出平衡常数的数值。
平衡常数的大小可以告诉我们反应的进行方向。
5. 平衡位置的变化通过调节温度、压力或者浓度等因素,可以改变平衡位置。
Le Chatelier原理指出,在受到外界因素影响时,系统会通过调整以恢复平衡,以维持平衡动态状态。
6. 平衡常数与反应热力学反应在不同温度下的平衡常数会发生变化,这与热力学原理有关。
反应的焓变和熵变可以帮助我们理解平衡常数变化的原因。
以上就是对高中化学平衡知识点的整理,希望可以帮助大家更好地理解平衡反应的相关概念。
学习化学需要多加练习和实验,加深对平衡反应的理解,有助于提高学习效果。
愿大家取得更好的成绩!。
高中化学平衡的知识点总结

高中化学平衡的知识点总结高中化学平衡的知识1化学平衡的移动1.化学平衡的移动(1)定义达到平衡状态的反应体系,条件改变,引起平衡状态被破坏的过程。
(2)化学平衡移动的过程2.影响化学平衡移动的因素(1)温度:在其他条件不变的情况下,升高温度,化学平衡向吸热反应方向移动;降低温度,化学平衡向放热反应方向移动。
(2)浓度:在其他条件不变的情况下,增大反应物浓度或减小生成物浓度,化学平衡向正反应方向移动;减小反应物浓度或增大生成物浓度,化学平衡向逆反应方向移动。
(3)压强:对于反应前后总体积发生变化的化学反应,在其他条件不变的情况下,增大压强,化学平衡向气体体积减小的方向移动;减小压强,化学平衡向气体体积增大的方向移动。
(4)催化剂:由于催化剂能同时同等程度地增大或减小正反应速率和逆反应速率,故其对化学平衡的移动无影响。
3.勒夏特列原理在密闭体系中,如果改变影响化学平衡的一个条件(如温度、压强或浓度等),平衡就向能够减弱这种改变的方向移动。
高中化学平衡的知识2外界条件对化学平衡移动的影响1.外界条件的变化对速率的影响和平衡移动方向的判断在一定条件下,浓度、压强、温度、催化剂等外界因素会影响可逆反应的速率,但平衡不一定发生移动,只有当v正≠v逆时,平衡才会发生移动。
2.浓度、压强和温度对平衡移动影响的几种特殊情况(1)改变固体或纯液体的量,对平衡无影响。
(2)当反应混合物中不存在气态物质时,压强的改变对平衡无影响。
(3)对于反应前后气体体积无变化的反应,压强的改变对平衡无影响。
但增大(或减小)压强会使各物质的浓度增大(或减小),混合气体的颜色变深(或浅)。
(4)恒容时,同等程度地改变反应混合物中各物质的浓度时,应视为压强的影响,增大(减小)浓度相当于增大(减小)压强。
(5)在恒容容器中,当改变其中一种气态物质的浓度时,必然会引起压强的改变,在判断平衡移动的方向和物质的转化率、体积分数变化时,应灵活分析浓度和压强对化学平衡的影响。
高中化学化学平衡知识总结

高中化学化学平衡知识总结化学平衡是化学反应过程中的一种重要现象,它描述了反应物在达到一定条件下转化为生成物的速度与生成物转化为反应物的速度相等的状态。
化学平衡的研究对理解和应用化学反应有着重要的意义。
本文将对高中化学平衡知识进行总结,包括平衡常数、平衡表达式、平衡条件和影响平衡位置的因素等。
1. 平衡常数平衡常数是描述化学平衡的一个重要指标,用于估计反应的偏向性和平衡位置。
平衡常数的定义如下:对于一般反应aA + bB ↔ cC + dD,其平衡常数Kc的表达式为:Kc = [C]^c[D]^d / [A]^a[B]^b其中[A]、[B]、[C]和[D]分别表示反应物A、B和生成物C、D的浓度。
