2020年中考数学代几综合问题专题复习(35页)

合集下载

2020年中考数学复习 第35章 选择题解法(专题复习讲义)

2020年中考数学复习 第35章 选择题解法(专题复习讲义)

中考数学复习第35章选择题解法(专题复习讲义)1.选择题的特点:选择题是中考试题中必有的固定题型,可以认为是一种最具典型性且最具测试功能的客观题,在单位时间内可以考查更广泛的学习内容,知识覆盖面广、解法灵活,答案唯一正确、答卷方式简便、评分客观公正等特点.选择题在中考中占有非常重要的地位.选择题一般由题干(题设)和选择支(选项)组成,如果题干不是完全陈述句,那么题干加上正确的选择支就构成一个真命题;而题干加错误的选择支,就构成一个假命题.解选择题的过程就是一个通过分析、判断、推理排除错误的选项,得出正确选项的过程.2.解选择题的策略:由于选择题不需要解答过程,所以解选择题要做到是“正确”“迅速”.“正确”是解题的根本,“迅速”是解题的要求.“正确”“迅速”的基础是概念清楚、算理明白、运算熟练、跳步合理、方法得当.所以选择合理的解题途径,运用恰当的解题技巧成为解好选择题的关键.解题的过程就是通过分析、判断、推理排除干扰,得出正确结果的过程.常用的解题策略有:直接求解法、验证法、排除法、特殊值(特殊位置)法、分析法或简单推理法、动手操作法、综合法等.考点一利用直接法求解有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法.它是直接从题目的条件出发,利用定义、定理、性质、公式等知识,通过运算或推理,直接求得结论,再与选项对照来确定正确选项,我们所做的选择题的大部分题目都是采用直接法求解.【例1】如图,AB是☉O的直径,C是☉O上一点,AB=10,AC=6,OD⊥BC,垂足为D,则BD的长为()A.2B.3C.4D.6【思路点拨】先根据直径所对的圆周角是直角,得出∠C是直角,在Rt△ABC中利用勾股定理求出BC的长,再根据垂径定理求出BD的长.考点二利用验证法求解利用验证法解选择题的方法就是直接将各选项中的结论代入题设条件进行检验,从而选出符合题意的答案.【例2】方程13x1x1--+=0的解是( )A.x=2B.x=1C.x=D.x=-2【思路点拨】把各选项分别代入原方程,使方程左右两边分别相等的未知数的值是原分式方程的解,或分式方程去分母转化为整式方程,求出整式方程的解,得到x的值,经检验即可得到分式方程的解.【标准解答】选A.把x=2代入原方程,方程左右两边值相等,所以x=2是原分式方程的解;或方程两边同时乘以(x-1)(x+1),得x+1-3x+3=0,-2x=-4,x=2,经检验,x=2是原方程的解.考点三利用排除法求解选择题因其答案是四选一,必然只有一个正确答案,排除法是根据题设和有关知识,排除明显不正确选项,那么剩下唯一的选项,自然就是正确的选项,如果不能立即得到正确的选项,至少可以缩小选择范围,提高解题的准确率.排除法是解选择题的间接方法,也是解选择题的常用方法.这种方法也称为剔除法、淘汰法或筛选法.【例3】如图,在平行四边形ABCD中,下列结论错误的是()A.∠1=∠2B.∠BAD=∠BCDC.AB=CDD.AC⊥BD【思路点拨】根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出答案.【标准解答】选D.在平行四边形ABCD中,AB∥CD,∴∠1=∠2,故选项A正确,不合题意;∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,AB=CD,故选项B,C正确,不合题意;无法得出AC⊥BD,故选项D错误,符合题意.故选D.考点四利用特殊值或特殊位置求解特殊值法是根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法.用特殊值法解题要注意所选取的值要符合条件,且易于计算.此类问题通常具有一个共性:题干中给出一些一般性的条件,而要求得出某些特定的结论或数值.在解决时可将问题提供的条件特殊化,使之成为具有一般性的特殊图形或问题,而这些特殊图形或问题的答案往往就是原题的答案.利用特殊值法解答问题,不仅可以选用特别的数值代入原题,使原题得以解决而且可以作出符合条件的特殊图形来进行计算或推理.【例4】如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()考点五利用分析法或简单推理求解在选择题中,对于数字或规律探索问题的题目常通过猜想、测量的方法,运用不完全归纳法直接观察得出结果,有些题目则需要通过分析探索,寻找规律,得出答案;对于求线段的长度或求角的度数,以及判断几何结论是否正确的选择题,需要进行简单的推理,才能求出结果或确定选项中结论的正确性.考点六利用动手操作法求解在选择题中,常出现有关折纸、剪纸,以及几何体的展开与折叠问题,这类问题主要是考查空间想象能力.解这类题目一是凭观察与想象解决,再是动手操作一下,这样做往往能直观、迅速、正确地得到答案.【例6】如图,把一个长方形的纸片按图示对折两次,然后剪下一部分,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°【思路点拨】先根据折纸的顺序,逆向画出图形,如图所示,再结合题目要求的“钝角为120°的菱形”分析即可.【标准解答】选D.设剪口与第二次折痕所成角的度数为α,如图1,若∠ADC=120°,∵四边形ABCD是菱形,∴∠BDC=12∠ADC=60°,AC⊥BD,∴α=90°-60°=30°;如图2,若∠BCD=120°,∵四边形ABCD是菱形,∴α= 12∠BCD=60°,∴剪口与折痕所成的角α的度数为30°或60°. 如图2,若∠BCD=120°,∵四边形ABCD是菱形,∴α= 12∠BCD=60°,∴剪口与折痕所成的角α的度数为30°或60°.考点七综合法有的选择题不只用到一种解法,有的要用到几种解法,为了对选择题迅速、正确地作出判断,有时需要综合运用前面介绍的几种方法.应根据题目特点灵活选用.【例7】如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D,E为BC边上的两点,且∠DAE=45°,连接EF,BF,则下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE2+DC2=DE2,其中正确的有个()A.1B.2C.3D.4【思路点拨】根据题意,易判断△AED≌△AEF;对于③④,根据结论的形式,想到应该把这几条线段放到同一个三角形中,构造三角形,再利用三角形三边关系和勾股定理可得.【标准解答】选C.根据∠BAC=∠DAF=90°,AB=AC,AD=AF,易证△ACD≌△ABF,所以BF=CD,∠ACD=∠ABF=45°,所以∠EBF=90°,再根据∠DAE=45°得∠FAE=45°,所以△AED≌△AEF,所以①正确,我们还可得到DE=FE,根据三角形两边之和大于第三边可知③正确,根据勾股定理可知④正确,故选C.【知识归纳】选择题的解法还有很多,但做题时也不要拘泥于固定思维,有时候一道题可采用多种方法综合运用.解选择题的原则是既要注意题目特点,充分应用供选择的答案所提供的信息,又要有效地排除错误答案可能造成的干扰,做完题后要仔细检查,有没有遗漏的,全面认真的检查,验证答案,须注意以下几点:(1)要认真审题.(2)要大胆猜想.(3)要小心验证.(4)先易后难,先简后繁.(5)另外遇到不会的选择题,也不要空着不做,一定要选个答案.。

2020年中考复习 几何代数综合题 专题汇编

2020年中考复习 几何代数综合题  专题汇编

2020年中考复习几何代数综合题的解法(2)1.(2018。

永州)如图,抛物线的顶点A的坐标为(1,4),抛物线与x 轴相交于B,C两点,与y轴交于点E(0,3).(1)求抛物线的解析式;(2)已知点F(0,-3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小?如果存在,求出点G的坐标;如果不存在,请说明理由;(3)如图②,连接AB,若点P是线段OE上一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M,N(点M,N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积。

解析:(1)设抛物线y=a(x-1)2+4,将点E(0,3)代入求a,化为一般式得:y=-x2+2x+3。

(2)作E关于对称轴的对称点E` ,连接FE`交对称轴于点P。

由题意可得E`(2,3),设直线解析式为y=kx+b,将E`(2,3),F(0,-3)两点代入可得y=3x-3,当X=1时,y=0,所以P (1,0).根据两点间线段最短,可知存在点G (P ),使得EG+FG 最小。

