555 电压频率变换电路的设计

合集下载

NE555电路应用带占空比和频率独立调节电路

NE555电路应用带占空比和频率独立调节电路

555内部电原理图我们知道,555电路在应用和工作方式上一般可归纳为3类。

每类工作方式又有很多个不同的电路。

用中,除了单一品种的电路外,还可组合出很多不同电路,如:多个单稳、多个双稳、单稳和无稳,双稳和无稳的组合等。

这样一来,电我们分析和识别电路,更好的理解555电路,这里我们这里按555电路的结构特点进行分类和归纳,把555电路分为3大类、8种、共18出它的标准图型,指出他们的结构特点或识别方法外,还给出了计算公式和他们的用途。

方便大家识别、分析555电路。

下面将分别介绍单稳类电路单稳工作方式,它可分为3种。

见图示。

图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1和1.1.2为代号。

他们的输入端的形路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。

图2)是脉冲启动型单稳,也可以分为2个不同的单元。

他们的输入特点都是“RT-7.6-CT”,都是从2端输入。

1.2.1电路的2端不带任最简单的形式;1.2.2电路则带有一个RC微分电路。

(图3)是压控振荡器。

单稳型压控振荡器电路有很多,都比较复杂。

为简单起见,我们只把它分为2个不同单元。

不带任何辅助器件的电使用晶体管、运放放大器等辅助器件的电路为1.3.2。

图中列出了2个常用电路。

双稳类电路这里我们将对555双稳电路工作方式进行总结、归纳。

555双稳电路可分成2种。

见图1)是触发电路,有双端输入(2.1.1)和单端输入(2.1.2)2个单元。

单端比较器(2.1.2)可以是6端固定,2段输入;也可是2输入。

见图2)是施密特触发电路,有最简单形式的(2.2.1)和输入端电阻调整偏置或在控制端(5)加控制电压VCT以改变阀值电压的(2.2.2电路。

的输入端的输入电压端一般没有定时电阻和定时电容。

这是双稳工作方式的结构特点。

2.2.2单元电路中的C1只起耦合作用,R1和R2起直无稳类电路第三类是无稳工作方式。

555转速(频率)/电压转换器电路图

555转速(频率)/电压转换器电路图

555转速(频率)/电压转换器电路图
转换器主要有传感探头和单稳定时电路组成。

用该转换器配合脉冲测速发电机,用以指示出被测转轴的转速(0~1500转/分),同时还输出转速电压信号,供自动调速电路作反馈信号。

传感器采用带永久磁钢的线圈LF,在齿盘转动时,其齿端使磁路的磁阻发生变化,在线圈中产生与齿盘的转速成正比的感应电动势。

555和R4、C3等组成单稳定时电路,暂态时间td=1.1R4C3,图示参数约为1ms.当被测轴不转时,3脚为低电平;当其转动时,每送来一个感应脉冲,555被触发并输出一个定宽脉冲,故输出方波的平均值正比于被测轴转速,可在uA表上显示其转速值。

电压频率和频率电压转换电路的设计讲解

电压频率和频率电压转换电路的设计讲解

设计一个V/F转换器,研究其产生的输出电压的频率随输入电压幅度的变化关系。

1 绪论(1)电压/频率转换即v/f转换,是将一定的输入信号按线性的比例关系转换成频率信号,当输入电压变化时,输出频率也响应变化。

它的功能是将输入直流电压转换频率与其数值成正比的输出电压,故也称电压控制振荡电路。

如果任何一个物理量通过传感器转换成电信号后,以预处理变换为合适的电压信号,然后去控制压控振荡电路,再用压控振荡电路的输出驱动计数器,使之在一定时间间隔内记录矩形波个数,并用数码显示,那么可以得到该物理量的数字式测量仪表。

图1 数字测量仪表电压/频率电路是一种模/数转换电路,它应用于模/数转换,调频,遥控遥测等各种设备。

(2)F/V转换电路F/V转换电路的任务是把频率变化信号转换成按比例变化的电压信号。

这种电路主要包括电平比较器、单稳态触发器、低通滤波器等电路。

它有通用运放F/V转换电路和集成F/V转换器两种类型。

1.1设计要求设计一个将直流电压转换成给定频率的矩形波的电路,要求包括:积分器;电压比较器和一个将给定频率的矩形波转换为直流电压的电路,要求包括:过零比较器、单稳态触发器、低通滤波器等。