2. 平衡表达式平衡表达式是描述化学反应平衡的一个方程式,与平衡常数密切相关。
以一元反应A ↔ B为例,其平衡表达式可以表示为:Kc = [B] / [A]对于多元反应,平衡表达式的形式会更加复杂,但原理相同。
3. 平衡条件化学平衡需要满足一定的条件才能达到,即平衡条件。
平衡条件包括以下几点:- 反应物和生成物之间的连续反应速率相等;- 反应物和生成物的浓度保持不变(浓度不变并不代表它们的物质不发生变化,而是在微观层面反应速率相等);- 系统处于封闭状态,无物质的输入和输出。
4. 影响平衡位置的因素化学平衡的位置可以通过改变温度、压力和浓度等条件来调控。
以下是几个常见的影响平衡位置的因素:- 温度:温度升高时,平衡位置会向反应吸热的方向移动,反之亦然;- 压力:对于气态物质参与的反应,增加压力会使平衡位置向摩尔数较少的一方移动;- 浓度变化:增加某一物质的浓度会导致平衡位置向另一方移动,以减少浓度差异;- 催化剂:催化剂可以加速反应前后的平衡建立,但不会改变平衡位置。
综上所述,高中化学中的化学平衡是一个重要的概念。
我们通过平衡常数、平衡表达式、平衡条件以及影响平衡位置的因素,可以更好地理解和利用化学反应中的平衡现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二化学平衡知识点归纳总结化学平衡的内容是高中学生学习化学的时候遇到的一个难点知识点,这个内容是比较复杂的,我们需要反复理解。
下面是百分网小编为大家整理的高二化学重要的知识点,希望对大家有用!高二化学平衡知识点化学平衡1、化学平衡状态(1)溶解平衡状态的建立:当溶液中固体溶质溶解和溶液中溶质分子聚集到固体表面的结晶过程的速率相等时,饱和溶液的浓度和固体溶质的质量都保持不变,达到溶解平衡。
溶解平衡是一种动态平衡状态。
①固体溶解过程中,固体的溶解和溶质分子回到固体溶质表面这两个过程一直存在,只不过二者速率不同,在宏观上表现为固体溶质的减少。
当固体全部溶解后仍未达到饱和时,这两个过程都不存在了。
②当溶液达到饱和后,溶液中的固体溶解和溶液中的溶质回到固体表面的结晶过程一直在进行,并且两个过程的速率相等,宏观上饱和溶液的浓度和固体溶质的质量都保持不变,达到溶解平衡状态。
(2)可逆反应与不可逆反应①可逆反应:在同一条件下,同时向正、反两个方向进行的化学反应称为可逆反应。
前提:反应物和产物必须同时存在于同一反应体系中,而且在相同条件下,正、逆反应都能自动进行。
②不可逆反应:在一定条件下,几乎只能向一定方向(向生成物方向)进行的反应。
(3)化学平衡状态的概念:化学平衡状态指的是在一定条件下的可逆反应里,正反应速率和逆反应速率相等,反应混合物中各组分的浓度保持不变的状态。
理解化学平衡状态应注意以下三点:①前提是“一定条件下的可逆反应”,“一定条件”通常是指一定的温度和压强。
②实质是“正反应速率和逆反应速率相等”,由于速率受外界条件的影响,所以速率相等基于外界条件不变。
③标志是“反应混合物中各组分的浓度保持不变”。
浓度没有变化,并不是各种物质的浓度相同。
对于一种物质来说,由于单位时间内的生成量与消耗量相等,就表现出物质的多少不再随时间的改变而改变。
2、化学平衡移动可逆反应的平衡状态是在一定外界条件下(浓度、温度、压强)建立起来的,当外界条件发生变化时,就会影响到化学反应速率,当正反应速率不再等于逆反应速率时,原平衡状态被破坏,并在新条件下建立起新的平衡。