(3)设点N (n, -n 2+2n+3),过点N 作NH⊥OB,NG ⊥OA,垂足分别为点G 、H 。

知道A(1,4), B (0,3)可求得直线AB 的解析式:Y=-2X+6,这样可得D (n,-2n+6),进而求得ND=-n 2+4n-3.由题意可得△NMD ∽△BHD ∽△BFA,所以FA ND =BF MN ,BF=2,FA=4,这样MN=55+-2-2)n (55又知1<n<3,所以当n=2时,MN 最大,此时N(2,3).设直线PN 解析式为y=21x+b ,N 点代入得,y=21x+2,所以PO=2.故△PON 的面积 =21PO ·NG=21×2×2=2. 2.(2018.玉林)如图,直线y=-3x+3与x 轴、y 轴分别交于A ,B 两点,抛物线y=-x 2+bx+c 与直线y=c 分别交y 轴的正半轴于点C 和第一象限的点p ,连接PB ,得△PCB ≌△BOA (O 为坐标原点)。

2020年中考数学压轴题精品专题几何与代数综合性及易错问题(解析版)

2020年中考数学压轴题精品专题几何与代数综合性及易错问题(解析版)

几何与代数综合性及易错问题题型一:几何与代数综合性问题尺规作图、利用代数方法解决图形存在性(最值、性质)问题等题型二:易错题型基于分类讨论的题型.【例1】(2019·洛阳二模)如图,直线y=-43x+4与x轴、y轴的交点为A,B.按以下步骤作图:①以点A为圆心,适当长度为半径作弧,分别交AB,x轴于点C,D;②分别以点C,D为圆心,大于12CD的长为半径作弧,两弧在∠OAB内交于点M;③作射线AM,交y轴于点E.则点E的坐标为【答案】(0,32).【解析】解:过点E作EF⊥AB于F,如图所示,在y=-43x+4中,当x=0时,y=4;当y=0时,x=3,即A(3,0),B(0,4),在Rt△AOB中,由勾股定理得:AB=5,由题意的尺规作图方法可知,AM为∠BOA的平分线,∴EO=EF,∴△OAE≌△F AE,∴OA=AF=3,∴BF=AB-AF=2,设OE=x,则EF=x,BE=4-x,在Rt△BEF中,由勾股定理得:(4-x)2=x2+22,解得:x=32,即OE=32,∴答案为:(0,32).【变式1-1】(2019·偃师一模)如图,点A(0,2),在x轴上取一点B,连接AB,以A为圆心,任意长为半径画弧,分别交OA,AB于点M,N,再以M,N为圆心,大于12MN的长为半径画弧,两弧交于点D,连接AD并延长交x轴于点P.若△OP A与△OAB相似,则点P的坐标为【答案】0).【解析】解:由题意知,AP为∠OAB的平分线,∴∠OAP=∠BAP,∵△OP A与△OAB相似,∴∠OP A=∠OAB=2∠OAP,∴∠OAP=30°,∵OA=2,∴OP=OA·tan30°即P0).【变式1-2】(2018·河南第一次大联考)如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数1y x =和9y x =在第一象限的图象于点A ,B ,过点B 作BD ⊥x 轴于点D ,交1y x=的图象于点C ,连接AC .若△ABC 是等腰三角形,则k 的值是__________.【答案】7或5.【解析】解:联立y =kx ,1y x =,得:xy A ),同理,得点B 的坐标为),∵BD ⊥x 轴,∴C),∴BC ,BC ,∴A 不在BC 的垂直平分线上,即AB ≠AC ,(1)当AB =BC 时,即AB 2=BC 2,(222⎛+= ⎝⎭,解得:k k =(舍);(2)当AC =BC 时,即AC 2=BC 2,222⎛+= ⎝⎝⎭,解得:k 或k =(舍);.【例2】(2019·偃师一模)当-2≤x≤1时,二次函数y=-(x-m)2+m2+1有最大值4,则实数m的值为2.【解析】解:①当-2≤m≤1时,x=m时,y=4,即m2+1=4,解得:m= m=②当m<-2时,x=-2时,y=4,即-(-2-m)2+m2+1=4,解得:m=74(舍);③当m>1时,x=1时,y=4,即-(1-m)2+m2+1=4,解得:m=2,综上所述,m 2.【变式2-1】(2019·洛阳二模)四张背面相同的扑克牌,分别为红桃1,2,3,4,背面朝上,先从中抽取一张把抽到的点数记为a,再在剩余的扑克中抽取一张点数记为b,则点(a,b)在直线y=x+1 上方的概率是【答案】1 4 .【解析】解:抽到的点数有序数对为:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),共12中可能,只有(1,2),(2,3),(3,4)三个点在直线y=x+1上,即点(a,b)在直线y=x+1 上方的概率是31= 124,故答案为:1 4 .【变式2-2】(2018·信阳一模)如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则()A.P1>P2B.P1<P2C.P1=P2D.以上都有可能【答案】A.【解析】解:由图甲可知,黑色方砖6块,共有16块方砖,∴在乙种地板上最终停留在黑色区域的概率为P1=63 168=,由图乙可知,黑色方砖3块,共有9块方砖,∴在乙种地板上最终停留在黑色区域的概率为P2=31 93 =,∴P1>P2;故答案为:A.1.(2018·焦作一模)如图,在直角坐标系中,正方形ABCO的点B坐标(3,3),点A、C分别在y轴、x轴上,对角线AC上一动点E,连接BE,过E作DE⊥BE交OC于点D.若点D坐标为(2,0),则点E 坐标为.【答案】(1,2).【解析】解:过点E作EH⊥OC于H,延长HE交AB于F,连接OE,∵四边形ABCO是正方形,∴AB∥OC,∠OAB=∠AOC=90°,∠OAC=∠BAC=∠OCA=45°,OA∥BC,∴FH∥OA,∴∠HEC=∠OAC=∠OCA= 45°,∠BFH=∠OAB=90°,∠DHE=∠AOC=90°,∴EH=CH=BF,∠EBF=∠DEH,∴△BEF≌△EDH,∴BE=DE,∵点D坐标为(2,0),即OD=2,由正方形性质得:OE=BE=DE,∵FH⊥OC,∴OH=DH=12OD=1,∴EF=DH=1,∵FH=OA=3,∴EH=2,∴点E的坐标为(1,2),∴答案为:(1,2).2.(2018·焦作一模)如图1,在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M、N、P分别是BE、CD、BC的中点.(1)观察猜想:图1中,△PMN的形状是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请直接写出△PMN的周长的最大值.图1 图2【答案】(1)等边三角形;(2)(3)见解析.【解析】解:(1)∵△ABC为等边三角形,∴AB=AC,∠ABC=∠ACB=60°,∵AD=AE,∴BD=CE,∵点M、N、P分别是BE、CD、BC的中点,∴PM∥CE,PM= 12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCA=60°,∠CPN=∠CBA=60°,∴∠MPN=60°,∴△PMN为等边三角形;答案为等边三角形;(2)△PMN的形状不发生改变,理由如下:连接CE、BD,∵AB=AC,AE=AD,∠BAC=∠DAE=60°,由旋转性质得:BD=CE,∠ABD=∠ACE,∵点M、N、P分别是BE、CD、BC的中点,∴PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,∴∠BPM+∠CPN=∠BCE+∠CBD=∠BCA+∠ACE+∠CBD=∠BCA+∠ABD+∠CBD=∠BCA+∠ABC=120°,∴∠MPN=60°,∴△PMN为等边三角形.(3)∵PN=12 BD,∴当BD的值最大时,PN的值最大,当A、B、D共线时且A在B、D之间时,BD取最大值,此时BD=1+3=4,∴PN的最大值为2,即△PMN的周长的最大值为6.3.(2019·三门峡二模)如图,正方形ABCD的对称中心在坐标原点,AB∥x轴,AD,BC分别与x轴交于E,F,连接BE,DF,若正方形ABCD的顶点B,D在双曲线y=ax上,实数a满足1aa-=1,则四边形DEBF的面积是()A.12B.32C.1 D.2【答案】D.【解析】解:∵实数a满足1aa-=1,∴a=±1,又∵a>0,∴a=1,∵正方形ABCD的顶点B,D在y=ax上,∴S矩形BGOF=1,∵正方形ABCD的对称中心在坐标原点,∴S平行四边形DEBF=S矩形ABFEF=2S矩形BGOF=2×1=2,故答案为:D.4.(2019·省实验一模)如图,在△ABC中,按以下步骤作图:①分别以点B,C为圆心,以大于12 BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.如果CD=AC,∠ACB =105°,那么∠B的度数为()A.20°B.25°C.30°D.35°【答案】B.【解析】解:由尺规作图可得:MN垂直平分BC,∴DC=BD,∴∠DCB=∠DBC,∵DC=AC,∴∠A=∠CDA,设∠B为x,则∠BCD=x,∠A=∠CDA=2x,∴x+2x+105°=180°,解得:x=25,即∠B=25°,故答案为:B.5.(2019·省实验一模)如图,点A(m,5),B(n,2)是抛物线C1:y=12x2﹣2x+3上的两点,将抛物线C1向左平移,得到抛物线C2,点A,B的对应点分别为点A',B'.若曲线段AB扫过的面积为9(图中的阴影部分),则抛物线C2的解析式是()A.y=12(x﹣5)2+1 B.y=12(x﹣2)2+4C.y=12(x+1)2+1 D.y=12(x+2)2﹣2【答案】C.【解析】解:∵y =12x 2﹣2x +3 =12(x ﹣2)2+1, ∵阴影部分的面积为9,A (m ,5),B (n ,2),∴3BB ′=9,∴BB ′=3,即将C 1沿x 轴向左平移3个单位长度得到C 2的图象,∴C 2的函数表达式是y =12(x +1)2+1. 答案为:C .6.(2019·省实验一模)如图,网格线的交点称为格点.双曲线y =1k x与直线y =k 2x 在第二象限交于格点A .(1)填空:k 1= ,k 2= ;(2)双曲线与直线的另一个交点B 的坐标为 ;(3)在图中仅用直尺、2B 铅笔画△ABC ,使其面积为2|k 1|,其中点C 为格点.【答案】(1)﹣2;﹣2;(2)(1,﹣2);(3)见解析.【解析】解:(1)由图可得:A (﹣1,2),将点A (﹣1,2)分别代入双曲线y =1k x 和直线y =k 2x , 可得:k 1=﹣2,k 2=﹣2,(2)由对称性可知,两函数图象的另一个交点与A (﹣1,2)关于坐标原点对称, ∴B (1,﹣2);(3)∵k 1=﹣2,∴2|k1|=4,∴满足条件的点C有四个,如图所示.7.