1.2 设计指标(1)输入为直流电压0-10V,输出为f=0-500Hz的矩形波。

(2)输入ui是0~10KHZ的峰-峰值为5V的方波,输出uo为0~10V的直流电压。

2 设计内容总体框图设计2.1 V/F转换电路的设计2.1.1 工作原理及过程积分器和滞回比较器首尾相接形成正反馈闭环系统,如图 2所示,比较器输出的矩形波经积分器积分可得到三角波,三角波又触发比较器自动翻转形成矩形波,这样便可构成三角波,矩形波发生器。

由于采用集成运放组成的积分电路,因此可以实现恒流充电,能够得到比较理想的矩形波。

通过分析可知,矩形波幅值大小由稳压管的稳定电压值决定,即方波的幅值OLM Z V V =± 。

矩形波的振荡频率 2.1.2 模块功能积分器:积分电路可以完成对输入电压的积分运算,即输入电压与输出电压的积分成正比。

555电路制作与运用大全

555电路制作与运用大全

555电路制作与运用大全
1.555单稳态电路
555单稳态电路是一种能够在输入脉冲到来时产生一个持续一段时间
的高电平输出的电路。

它的主要应用场景包括延时开关、触发器等。

制作
方法如下:
材料:555集成电路、几个电阻、电容、开关、继电器等。

步骤:
1)将555集成电路的引脚插入面包板或焊接到电路板上。

2)连接电阻、电容等器件,具体的连线可以参考555电路的原理图。

3)连接电源,注意检查电路的极性,否则会损坏电路。

4)通过改变电阻、电容的数值来调节单稳态电路的触发时间和输出
时间。

2.555多谐振荡电路
555多谐振荡电路是一种能够产生多种频率的输出信号的电路。

它的
主要应用场景包括音乐电子琴、信号发生器等。

制作方法如下:材料:555集成电路、几个电阻、电容、开关、音频放大器等。

步骤:
1)将555集成电路的引脚插入面包板或焊接到电路板上。

2)通过改变电阻、电容的数值来调节多谐振荡电路的输出频率。

3)将输出信号接入音频放大器,通过喇叭或耳机进行放音。

3.555频率分割器
555频率分割器是一种能够将输入信号分割成多个固定频率的输出信号的电路。

它的主要应用场景包括计数器、时钟电路等。

制作方法如下:材料:555集成电路、几个电阻、电容、开关、LED等。

步骤:
1)将555集成电路的引脚插入面包板或焊接到电路板上。

2)通过改变电阻、电容的数值来调节频率分割器的输出频率。

3)将输出信号接入LED灯或其他指示器,通过亮灭来显示频率分割的结果。

总结:。

555定时器电路设计

555定时器电路设计

实验五555定时器电路设计【实验目的】1、熟悉集成定时器555的工作原理及应用。

2、掌握时钟信号产生电路的设计方法【知识要点】组成占空比连续可调并能调节振荡频率的多谐振荡器VO图6.5.5 占空比与频率均可调的多谐振荡器电路如图6.5.5。

对C充电时,充电电流通过R1、D1、R W2和R W1;放电时通过R W1、R W2、D2、R2。

当R1=R2、R W2调至中心点,因充放电时间基本相同,其占空比约为50%,此时调节R W1仅改变频率,占空比不变。

如R W2调至偏离中心点,再调节R W1,不仅振荡频率改变,而且对占空比也有影响。

R W1不变,调节R W2,仅改变占空比,对频率无影响。

因此,当接通电源后,应首先调节R W1使频率至规定值,再调节R W2,以获得需要的占空比。

若频率调节的范围比较大,还可以用波段开关改变C的值。

【实验内容】题目:时钟信号发生电路设计设计一个电路,能够产生时钟信号,信号频率100Hz~1KHz,占空比要求在1/2~2/3范围内可调。

测量实际电路的输出信号频率,测量脉冲的上升时间。

思考:1、如果希望得到高电平电压为10V的时钟信号,电路应如何处理?2、对于不标准的时钟信号,一般应进行怎样的处理?【实验要求】按题目内容进行设计,设计方法和方案不限。