此过程可表示为:(1)化学平衡移动:可逆反应中旧化学平衡的破坏、新化学平衡的建立过程。
(2)化学平衡移动的原因:反应条件的改变,使正、逆反。
应速率发生变化,并且正、逆反应速率的改变程度不同,导致正、逆反应速率不相等,平衡受到破坏,平衡混合物中各组分的含量发生相应的变化。
①若外界条件改变,引起υ正>ν逆时,正反应占优势,化学平衡向正反应方向移动,各组分的含量发生变化;②若外界条件改变,引起υ正<ν逆时,逆反应占优势,化学平衡向逆反应方向移动,各组分的含量发生变化;③若外界条件改变,引起υ正和ν逆都发生变化,如果υ正和ν逆仍保持相等,化学平衡就没有发生移动,各组分的含量从保持一定到条件改变时含量没有变化。
(3)浓度对化学平衡的影响在其他条件不变的情况下:增大反应物的浓度,平衡向正反应方向移动,使反应物的浓度降低;减小产物的浓度,平衡向正反应方向移动,使产物的浓度增大;增大产物的浓度,平衡向逆反应方向移动,使产物的浓度降低;减小反应物的浓度,平衡向逆反应方向移动,使反应物的浓度增大。
(4)压强对化学平衡的影响在其他条件不变的情况下,对于有气体参加或者生成的反应,增大压强,会使气体的浓度增大相同的倍数,正、逆反应速率都增加,化学平衡向着气体体积缩小的反应方向移动; 减小压强,会使气体的浓度减小相同的倍数,正、逆反应速率都减小,会使化学平衡向着气体体积增大的反应方向移动。
(5)温度对化学平衡的影响在其他条件不变的情况下,温度升高,化学平衡向着吸热反应方向移动;温度降低,化学平衡向着放热反应方向移动。
(6)催化剂对化学平衡的影响使用催化剂不影响化学平衡的移动。
由于催化剂可以改变化学反应速率,而且对于可逆反应来说,催化剂对正反应速率与逆反应速率影响的程度是等同的,所以平衡不移动。
但应注意,虽然催化剂不使化学平衡移动,但使用催化剂可影响可逆反应达到平衡的时间。
(7)勒夏特列原理①原理内容:如果改变影响平衡的一个条件 (如温度、压强等),平衡就向能够减弱这种改变的方向移动。
化学能转化为电能——电池1、原电池的工作原理(1)原电池的概念:把化学能转变为电能的装置称为原电池。
(2)Cu-Zn原电池的工作原理:如图为Cu-Zn原电池,其中Zn为负极,Cu为正极,构成闭合回路后的现象是:Zn片逐渐溶解,Cu片上有气泡产生,电流计指针发生偏转。
该原电池反应原理为:Zn失电子,负极反应为:Zn→Zn2++2e-;Cu得电子,正极反应为:2H++2e-→H2。
电子定向移动形成电流。
总反应为:Zn+CuSO4=ZnSO4+Cu。
(3)原电池的电能若两种金属做电极,活泼金属为负极,不活泼金属为正极;若一种金属和一种非金属做电极,金属为负极,非金属为正极。
2、化学电源(1)锌锰干电池负极反应:Zn→Zn2++2e-;正极反应:2NH4++2e-→2NH3+H2;(2)铅蓄电池负极反应:Pb+SO42-PbSO4+2e-正极反应:PbO2+4H++SO42-+2e-PbSO4+2H2O。
放电时总反应:Pb+PbO2+2H2SO4=2PbSO4+2H2O。
充电时总反应:2PbSO4+2H2O=Pb+PbO2+2H2SO4(3)氢氧燃料电池负极反应:2H2+4OH-→4H2O+4e-正极反应:O2+2H2O+4e-→4OH-电池总反应:2H2+O2=2H2O3、金属的腐蚀与防护(1)金属腐蚀金属表面与周围物质发生化学反应或因电化学作用而遭到破坏的过程称为金属腐蚀。