(2019·叶县一模)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF (如图1),连接BD,MF,若BD=16cm,∠ADB=30°.(1)如图1,试探究线段BD与线段MF的数量关系和位置关系,并说明理由;(2)把△BCD与△MEF剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求β的度数;(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离.图1 图2 图3【答案】见解析.【解析】解:(1)结论:BD=MF,BD⊥MF.理由:延长FM交BD于点N,由题意得:△BAD≌△MAF.∴BD=MF,∠ADB=∠AFM.∵∠DMN=∠AMF,∴∠ADB+∠DMN=∠AFM+∠AMF=90°,∴∠DNM=90°,∴BD⊥MF.(2)由题意知,∠KAF<90°,①当AF=AK时,∠AKF=∠F=30°,此时∠KAF=120°,不符题意,此种情况不存在;②当AK=FK时,∠KAF=∠F=30°,则∠BAB1=180°﹣∠B1AD1﹣∠KAF=180°﹣90°﹣30°=60°,即β=60°;③当AF=FK时,∠F AK=75°,∴∠BAB1=90°﹣∠F AK=15°,即β=15°;综上所述,β的度数为60°或15°;(3)由题意得四边形PNA2A是矩形,设A2A=PN=x,在Rt△A2M2F2中,F2M2=FM=16,∠F=∠ADB=30°,∴A2M2=8,A2F2=,∴AF2=x.同理,AP=8x,∴PD=AD﹣AP=8+3x.∵NP∥AB,∴PN DP AB AD=,∴88x+=,解得x=12﹣,∴平移距离为:12﹣.8.(2019·濮阳二模)若函数y =(m ﹣1)x 2﹣6x +32m 的图象与x 轴有且只有一个交点,则m 的值为( ) A .﹣2或3B .﹣2或﹣3C .1或﹣2或3D .1或﹣2或﹣3【答案】C . 【解析】解:(1)当m =1时,函数解析式为:y =﹣6x +32,是一次函数,图象与x 轴有且只有一个交点,(2)当m ≠1时,函数为二次函数,∴62﹣4×(m ﹣1)×32m =0, 解得:m =﹣2或3,故答案为:C .9.(2019·濮阳二模)如图,点A 在双曲线y =k x(x >0)上,过点A 作AB ⊥x 轴,垂足为点B ,分别以点O 和点A 为圆心,大于12OA 的长为半径作弧,两弧相交于D ,E 两点,作直线DE 交x 轴于点C ,交y 轴于点F (0,2),连接AC .若AC =1,则k 的值为( )A .2B .3225CD 【答案】B .【解析】解:设OA 交CF 于K .由作图方法可知,CF 垂直平分线段OA ,∴OC =CA =1,OK =AK ,在Rt △OFC 中,由勾股定理得:CF ,由三角形的面积知:AK =OK ,∴OA =5, 由△FOC ∽△OBA ,可得:OF OC CF OB AB AO ==,∴21OB AB ==, ∴OB =85,AB =45, 即A (85,45), ∴k =3225. ∴答案为:B .10.(2019·商丘二模)如图,平面直角坐标系中,矩形OABC 绕原点O 逆时针旋转30°后得到矩形OA ′B ′C ′,A ′B ′与BC 交于点M ,延长BC 交B ′C ′于N ,若A 0),C (0,1),则点N 的坐标为( )A .(33,1)B .(21)C .2,1)D .(11)【答案】B .【解析】解:连接ON ,取∠ONE =∠NOC ,由旋转性质得:C 'O =CO ,∠COC '=30°∵CO =C 'O ,NO =NO∴Rt △CON ≌Rt △C 'ON (HL )∴∠NOC =∠NOC '=15°∴∠ONE =∠NOC =15°∴∠NEC =30°,NE =EO∵NC ⊥OC ,∠NEO =30°∴NC =12NE ,CE ∵CE +OE =1∴2NC NC =1∴NC =2即点N 坐标(21)所以答案为:B .11.(2019·开封模拟)如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为 .【答案】12.【解析】解:∵四边形ABCD 为正方形,∴AB =CD ,AB ∥CD ,∴∠ABF =∠GDF ,∠BAF =∠DGF ,∴△ABF ∽△GDF , ∴AF AB GF DG=2, ∴AF =2GF =4,∴AG =6.由题意得:CG为△EAB的中位线,∴AE=2AG=12.所以答案为:12.12.(2019·新乡一模) 如图,在△ABC中,AD平分∠BAC,按如下步骤作图:①分别以点A、D为圆心,以大于12AD的长为半径在AD两侧作弧,交于两点M、N;②连接MN分别交AB、AC于点E、F;③连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2 B.4 C.6 D.8【答案】D.【解析】解:由作图方法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理,DF∥AE,∴四边形AEDF是菱形,∴AE=DE=DF=AF,∵AF=4,∴AE=DE=DF=AF=4,由DE∥AC,得:BD BE CD AE,∵BD=6,AE=4,CD=3,∴BE=8,故答案为:D .13.(2017·西华县一模)如图,在△ABC 中,AB =AC ,∠A =36°,且BC =2,则AB = .1.【解析】解:作∠ABC 的平分线交AC 于D ,∵AB =AC ,∠A =36°,∴∠ABC =∠C =72°,∴∠ABD =∠CBD =36°,∴DA =DB ,∴∠BDC =∠A +∠ABD =72°,∴BD =BC =2,∴AD =BC =2,∵∠CBD =∠A ,∠BCD =∠ACB ,∴△BCD ∽△ABC ,∴BC :AC =CD :BC ,∴BC 2=AC •CD ,即:()222AC AC =⋅-,解得:AC AC =1即AB .14.(2019·省实验一模)如图,点A(m,5),B(n,2)是抛物线C1:y=12x2﹣2x+3上的两点,将抛物线C1向左平移,得到抛物线C2,点A,B的对应点分别为点A',B'.若曲线段AB扫过的面积为9(图中的阴影部分),则抛物线C2的解析式是()A.y=12(x﹣5)2+1 B.y=12(x﹣2)2+4C.y=12(x+1)2+1 D.y=12(x+2)2﹣2【答案】C.【解析】解:y=12x2﹣2x+3=12(x﹣2)2+1,∵曲线段AB扫过的面积为9,A(m,5),(n,2)∴四边形ABB’A’为平行四边形,且BB’边上的高为3,即3BB′=9,∴BB′=3,新函数图象是将函数y=12(x﹣2)2+1的图象沿x轴向左平移3个单位长度得到,∴新图象的函数表达式是y=12(x+1)2+1.故答案为:C.15.(2019·郑州联考)如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以大于12 AC的长为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.若∠B=34°,则∠BDC的度数是()A.68°B.112°C.124°D.146°【答案】B.【解析】解:∵∠ACB=90°,∠B=34°,∴∠A=56°,由作图方法可知:DE是AC的垂直平分线,∴AD=CD,∴∠DCA=∠A=56°,∴∠BCD=90°﹣56°=34°,∴∠BDC=180°﹣34°﹣34°=112°,故答案为:B.16.(2019·郑州联考)如图,在▱ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=16cm2,S△BQC=25cm2,则图中阴影部分的面积为cm2.【答案】41.【解析】解:连接EF,∵四边形ABCD是平行四边形,∴AB∥CD,∴S△EFC=S△BCF,S△EFQ=S△BCQ,S△EFD=S△ADF,S△EFP=S△ADP,∵S△APD=16cm2,S△BQC=25cm2,∴S四边形EPFQ=41cm2,故答案为:41.17.(2019·安阳二模)如图,在△ABC中,∠C=50°,∠B=35°,分别以点A,B为圆心,大于AB 的长为半径画弧,两弧相交于点M,N,直线MN交BC于点D,连接AD.则∠DAC的度数为()A.85°B.70°C.60°D.25°【答案】C.【解析】解:在△ABC中,∠B=35°,∠C=50°,∴∠BAC=180°﹣∠B﹣∠C=95°,由作图可知MN为AB的垂直平分线,∴DA=DB,∴∠DAB=∠B=35°,∴∠CAD=∠BAC﹣∠DAB=60°,故答案为:C.18.(2019·枫杨外国语三模)如图,已知矩形AOBC的三个顶点的坐标分别为O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交OC,OB于点D,E;②分别以点D,E为圆心,大于12DE的长为半径作弧,两弧在∠BOC内交于点F;③作射线OF,交边BC于点G,则点G的坐标为( )A.(4,43) B.(43,4) C.(53,4) D.(4,53)【答案】A.【解析】解:由作图方法知,OG是∠BOC的平分线,过G作GH垂直AC于H,∴GH=BG,由题意知:∠CBO=90°,BC=3,OB=4,由勾股定理知:OC=5,∵OG=OG,GH=BG,∴Rt△OGH≌Rt△OGB,∴OB=OH=4,∴CH=1,设G(4,m),则BG=m,CG=3-m,CH=1,∴(3-m)2=m2+1,解得:m=43,即G(4, 43),答案为:A.19.(2019·中原名校大联考)如图,在△ABC中,AD平分∠BAC,按如下步作图:①分别以点A,D为圆心,以大于12AD的长为半径在AD两侧作弧,两弧交于两点M,N;②作直线MN分别交AB,AC于点E,F;③连接DE,DF,若BD=6,AE=4,CD=3,则CF的长是()A.1 B.1.5 C.2 D.3【答案】C.【解析】解:由作图方法知:EF垂直平分AD,设AD、EF交于O,∴AE=DE,AF=DF,EF⊥AD,∵AD平分∠BAC,得:△AEO≌△AFO,∴AE=AF,∴AE=AF=DE=DF=4,∴四边形AEDF为菱形,∴DF∥AB,∴CF CD AF BD,∴CF=2.故答案为:C.20.(2019·许昌月考)任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形【答案】B.【解析】解:由作图方法知,GH是线段EF的垂直平分线,∵EG=EH,∴△EGH是等腰三角形.即A正确;∵EG=GF,∴△EFG是等腰三角形,由图知,EF不一定等于EG,即B错误.∵EG=EH=HF=FG,∴四边形EHFG是菱形.即C正确.∵EH=FH,∴△EFH是等腰三角形.即D正确.故答案为:B.。