要求首先进行计算机(Multisim)仿真,实现题目功能。

然后在模拟实验箱中完成实际操作。

自行设计测试表格,完成实际电路的测试。

【报告要求】要求在实验报告中写出设计思路和设计过程。

画出仿真原理图和仿真结果。

列出元器件清单。

写出实验结果及实验总结。

可能用到的芯片(555)。

555脉冲电路的设计

555脉冲电路的设计
v + v -, v O= 1 v + v -, v O= 0 触发器、 (3)基本RS触发器、 (4)放电三极管T及缓冲器G。
二.工作原
理脚为复位输入端( ),当 为低电平时, (1)4脚为复位输入端( RD ),当RD为低电平时, ) 脚为复位输入端 不管其他输入端的状态如何,输出v 为低电平。 不管其他输入端的状态如何,输出 o为低电平。 正常工作时,应将其接高电平。 正常工作时,应将其接高电平。 脚为电压控制端, (2)5脚为电压控制端,当其悬空时,比较器 1 脚为电压控制端 当其悬空时,比较器C 的比较电压分别为2/3VCC 和1/3VCC 。 和C2的比较电压分别为 脚为触发输入端, 脚为阈值输入端 脚为阈值输入端, (3)2脚为触发输入端,6脚为阈值输入端,两端 ) 脚为触发输入端 的输出, 的电位高低控制比较器C 的电位高低控制比较器 1和C2的输出,从而控 触发器, 制RS触发器,决定输出状态。 触发器 决定输出状态。
用于脉冲鉴幅——从一系列幅度不同的脉冲信号 3 . 用于脉冲鉴幅 从一系列幅度不同的脉冲信号 选出那些幅度大于V 的输入脉冲。 中,选出那些幅度大于VT+的输入脉冲。
8.4 单稳态触发器单稳态触发器——有一个稳态和一个暂稳态;在触 有一个稳态和一个暂稳态; 单稳态触发器 有一个稳态和一个暂稳态 发脉冲作用下,由稳态翻转到暂稳态; 发脉冲作用下,由稳态翻转到暂稳态;暂稳状态维 一段时间后,自动返回到稳态, 持tW一段时间后,自动返回到稳态,并在其输出端产 生一个宽度为t 的矩形脉冲。 生一个宽度为 W的矩形脉冲。 通常把单稳态的暂稳态停留时间称作延迟时间, 通常把单稳态的暂稳态停留时间称作延迟时间,延 迟时间的长短仅取决于电路的有关参数, 迟时间的长短仅取决于电路的有关参数,而与触发 脉冲的宽度无关。 脉冲的宽度无关。

电压频率转换器设计与实现

电压频率转换器设计与实现

电压频率转换器VFC(Voltage Frequency Converter)是一种实现模数转换功能的器件,将模拟电压量变换为脉冲信号,该输出脉冲信号的频率与输入电压的大小成正比。