(2)金属腐蚀的电化学原理。
生铁中含有碳,遇有雨水可形成原电池,铁为负极,电极反应为:Fe→Fe2++2e-。
水膜中溶解的氧气被还原,正极反应为:O2+2H2O+4e-→4OH-,该腐蚀为“吸氧腐蚀”,总反应为:2Fe+O2+2H2O=2Fe(OH)2,Fe(OH)2又立即被氧化:4Fe(OH)2+2H2O+O2=4Fe(OH)3,Fe(OH)3分解转化为铁锈。
若水膜在酸度较高的环境下,正极反应为:2H++2e-→H2↑,该腐蚀称为“析氢腐蚀”。
(3)金属的防护金属处于干燥的环境下,或在金属表面刷油漆、陶瓷、沥青、塑料及电镀一层耐腐蚀性强的金属防护层,破坏原电池形成的条件。
从而达到对金属的防护;也可以利用原电池原理,采用牺牲阳极保护法。
也可以利用电解原理,采用外加电流阴极保护法。
化学反应与能量转化化学反应的实质是反应物化学键的断裂和生成物化学键的形成,化学反应过程中伴随着能量的释放或吸收。
一、化学反应的热效应1、化学反应的反应热(1)反应热的概念:当化学反应在一定的温度下进行时,反应所释放或吸收的热量称为该反应在此温度下的热效应,简称反应热。
用符号Q表示。
(2)反应热与吸热反应、放热反应的关系。
Q>0时,反应为吸热反应;Q<0时,反应为放热反应。
(3)反应热的测定测定反应热的仪器为量热计,可测出反应前后溶液温度的变化,根据体系的热容可计算出反应热,计算公式如下:Q=-C(T2-T1)式中C表示体系的热容,T1、T2分别表示反应前和反应后体系的温度。
实验室经常测定中和反应的反应热。
2、化学反应的焓变(1)反应焓变物质所具有的能量是物质固有的性质,可以用称为“焓”的物理量来描述,符号为H,单位为kJ·mol-1。
反应产物的总焓与反应物的总焓之差称为反应焓变,用ΔH表示。
(2)反应焓变ΔH与反应热Q的关系。
对于等压条件下进行的化学反应,若反应中物质的能量变化全部转化为热能,则该反应的反应热等于反应焓变,其数学表达式为:Qp=ΔH=H(反应产物)-H(反应物)。
(3)反应焓变与吸热反应,放热反应的关系:H>0,反应吸收能量,为吸热反应。
H<0,反应释放能量,为放热反应。
(4)反应焓变与热化学方程式:把一个化学反应中物质的变化和反应焓变同时表示出来的化学方程式称为热化学方程式,如:H2(g)+O2(g)=H2O(l);ΔH(298K)=-285.8kJ·mol-1书写热化学方程式应注意以下几点:①化学式后面要注明物质的聚集状态:固态(s)、液态(l)、气态(g)、溶液(aq)。
②化学方程式后面写上反应焓变ΔH,ΔH的单位是J·mol-1或kJ·mol-1,且ΔH后注明反应温度。
③热化学方程式中物质的系数加倍,ΔH的数值也相应加倍。
3、反应焓变的计算(1)盖斯定律对于一个化学反应,无论是一步完成,还是分几步完成,其反应焓变一样,这一规律称为盖斯定律。
(2)利用盖斯定律进行反应焓变的计算。
常见题型是给出几个热化学方程式,合并出题目所求的热化学方程式,根据盖斯定律可知,该方程式的ΔH为上述各热化学方程式的ΔH的代数和。
(3)根据标准摩尔生成焓,ΔfHmθ计算反应焓变ΔH。
对任意反应:aA+bB=cC+dDH=[cΔfHmθ(C)+dΔfHmθ(D)]-[aΔfHmθ(A)+bΔfHmθ(B)]。