初中数学中考复习 备战2020年中考数学一轮专项复习——反比例函数综合问题(含详细解答)

初中数学中考复习 备战2020年中考数学一轮专项复习——反比例函数综合问题(含详细解答)

备战2020年中考数学一轮专项复习——反比例函数综合问题一、反比例函数的概念:知识要点:1、一般地,形如 y = x k ( k 是常数, k = 0 ) 的函数叫做反比例函数。

注意:(1)常数 k 称为比例系数,k 是非零常数;(2)解析式有三种常见的表达形式:(A )y = xk (k ≠ 0) ; (B )xy = k (k ≠ 0); (C )y=kx -1(k ≠0) 二、反比例函数的图象和性质:知识要点:1、形状:图象是双曲线。

2、位置:(1)当k>0时,双曲线分别位于第一、三象限内;(2)当k<0时, 双曲线分别位于第二、四象限内。

3、增减性:(1)当k>0时,y = xk (k ≠ 0)为减函数,y 随x 的增大而减小; (2)当k<0时,y = xk (k ≠ 0)为增函数,y 随x 的增大而增大。

4、变化趋势:双曲线无限接近于x 、y 轴,但永远不会与坐标轴相交5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点成中心对称;(2)对于k 取互为相反数的两个反比例函数(如:y =x 6 和y = x 6 )来说,它们是关于x 轴,y 轴成轴对称。