电压频率转换器也称为电压控制振荡电路(VCO),简称压控振荡电路。

随电压—频率转换实际上是一种模拟量和数字量之间的转换技术。

当模拟信号(电压或电流)转换为数字信号时,转换器的输出是一串频率正比于模拟信号幅值的矩形波,显然数据是串行的。

这与目前通用的模数转换器并行输出不同,然而其分辨率却可以很高。

串行输出的模数转换在数字控制系统中很有用,它可以把模拟量误差信号变成与之成正比的脉冲信号,以驱动步进式伺服机构用来精密控制。

设计高精度电压转换器,可以利用LM324运算放大器与555定时器为核心器件的高精度线性电压频率转换器。

整个电路主要是由稳定电压源模块、信号输入模块、恒流源模块、输入信号变换模块、以555定时器为核心的压频转换模块等5个模块组成的。

本设计方案温漂小、抗干扰能力强、价格便宜、线性度较好、而且变换精度高。

关键词:555定时器;线性;电压频率转V oltage Frequency Converter VFC (V oltage Frequency Converter) is a kind of realizing the function of analog-to-digital conversion device, analog V oltage transform into pulse signal, the output pulse signal Frequency proportional to the size of the input V oltage. V oltage frequency converter is also known as voltage control oscillation (VCO) circuits, referred to as voltage-controlled oscillation circuit. Over voltage, frequency conversion, in fact, a kind of conversion between analog and digital technology. When analog signals (voltage or current) is converted to a digital signal, the output of the converter is a string of frequency is proportional to the analog signal amplitude of the rectangular wave, obviously is the serial data. This AD converter with the general parallel output is different, but its resolution can be very high. Serial output of the adc is useful in the digital control system, it can make analog error signal proportional to the pulse signal, to drive the stepping servo mechanism used for precise control.Design of high precision voltage converter, can use LM324 operational amplifier with 555 timer as the core device of high precision linear voltage frequency converter. The whole circuit mainly by the stable voltage source module, signal input module, a constant current source module, input signal transformation module, voltage frequency conversion to a 555 timer as the core module is composed of five modules, etc. This design scheme WenPiao small, strong anti-interference ability, cheap price, good linearity, high precision and transformation.Keywords: 555 timing; Linear; V oltage frequency conversion目录摘要 (I)Abstract (II)第一章绪论 (1)1.1 高精度电压频率转换的目的 (1)1.2 电压频率转换的应用 (1)1.3 论文主要内容 (2)第二章设计方案的确定 (3)2.1 实现电压频率转换的方法 (3)2.2 方案的分析 (3)2.2.1 通过多谐振荡器实现电压频率转换 (3)2.2.2 利用运算放大器与555时基电路组成的高精度电压频率转换 (7)2.3 方案的确定 (14)2.4 章节总结 (15)第三章高精度电压频率转换器的硬件设计 (16)3.1 元器件介绍 (16)3.1.1 555定时器 (16)3.1.2 LM324运算放大器 (19)3.2 工作原理 (22)3.2.1 稳定电压源模块 (22)3.2.2 信号输入模块 (23)3.2.3 恒流源模块 (24)3.2.4 输入信号变换模块 (24)3.2.5 555定时器为核心的压频转换模块 (24)3.3章节总结 (25)第四章仿真与分析 (26)4.1 系统仿真 (26)4.2 数据分析 (27)4.3 遇到的主要问题 (29)4.4 现象及原因分析 (29)4.5 解决措施及效果 (30)4.6 章节总结 (30)总结 (31)致谢 (32)参考文献 (33)附录:电压/频率转换器工作原理图............................. 错误!未定义书签。

555产生1hz的脉冲的电路

555产生1hz的脉冲的电路

555产生1hz的脉冲的电路555产生1Hz的脉冲电路是一种常见的计时电路,它基于NE555集成电路,可以产生稳定的1Hz频率的输出脉冲。

以下将详细介绍555产生1Hz脉冲的原理、电路搭建和关键参数设定等方面的内容。

首先,我们来了解一下NE555集成电路的基本原理。

NE555是一种常用的计时器和脉冲发生器,它由电流比较器、RS触发器、RS锁存器和输出级组成。

通过内部电路的控制和外部元件的连接,NE555可以实现不同频率和占空比的脉冲信号的发生。

其中,产生1Hz的脉冲信号需要通过外部电阻和电容的组合来实现。

接下来,我们将详细说明555产生1Hz脉冲的电路搭建步骤:1.首先,准备好NE555集成电路、一个电阻和一个电容。

选择的电阻和电容的数值将决定脉冲的频率,通常可以选择1kΩ的电阻和1μF的电容。

2.将NE555集成电路插入面包板或焊接在电路板上,并确保引脚的连接正确。

3.连接电路的Vcc和GND引脚分别到电源的正负极,通常是连接到5V的稳定电压源。

4.将电容连接到电路的引脚6和GND之间,即电路的控制电压引脚和负极引脚之间。

5.将电阻连接到电路的引脚7和电容的连接点,即R1引脚和电容一端之间。

6.最后,连接电路的引脚2和引脚3到一个LED或其他输出设备,以观察脉冲信号的输出。

完成以上步骤后,我们需要根据电阻和电容的数值计算并设置NE555集成电路的关键参数,包括频率和占空比。

对于产生1Hz频率的脉冲信号,我们可以根据NE555的工作原理和公式进行计算。

NE555的频率计算公式为:频率= 1.44 / ((R1 + 2 * R2) * C)其中,R1为电路连接的电阻的阻值,R2为内部电路的电阻,C为电路连接的电容的容值。