一、选择题:1.下列函数,①y =2x ,②y =x ,③y =x ﹣1,④y =是反比例函数的个数有( ) A .0个 B .1个 C .2个 D .3个【分析】根据反比例函数的定义,反比例函数的一般式是(k ≠0)判定则可. 【解析】①y =2x 是正比例函数;②y =x 是正比例函数;③y =x ﹣1是反比例函数;④y=不是反比例函数,是反比例关系;所以共有1个.故选:B.2.(2019•济南)函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【解析】a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y=在一、三象限,无选项符合.a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y=(a≠0)在二、四象限,只有D符合;故选:D.3.如图,过原点的直线l与反比例函数y=﹣的图象交于M,N两点,根据图象猜想线段MN的长的最小值是()A.B.2C.2 D.1【分析】设N的横坐标是a,则纵坐标是﹣,利用a即可表示出ON的长度,然后根据不等式的性质即可求解.【解析】设N的横坐标是a,则纵坐标是﹣.则OM=ON=≥.则MN的最小值是2.故选:B.4.(2019•阜新)如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y 轴上,则△ABC的面积为()A.3 B.2 C.D.1【解析】连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB,而S△OAB=|k|=,∴S△CAB=,故选:C.5.(2019•遵义)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为4,2,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为()A.2 B.3 C.4 D.6【解析】过点A作x轴的垂线,交CB的延长线于点E,∵A,B两点在反比例函数y=(x>0)的图象,且纵坐标分别为4,2,∴A(,4),B(,2),∴AE=2,BE=k﹣k=k,∵菱形ABCD的面积为2,∴BC×AE=2,即BC=,∴AB=BC=,在Rt△AEB中,BE==1∴k=1,∴k=4.故选:C.6.如图,在菱形ABOC中,∠ABO=120°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则该反比函数的表达式为()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【分析】点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.【解析】过点C作CD⊥x轴于D,设菱形的边长为a,在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,则C(﹣a,a),点A向下平移2个单位的点为(﹣a﹣a,a﹣2),即(﹣a,a﹣2),则,解得.故反比例函数解析式为y=﹣.故选:B.7.(2019•淄博)如图,△OA1B1,△A1A2B2,△A2A3B3,…是分别以A1,A2,A3,…为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…均在反比例函数y =(x>0)的图象上.则y1+y2+…+y10的值为()A.2B.6 C.4D.2【解析】过C1、C2、C3…分别作x轴的垂线,垂足分别为D1、D2、D3…其斜边的中点C1在反比例函数y=,∴C(2,2)即y1=2,∴OD1=D1A1=2,设A1D2=a,则C2D2=a此时C2(4+a,a),代入y=得:a(4+a)=4,解得:a=,即:y2=,同理:y3=,y 4=,……∴y1+y2+…+y10=2+++……=,故选:A.8.如图,已知点A,B在双曲线y=(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P 是AC的中点.若△ABP的面积为4,则k的值为().A.16 B.8 C.4 D.24【分析】由△ABP的面积为4,知BP•AP=8.根据反比例函数y=中k的几何意义,知本题k=OC•AC,由反比例函数的性质,结合已知条件P是AC的中点,得出OC=BP,AC=2AP,进而求出k的值.【解答】解:∵△ABP 的面积为•BP •AP =4,∴BP •AP =8,∵P 是AC 的中点,∴A 点的纵坐标是B 点纵坐标的2倍,又∵点A 、B 都在双曲线y =(x >0)上,∴B 点的横坐标是A 点横坐标的2倍,∴OC =DP =BP ,∴k =OC •AC =BP •2AP =16.故选A.二、填空题:9.(2019山西)如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(-4,0),点D 的坐标为(-1,4),反比例函数)0(>=x xk y 的图象恰好经过点C ,则k 的值为 .【解析】过点D 作DE ⊥AB 于点E ,则AD=5,∵四边形ABCD 为菱形,∴CD=5∴C (4,4),将C 代入x k y =得:44k =,∴16=k10.(2019遂宁中考 第15题 4分)如图,在平面直角坐标系中,矩形OABC 的顶点O 落在坐标原点,点A 、点C 分别位于x 轴,y 轴的正半轴,G 为线段OA 上一点,将△OCG 沿CG 翻折,O 点恰好落在对角线AC 上的点P 处,反比例函数y =经过点B .二次函数y =ax 2+bx +c (a ≠0)的图象经过C (0,3)、G 、A 三点,则该二次函数的解析式为 .(填一般式)【解析】点C (0,3),反比例函数y =经过点B ,则点B (4,3),则OC =3,OA =4,∴AC =5,设OG =PG =x ,则GA =4﹣x ,PA =AC ﹣CP =AC ﹣OC =5﹣3=2, 由勾股定理得:(4﹣x )2=4+x 2,解得:x =,故点G (,0),将点C 、G 、A 坐标代入二次函数表达式得:,解得:,故答案为:y =x 2﹣x +3. 11.如图,已知点(1,3)在函数y =kx (x >0)的图象上,正方形ABCD 的边BC 在x 轴上,点E 是对角线BD 的中点,函数y =kx(x >0)的图象又经过A ,E 两点,则点E 的横坐标为____.【解析】 把(1,3)代入到y =kx,得k =3, 所以函数解析式为y =3x. 设A (a ,b ),根据图象和题意可知,点E ⎝ ⎛⎭⎪⎫a +b 2,b 2.因为y =3x 的图象经过A ,E ,所以分别把点A 和E 代入到函数解析式中得 ab =3,①b 2⎝ ⎛⎭⎪⎫a +b 2=3,② 由②得ab 2+b 24=3,把①代入得32+b 24=3, 即b 2=6,解得b =±6,因为A 在第一象限,所以b >0,所以b = 6.把b =6代入①求得a =62, 所以点E 的横坐标为a +b 2= 6.故答案为 6. 12.如图,Rt △AOB 中,∠OAB =90°,∠OBA =30°,顶点A 在反比例函数y =图象上,若Rt △AOB 的面积恰好被y 轴平分,则进过点B 的反比例函数的解析式为 .【分析】分别过A 、B 作AE ⊥x 轴于E ,BD ⊥y 轴交AE 于F .设A (a ,b ),则ab =﹣4.根据两角对应相等的两三角形相似,得出△OAE ∽△ABF ,由相似三角形的对应边成比例,则BD 、OD 都可用含a 、b 的代数式表示,从而求出B 的坐标,进而得出结果.【解析】分别过A 、B 作AE ⊥x 轴于E ,BD ⊥y 轴交AE 于F .设A (a ,b ).∵顶点A 在反比例函数y =图象上,∴ab=﹣4.∵∠OAB=90°,∠OAE=90°﹣∠BAF=∠ABF,∠OEA=∠BFA=90°,∴△OAE∽△ABF,∴OA:AB=OE:AF=AE:BF,在Rt△AOB中,∠AOAB=90°,∠OBA=30°,∴OA:AB=1:,∴﹣a:AF=b:BF=1:,∴AF=﹣,BF=b,∵Rt△AOB的面积恰好被y轴平分,∴AC=BC,∴BD=DF=BF=﹣a,OD=AE+AF=b﹣a,∴b=﹣a,∴A(﹣b,b),B(b,b﹣)∴﹣b•b=﹣4,∴b2=,∴k=b(b﹣)=b2﹣ab=10,故答案为:10.13.如图, △OAP ,△ABQ 是等腰直角三角形,点P ,Q 在反比例函数y =4x (x >0)上,直角顶点A ,B 均在x 轴上,则点Q 的坐标为 .【解析】 ∵△OAP 是等腰直角三角形,∴PA =OA .∴设P 点的坐标是(a ,a ),把(a ,a )代入解析式y =4x,解得a =2(a =-2舍去), ∴P 的坐标是(2,2),∴OA =2,∵△ABQ 是等腰直角三角形,∴BQ =AB ,∴可以设Q 的纵坐标是b ,∴横坐标是b +2,把Q 的坐标代入解析式y =4x, 得b =4b +2,∴b =5-1(b =-5-1舍去),∴点Q 的坐标为(5+1,5-1).14.(2019•毕节市)如图,在平面直角坐标中,一次函数y =﹣4x +4的图象与x 轴、y 轴分别交于A 、B 两点.正方形ABCD 的顶点C 、D 在第一象限,顶点D 在反比例函数y =(k ≠0)的图象上.若正方形ABCD 向左平移n 个单位后,顶点C 恰好落在反比例函数的图象上,则n 的值是 .【解析】过点D 作DE ⊥x 轴,过点C 作CF ⊥y 轴,∵AB ⊥AD ,∴∠BAO =∠DAE ,∵AB =AD ,∠BOA =∠DEA ,∴△ABO ≌△DAE (AAS ),∴AE =BO ,DE =OA ,易求A (1,0),B (0,4),∴D (5,1),∵顶点D 在反比例函数y =上,∴k =5,∴y =,易证△CBF ≌△BAO (AAS ),∴CF =4,BF =1,∴C (4,5),∵C 向左移动n 个单位后为(4﹣n ,5),∴5(4﹣n )=5,∴n =3,故答案为3;三、解答题15.如图,一次函数y =kx +2的图象与反比例函数y =m x的图象在第一象限的交点为P .PA 垂直x 轴于点A .PB 垂直y 轴于点B .函数y =kx +2的图象分别交x 轴,y 轴于点C ,D .已知DB =2OD ,△PBD 的面积S △PBD =4.(1)求点D 的坐标;(2)求k ,m 的值;(3)写出当x >0时,使一次函数y =kx +2的值大于反比例函数y =m x的值的x 的取值范围.【解析】(1)在y =kx +2中,令x =0,得y =2,所以点D (0,2).(2)因为OD =2,DB =2OD =4,由S △PBD =4,可得BP =2,而OB =OD +DB =6,所以点P (2,6).将P (2,6)分别代入y =kx +2与y =mx,可得 k =2,m =12.(3) 由图象可知,当x >0时,使一次函数y =kx +2的值大于反比例函数y =mx的值的x 的取值范围是x >2.16.(2019遂宁中考 第23题 10分)如图,一次函数y =x ﹣3的图象与反比例函数y ═(k ≠0)的图象交于点A 与点B (a ,﹣4).(1)求反比例函数的表达式;(2)若动点P 是第一象限内双曲线上的点(不与点A 重合),连接OP ,且过点P 作y 轴的平行线交直线AB于点C,连接OC,若△POC的面积为3,求出点P的坐标.【解析】(1)将B(a,﹣4)代入一次函数y=x﹣3中得:a=﹣1∴B(﹣1,﹣4)将B(﹣1,﹣4)代入反比例函数y═(k≠0)中得:k=4∴反比例函数的表达式为y=;(2)如图:设点P的坐标为(m,)(m>0),则C(m,m﹣3)∴PC=|﹣(m﹣3)|,点O到直线PC的距离为m∴△POC的面积=m×|﹣(m﹣3)|=3解得:m=5或﹣2或1或2∵点P不与点A重合,且A(4,1)∴m≠4又∵m>0∴m=5或1或2∴点P的坐标为(5,)或(1,4)或(2,2).17.(2019•河池)在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=与AD交于点P.当△AEP为等腰三角形时,求m的值.【解析】(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=过点E,∴k1=12.∴反比例函数的解析式为y=.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴=,∴=,∴=,∵∠MCN=∠BCD,∴△MCN∽△BCD,∴∠CNM=∠CDB,∴MN∥BD,∴△CMN∽△CBD.∵B(6,0),D(0,8),∴直线BD的解析式为y=﹣x+8,∵C,C′关于MN对称,∴CC′⊥MN,∴CC′⊥BD,∵C(6,8),∴直线CC′的解析式为y=x+,∴C′(0,).(3)如图3中,①当AP=AE=5时,∵P(m,5),E(m+3,4),P,E在反比例函数图象上,∴5m=4(m+3),∴m=12.②当EP=AE时,点P与点D重合,∵P(m,8),E(m+3,4),P,E在反比例函数图象上,∴8m=4(m+3),∴m=3.③显然PA≠PE,若相等,则PE∥x轴,显然不可能.综上所述,满足条件的m的值为3或12.18.“六一”儿童节,小文到公园游玩.看到公园的一段人行弯道MN(不计宽度)如图,它与两面互相垂直的围墙OP,OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任意一点到两边围墙的垂线段与围墙所围成的矩形的面积都相等.比如:A,B,C是弯道MN上的三点,矩形ADOG、矩形BEOH、矩形CFOI 的面积相等.爱好数学的他建立了平面直角坐标系(如图),图中三块阴影部分的面积分别记为S1,S2,S3,并测得S2=6(单位:平方米),OG=GH=HI.(1)求S1和S3的值;(2)设T(x,y)是弯道MN上的任一点,写出y关于x的函数解析式;(3)公园准备对区域MPOQN内部进行绿化改造,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米.问一共能种植多少棵花木?【解析】(1)∵矩形ADOG 、矩形BEOH 、矩形CFOI 的面积相等,∴弯道为反比例函数图象的一部分.设反比例函数的解析式为y =k x (k ≠0),OG =GH =HI =a ,则AG =k a ,BH =k 2a ,CI =k 3a .所以S 2=k 2a •a -k 3a•a =6,解得k =36.所以S 1=k a •a -k 2a •a =12k =12×36=18,S 3=k 3a •a =13k =13×36=12;(2)由(1)得,弯道的函数解析式为y =36x .∵T(x ,y)是弯道MN 上的任一点,∴y =36x ;(3)∵MP =2,NQ =3,∴GM =362=18,OQ =363=12.∵在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),∴当x =2时,y =18,可以种8棵;当x =4时,y =9,可以种4棵;当x =6时,y =6,可以种2棵;当x =8时,y =4.5,可以种2棵;当x =10时,y =3.6,可以种1棵.故一共可以种8+4+2+2+1=17(棵)花木.19、如图,已知反比例函数k y x=与一次函数y x b =+的图象在第一象限相交于点(1,4)A k -+. (1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.【解析】(1)∵已知反比例函数k y x =经过点(1,4)A k -+,∴41k k-+=,即4k k -+= ∴2k =∴A(1,2) ∵一次函数y x b =+的图象经过点A(1,2),∴21b =+∴1b =∴反比例函数的表达式为2y x=, 一次函数的表达式为1y x =+。