假设我们选择1kΩ的电阻和1μF的电容,代入计算公式得到:频率= 1.44 / ((1kΩ + 2 * 10kΩ) * 1μF) = 1.44 / (21kΩ * 1μF) = 1Hz通过设置电阻和电容的数值,我们可以根据需要调整脉冲信号的频率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长沙学院
课程设计说明书
题目125电压频率变换器的设计系(部) 电子与通信工程
专业(班级)
姓名
学号
指导教师
起止日期
模拟电路课程设计任务书(20)
一.设计题目
电压频率变换器的设计
二.技术参数和设计要求
1. 技术参数
(1)设计一种电压/频率变换电路,输入vi为直流信号(控制信号),输出频率为fo的矩形脉冲,且fo∝vi。

(2)vi变化范围为0~10V。

(3)fo变化范围为0~10kHz。

(4)转换精度<1%。

2. 设计要求
(1)画出电路原理图或仿真电路图;
(2)元器件及参数选择;
(3)电路仿真与调试;
(4)PCB文件生成与打印输出;
(5)编写设计报告:包括设计与制作的全过程,附上有关资料和图纸,有心得体会。

(6)答辩,在规定时间内完成叙述并回答问题。

三.设计工作量
设计时间一周,2012年下学期进行。

四.工作计划
星期一:布置设计任务,查阅资料;
星期二~星期四:设计方案论证,进行电路设计,计算并选择电路元件及参数;
星期五:撰写设计报告及使用说明书,进行个别答辩。

五.参考资料
1.彭介华,《电子技术课程设计指导》,北京:高等教育出版社,1997;
2.高吉祥,《电子技术基础实验与课程设计》,北京:电子工业出版社,2005;
3.童诗白,《模拟电子技术基础》,北京:高等教育出版社,1988;
4.康华光,《电子技术基础——模拟部分》,北京:高等教育出版社,2006
六.指导教师
马凌云
七.系部审批
长沙学院课程设计鉴定表
目录
一.技术参数和设计要求 (4)
1.1. 技术参数 (4)
1.2 设计要求 (4)
二.设计思路 (4)
三.单元电路设计 (6)
3.1积分器的设计: (6)
3.2单稳态触发器的设计 (6)
3.3电子开关的设计 (7)
3.4恒流源电路的设计 (8)
四、总原理图及元器件清单 (9)
4.1总原理图 (9)
4.2元器件清单 (9)
五、基本计算与仿真调试分析 (9)
5.1基本计算 (9)
5.2仿真数据 (10)
六、课程设计总结 (13)
七、参考文献 (14)
一.技术参数和设计要求
1.1. 技术参数
(1)设计一种电压/频率变换电路,输入vi为直流信号(控制信号),输出频率为fo的矩形脉冲,且fo∝vi。

(2)vi变化范围为0~10V。

(3)fo变化范围为0~10kHz。

(4)转换精度<1%。

1.2设计要求
(1)画出电路原理图或仿真电路图;
(2)元器件及参数选择;
(3)电路仿真与调试;
二.设计思路
这个电路主要是有积分器,单稳态触发器,电子开关和恒流电路组成。

具体原理框图如下:
该方法是采用积分器和单稳态触发器组成的电压频率交换器,通过电子开关实现对电路工作的控制。

三.单元电路设计
3.1积分器的设计:
积分器采用集成运算放大器和RC组件构成的反向输入积分器。

具体电路如下:
图3.1.1 积分器设计
3.2单稳态触发器的设计
单稳态触发器采用555定时器构成的单稳电路,单稳态触发器具体有下列特点:第一、在外来触发脉冲的作用下,能够由稳定状态翻转到暂稳状态;第二、它有一个稳定状态和一个暂稳状态;第三、暂稳状态维持一段时间后,将自动返回单稳定的状态。