(2020编)中考数学代数综合专题试卷精选汇编(有解析答案)-推荐

(2020编)中考数学代数综合专题试卷精选汇编(有解析答案)-推荐

代数综合专题东城区20. 已知关于x 的一元二次方程()2320x m x m -+++=.(1) 求证:无论实数m 取何值,方程总有两个实数根;(2) 若方程有一个根的平方等于4,求m 的值.20. (1)证明:()()2=+3-42m m ∆+()2=+1m∵()2+10m ≥,∴无论实数m 取何值,方程总有两个实根. -------------------2分(2)解:由求根公式,得()()1,231=2m m x +±+, ∴1=1x ,2=+2x m .∵方程有一个根的平方等于4,∴()2+24m =.解得=-4m ,或=0m . -------------------5分西城区20.已知关于x 的方程2(3)30mx m x +--=(m 为实数,0m ≠).(1)求证:此方程总有两个实数根.(2)如果此方程的两个实数根都为正整数,求整数m 的值.【解析】(1)2222(3)4(3)691269(3)0m m m m m m m m ∆=--⨯-=-++=++=+≥∴此方程总有两个不相等的实数根.(2)由求根公式,得(3)(3)2m m x m --±+=, ∴11x =,23x m=-(0m ≠). ∵此方程的两个实数根都为正整数,∴整数m 的值为1-或3-.海淀区20.关于x 的一元二次方程22(23)10x m x m --++=.(1)若m 是方程的一个实数根,求m 的值;(2)若m 为负数..,判断方程根的情况. 20.解:(1)∵m 是方程的一个实数根,∴()222310m m m m --++=. ………………1分 ∴13m =-. ………………3分(2)24125b ac m ∆=-=-+.∵0m <,∴120m ->.∴1250m ∆=-+>. ………………4分∴此方程有两个不相等的实数根.丰台区20.已知:关于x 的一元二次方程x 2 - 4x + 2m = 0有两个不相等的实数根.(1)求m 的取值范围;(2)如果m 为非负整数....,且该方程的根都是整数..,求m 的值.20.解:(1)∵方程有两个不相等的实数根,∴Δ>0.∴Δ=24421680m m --⋅=->().∴2m <. ………………………2分(2)∵2m <,且m 为非负整数,∴=0m 或1. ………………………3分当m =0时,方程为240x x -=,解得方程的根为01=x ,24x =,符合题意;当m =1时,方程为2420x x -+=,它的根不是整数,不合题意,舍去.综上所述,m =0. ………………………5分石景山区20.关于x 的一元二次方程2(32)60mx m x +--=.(1)当m 为何值时,方程有两个不相等的实数根;(2)当m 为何整数时,此方程的两个根都为负整数.20.解:(1)∵24b ac ∆=-2(32)24m m =-+2(32)0m =+≥∴当0m ≠且23m ≠-时,方程有两个不相等实数根. …………… 3分 (2)解方程,得: 12x m=,23x =-. …………… 4分 ∵m 为整数,且方程的两个根均为负整数,∴1m =-或2m =-. ∴1m =-或2m =-时, 此方程的两个根都为负整数. …………… 5分朝阳区20. 已知关于x 的一元二次方程0)1(2=+++k x k x .(1)求证:方程总有两个实数根;(2)若该方程有一个根是正数,求k 的取值范围.20. (1)证明:依题意,得k k 4)1(2-+=∆ …………………1分.)1(2-=k …………………………………2分∵0)1(2≥-k ,∴方程总有两个实数根. ………………………3分(2)解:由求根公式,得11-=x ,k x -=2. …………………………4分∵方程有一个根是正数,∴0>-k .∴0<k .………………………………5分燕山区21.已知关于x 的一元二次方程22(21)0x k x k k -+++=.(1)求证:方程有两个不相等的实数根;(2)当方程有一个根为1时,求k 的值.21.(1) 证明:因为[])(14)12(4222k k k ac b +⨯⨯-+-=- 01〉=所以有两个不等实根 …………3′..(2)当x=1 时,01)12(12=++⨯+-k k k 02=-k k ′1021==k k 或 ………5′门头沟区22. 已知关于x 的一元二次方程22410x x k ++-=有实数根.(1)求k 的取值范围;(2)若k 为正整数,且方程有两个非零的整数根,求k 的取值.22(本小题满分5分)解:(1)由题意得,168(1)0k ∆=--≥.………………………………………1分∴3k ≤. ………………………………………2分(2)∵k 为正整数,∴123k =,,.当1k =时,方程22410x x k ++-=有一个根为零;……………………3分当2k =时,方程22410x x k ++-=无整数根; ……………………4分当3k =时,方程22410x x k ++-=有两个非零的整数根.综上所述,1k =和2k =不合题意,舍去;3k =符合题意.……………5分大兴区20. 已知关于x 的一元二次方程01632=-+-k x x 有实数根,k 为负整数.(1)求k 的值;(2)如果这个方程有两个整数根,求出它的根.20.解:(1)根据题意,得Δ=(-6)2-4×3(1-k )≥0.解得2≥-k .……………………………………………………………1分∵k 为负整数,∴k =-1,-2.……………………………………… 2分(2)当1=-k 时,不符合题意,舍去; ………………………………… 3分当2=-k 时,符合题意,此时方程的根为121==x x .………… 5分平谷区20.关于x 的一元二次方程2210x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)当k 为正整数时,求此时方程的根.20.解:(1)∵关于x 的一元二次方程有两个不相等的实数根.∴()2Δ2410k =--> ····················1 =8-4k >0.∴2k < ··························2(2)∵k 为正整数,∴k =1. (3)解方程220x x +=,得120,2x x ==-. (5)怀柔区20.已知关于x 的方程226990-+-=x mx m .(1)求证:此方程有两个不相等的实数根;(2)若此方程的两个根分别为x 1,x 2,其中x 1>x 2,若x 1=2x 2,求m 的值.20.(1)∵△=(-6m)2-4(9m 2-9) ……………………………………………………………………1分=36m 2-36m 2+36=36>0.∴方程有两个不相等的实数根……………………………………………………………2分(2)66332m x m ±===±.……………………………………………………3分 ∵3m+3>3m -3,∴x 1=3m+3,x 2=3m-3, …………………………………………………………………………4分 ∴3m+3=2(3m -3) .∴m=3. …………………………………………………………………………………………5分 延庆区20.已知:∠AOB 及边OB 上一点C .求作:∠OCD ,使得∠OCD=∠AOB .要求:1.尺规作图,保留作图痕迹,不写做法;(说明:作出一个..即可) 2.请你写出作图的依据.C B O A20. (1)作图(略) ……2分(2)到线段两端点距离相等的点在线段的垂直平分线上;垂直平分线上的点到线段两端点距离相等;等边对等角. ……5分顺义区20.已知关于x 的一元二次方程()21260x m x m --+-=.(1)求证:方程总有两个实数根;(2)若方程有一个根是负数,求m 的取值范围.20.(1)证明:∵()214(26)m m ⎡⎤∆=----⎣⎦221824m m m =-+-+21025m m =-+()25m =-≥0 …………………………………………………… 2分 ∴ 方程总有两个实数根. ………………………………………………… 3分(2)解:∵1(5)2m m x -±-==, ∴ 13x m =-,22x =. ……………………………………………… 4分 由已知得 30m -<.∴ 3m <. ………………………………………………………………… 5分。

2020年数学中考复习,几何代数综合压轴题解析(三)

2020年数学中考复习,几何代数综合压轴题解析(三)

2020年数学中考复习,几代综合压轴题解析(三)1.(2019.眉山)如图,在平面直角坐标系中,抛物线y=-94x 2+bx+c 经过点A(-5,0)和点B (1,0).(1)求抛物线的解析式及顶点D 的坐标;(2)点P 是抛物线上A 、D 之间的一点,过点P 作PE ⊥x 轴于点F ,当矩形PEFG 的周长最大时,求点P 的横坐标;(3)如图连接AD 、BD ,点M 在线段AB 上(不与A 、B 重合),作∠DMN=∠DBA ,MN 交线段AD 于点N ,是否存在这样点M ,使得△DMN 为等腰三角形?若存在,求AN 的长;若不存在,请说明理由。

解析:(1)将A(-5,0)和点B (1,0)代入y=-94x 2+bx+c ,可得b=-916,c=920∴抛物线的解析式:y=-94x 2-916x+920,D (-2,4).(2)设P (m,-94m 2-916m+920),根据对称性可得GP=-4-2m 。

矩形PEFG 的周长=2(PE+PG )=2(-94m 2-916m+920-4-2m )=-98(m+417)2+18225 当m=-417时,矩形PEFG 的周长有最大值,即P 的点的横坐标为m=-417。

(3)由A(-5,0)和点B (1,0),D (-2,4)可求得AB=6,AD=DB=5。

①当MD=MN 时,由∠DBA=∠MAB,∠BDM=∠AMN.可证得△MBD ≌△NAM, ∴AN=MB.又∠DMN=∠DBA=∠DAB ,∠MDN=∠ADM,∴∠DNM=∠AMD ∴△ADM 是等腰三角形,即AM=AD=5,∴AN=MB=6-5=1②当ND=MN 时,∠NDM=∠DMN=∠DBA,又∠DAM 是公共角, ∴△ADM ∽△ABD ,∴AD 2=AM ·AB,可求得AM=625,BM=611 又△ANM ∽△BMD,∴DBAM=MB AN , 可得AN=3655。

③当ND=MD 时,可得∠DNM=∠DMN,又知∠DMN=∠DBA=∠DAB ,而发生了∠PNM=∠PAM,显然 这种情况不成立。

2020年中考数学专题 几何综合(含答案)

2020年中考数学专题 几何综合(含答案)

2020年中考数学专题 几何综合(含答案)一、单选题1.如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB=a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB=( )A .6B .8C .10D .2.已知∠A =55°,则它的余角是( )A .25°B .35°C .45°D .55°3.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,点P 是直径MN 上一个动点,则PA+PB 的最小值为 A. B .2 C .1D .24.如图,C 、D 是线段AB 上的两点,且D 是线段AC 的中点,若AB=10 cm,BC=4cm,则AD 的长为( )A.2 cmB.3 cmC.4 cmD.6 cm5.如图,OB 是∠AOC 的角平分线,OD 是∠COE 的角平分线。

如果∠AOB=40°,∠COE=60°,则∠BOD 的度数为( )A. 50B. 60C. 65D. 70MD AB C E6.如图,点(,1)A a 、(1,)B b -都在双曲线3(0)y x x=-<上,点P 、Q 分别是x 轴、y 轴上的动点,当四边形PABQ 的周长取最小值时,PQ 所在直线的解析式是( )A .y x =B .1y x =+C .2y x =+D .3y x =+7.如图,在Rt△ABC 中,∠B=90°,AB=3,BC=4,点D 在BC 上,以AC 为对角线的所有□ADCE 中,DE 最小的值是( ) A .2 B .3 C .4 D .58.如图所示,圆O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段的OM 的长的取值范围是( )A. 3≤OM ≤5B. 4≤OM ≤5C. 3<OM <5D. 4<OM <59.如图是一个三级台阶,它的每一级的长、宽和高分别是50 cm ,30 cm ,10 cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只壁虎,它想到B 点去吃可口的食物,请你想一想,这只壁虎从A 点出发,沿着台阶面爬到B 点,至少需爬( )A .13 cmB .40 cmC .130 cmD .169 cm10.下列说法错误..的是( ) A .抛物线2y x x =-+的开口向下 B .两点之间线段最短C .角平分线上的点到角两边的距离相等D .一次函数1y x =-+的函数值随自变量的增大而增大 二、填空题11.如图,已知圆柱体底面圆的半径为2π,高为2,AB ,CD 分别是两底面的直径.若一只小虫从A 点出发,沿圆柱侧面爬行到C 点,则小虫爬行的最短路线的长度是________(结果保留根号).12.如图,点B 是线段AC 上的点,点D 是线段BC 的中点,若AB=4cm ,AC=10cm ,则CD= cm.13.α∠的补角为127°33′,则α∠=14.如图,已知直线AB 和CD 交于点O ,ON 平分∠DOB 。

2020年中考数学专题复习《代数应用性问题复习》的教案精品版

2020年中考数学专题复习《代数应用性问题复习》的教案精品版

中考数学专题复习《代数应用性问题复习》的教案——一、教学目标:(一)知识目标:通过复习,使学生能够分析和表示不同背景下的实际问题中的数量关系,并能够运用方程、不等式、函数等代数有关知识解决实际问题中的增长率问题,调配问题、最值问题等,使学生体会数学建模思想及其步骤。

(二)过程与方法:通过复习如何分析和表示不同背景下实际问题中的等量、不等量及变量之间的函数关系,培养学生分析和判断能力,通过运用代数性的知识解决实际问题,培养学生的数学应用能力。

(三)情感目标:能过对解决问题的基本策略进行反思,进一步体会数学与人类社会的密切联系,了解数学的应用价值,提高学生的环保意识,增进对数学的理解和学数学的信心,培养创新精神和实践能力。

二、教学重点与难点:(一)教学重点:把实际问题转化为数学问题,并建立方程、不等式、函数模型解决实际问题。

(二)教学难点:正确的理解题意,找准数量关系,建立数学模型。

三、教学准备多媒体课件。

三、教学过程教学内容师生行为设计意图一、创设情境,引入复习。

1、直接点题;2、观看视频(关天北京天气的新闻)。

学生认真观看,引领学生进入到实际问题的情境中。

运用最近发生的时事,激起学生的学习兴趣,并认识到环保的重要性,让学生感受到数学就来源于生活。

二、例题讲解1.【例1】为保护环境,响应市政府“创建国家森林城市”的号召,黄岩某小区计划购进A、B两种树苗共20棵,已知A种树苗每棵60元,B种树苗每棵40元.学生独立思考,发表自己的见解,师板书并进行点拨,提醒解题的几个注意点。

通进对问题的分析,抽象出方程、不等式、函数等数学模型,并使(1)若购进A、B两种树苗刚好用去1000元,问购进A种树苗多少棵?(2)若购进A、B两种树苗花费小于1000元,问最多购进A种树苗多少棵?(3)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用。

2.小结并板书数学建模思想实际问题数学问题实际问题的解数学问题的解一般步骤:①审;②设;③列;④解;⑤验;⑥答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年中考数学代几综合问题 专题复习 (名师精讲必考知识点,建议下载练习)

【中考展望】 代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键. 题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题. 题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口. 【方法点拨】 方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明. 函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等. 函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型. 几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力. 1. 几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现. 2. 几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等. 3. 几何论证题主要考查学生综合应用所学几何知识的能力. 4. 解几何综合题应注意以下几点: (1) 注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系; (2) 注意推理和计算相结合,力求解题过程的规范化; (3) 注意掌握常规的证题思路,常规的辅助线作法; (4) 注意灵活地运用数学的思想和方法. 【典型例题】 类型一、方程与几何综合的问题

1.如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE=10,则CE的长为_________.

【思路点拨】 过B作DA的垂线交DA的延长线于M,M为垂足,延长DM到G,使MG=CE,连接BG.求证△BEC≌△BGM,△ABE≌△ABG,设CE=x,在直角△ADE中,根据AE2=AD2+DE2求x的值,即CE的长度. 【答案与解析】 解:过B作DA的垂线交DA的延长线于M,M为垂足,延长DM到G,使MG=CE,连接BG,

∴∠AMB=90°, ∵AD∥CB,∠DCB=90°, ∴∠D=90°, ∴∠AMB=∠DCB=∠D=90°, ∴四边形BCDM为矩形. ∵BC=CD, ∴四边形BCDM是正方形, ∴BC=BM,且∠ECB=∠GMB,MG=CE, ∴Rt△BEC≌Rt△BGM. ∴BG=BE,∠CBE=∠GBM, ∵∠CBE+∠EBA+∠ABM=90°,且∠ABE=45° ∴∠CBE+∠ABM=45° ∴∠ABM+∠GBM=45° ∴∠ABE=∠ABG=45°, ∴△ABE≌△ABG,AG=AE=10. 设CE=x,则AM=10-x, AD=12-(10-x)=2+x,DE=12-x, 在Rt△ADE中,AE2=AD2+DE2, ∴100=(x+2)2+(12-x)2, 即x2

-10x+24=0;

解得:x1=4,x2=6.

故CE的长为4或6. 【总结升华】 本题考查了直角三角形中勾股定理的运用,考查了全等三角形的判定和性质,本题中求证△ABE≌△ABG,从而说明AG=AE=10是解题的关键. 类型二、函数与几何问题 2.如图,二次函数y =(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B. (1)求二次函数与一次函数的解析式; (2)根据图象,写出满足kx+b≥(x-2)2

+m的x的取值范围.

【思路点拨】 (1)将点A(1,0)代入y=(x-2)2

+m求出m的值,根据点的对称性,将y=3代入二

次函数解析式求出B的横坐标,再根据待定系数法求出一次函数解析式; (2)根据图象和A、B的交点坐标可直接求出满足kx+b≥(x-2)2+m的x的取值范围. 【答案与解析】 解:(1)将点A(1,0)代入y=(x-2)2

+m得,

(1-2)2

+m=0,

1+m=0, m=-1,则二次函数解析式为y=(x-2)2-1. 当x=0时,y=4-1=3, 故C点坐标为(0,3), 由于C和B关于对称轴对称,在设B点坐标为(x,3), 令y=3,有(x-2)2

-1=3,解得

x=4或x=0. 则B点坐标为(4,3). 设一次函数解析式为y=kx+b,将A(1,0)、B(4,3)代入y=kx+b中,得 ,解得, 则一次函数解析式为y=x-1; (2)∵A、B坐标为(1,0),(4,3), ∴当kx+b≥(x-2)2+m时,1≤x≤4. 【总结升华】 本题考察了待定系数法求二次函数,一次函数函数解析式以及数形结合法解不等式.求出B点坐标是解题的关键.

举一反三: 【变式】如图,二次函数的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5)、D(1,8)在抛物线上,M为抛物线的顶点. (1)求抛物线的解析式. (2)求△MCB的面积.

2(0)yaxbxca【答案】 解:(1)设抛物线的解析式为,根据题意,得

, 解之,得. ∴所求抛物线的解析式为. (2)∵C点的坐标为(0,5).∴OC=5.令,则,解得.

∴B点坐标为(5,0).∴OB=5.∵,∴顶点M坐标为(2,9). 过点M作MN⊥AB于点N,则ON=2,MN=9.

∴. 类型三、动态几何中的函数问题

3.如图,在平面直角坐标系中,已知点A(-2,-4),OB=2,抛物线y=ax2+bx+c经过点A、O、B三点. (1)求抛物线的函数表达式; (2)若点M是抛物线对称轴上一点,试求AM+OM的最小值; (3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.

2yaxbxc

058abccabc145abc





245yxx

0y2450xx

121,5xx

2245(2)9yxxx

11(59)9(52)551522MCBBNMOBCOCMNSSSS梯形 【思路点拨】 (1)把A、B、O的坐标代入到y=ax2

+bx+c得到方程组,求出方程组的解即可;

(2)根据对称求出点O关于对称轴的对称点B,连接AB,根据勾股定理求出AB的长,就可得到AM+OM的最小值. (3)①若OB∥AP,根据点A与点P关于直线x=1对称,由A(-2,-4),得出P的坐标;②若OA∥BP,设直线OA的表达式为y=kx,设直线BP的表达式为y=2x+m,由B(2,0)求出直线BP的表达式为y=2x-4,得到方程组,求出方程组的解即可;③若AB∥OP,设直线AB的表达式为y=kx+m,求出直线AB,得到方程组求出方程组的解即可. 【答案与解析】 解:(1)由OB=2,可知B(2,0), 将A(-2,-4),B(2,0),O(0,0)三点坐标代入抛物线y=ax2

+bx+c,得

解得: ∴抛物线的函数表达式为y=

(2)由y==可得,抛物线的对称轴为直线x=1,且对称轴x=1是线段OB的垂直平分线,连接AB交直线x=1于点M,M点即为所求. ∴MO=MB,则MO+MA=MA+MB=AB,

4420420abcabcc





1,21,0.abc





212xx

212xx211(1)22xx

相关文档
最新文档