暂稳状态时间的长短,与触发器脉冲无关,仅仅决定于电路本身的参数或者电路阀值电压以外接R、C参数有关,单稳态触发器输出脉冲宽度T
仅决定于定时元件R、C
W
的取值,与输入触发信号和电源电压无关,调节R、C的取值,即可方便的调节T。

采用积分器作为输入
W
电路,积分器是输出信号去控制单稳态触发器,那样就可以得到矩形脉冲输出。

单稳态触发器在数字系统和装置中,一般定时(产生一定宽度的脉冲)、整形(把不规则的波形转换成等宽、等幅的脉冲)以及延时(将输入信号延迟一定的时间之后输出)等。

图3.2.1 单稳态触发器的设计
3.3电子开关的设计
电子开关的设计采用开关三级管接成反向器的形式,一方面当触发器的输出为高电平时,三极管饱和导通。

具体并且输出近似等于0,另一方面当触发器输出低电平时,三级管处于截止状态,其输出近似等于+V
cc
电路如下:
图3.3.1 电子开关的设计
3.4恒流源电路的设计
恒流源时输出电流保持恒定的电流源,而理想的恒流源应该具有以下的特点:第一、不因负载变化而变化;第二,不因环境温度变化而变化;第三、内存可以为无限大(以使其电流可以全部流到外面)。

基本的恒流电路主要是由输入级和输出级构成,输入级提供参考电流,输出级输出恒定电流。

恒流源电路具有输出电流恒定、温度稳定性好、直流电阻很小但等效交流输出电阻却很大的特点。

恒流范围大致1uA-2uA。

它既可以为各种放大电路提供偏流以稳定其静态工作点,又可以作为其有源负载以提高放大倍数,并且在差动放大电路和脉冲产生电路中也得到了广泛的应用,在本题目就是用于脉冲产生电路。

恒流源采用开关三级管T和稳压二极管Dz等组件构成的,其具体的电路下图所示当V为0 时,D3,D4截止,D2就导通,所以积分电容就通过三极管T放电,当V等于1V时D3,D4导通,D2就截止,输入信号对积分电路充电。

在单稳态触发器的输出端就得到矩形脉冲。

图3.4.1 恒流源电路的设计
四、总原理图及元器件清单
4.1总原理图
图4.1.1 总原理设计图4.2元器件清单
五、基本计算与仿真调试分析
5.1基本计算
从题目的要求结合电路图,输入V
I 和输出的f
o
要成正比例关系,这题目要求输入电压的范围为0~10V,而
输出频率要求为0~10Khz,所以该电流需要有1khz/v的换算系,输入由信号电压Vin即积分器电路输入信号控制单稳态触发器,积分电容充电,当积分输出电压上升时,在小于触发器的触发电平(1/3Vcc),555
定时器就会置位,通过电子开关就会反馈回到积分器,当积分器电容经过恒流源放电并且积分电容上升到1/3Vcc后,又会使555复位,恒流源截止,此时积分器又开始充电,由此形成了振荡。

因为在单稳态电路
的充电时间T
w =1.1R
13
*C
4
,选取R
13
为43k,C
4
为10nF,从此确定充电时间约为0.05ms,根据所采用的恒流源
电路级参数设置以及输入电压和输出频率的关系,就可以确定恒流源对积分电容反向充电时间,从而确定C1=10uf,R
1
=20k,根据公式
(V
I /R
1
)*T=(D
7
/R
8
)* t
T=1.1R
13C
5
得出公式f
=(R
4
TD
7
)*V
I
5.2仿真数据
图5.2.1 仿真数据1
图5.2.2 仿真数据2
图5.2.3 仿真数据3
图5.2.4 仿真数据4
图5.2.5仿真数据5
六、课程设计总结
在这一个礼拜的设计过程中,我经过一个礼拜不停地寻找资料,不断寻找最佳数据,不断地优化了设计的电路。

看着初步连出来的电路,而且系统也是成功运行的,还是挺有成就感的,自己的付出也算没有白费,但还是存在一些问题。

需要自己慢慢调试。


电压频率转换器是一种将模拟电压信号转换成频率信号的仪器,U/F之间的转换其实是一个积分的过程,再将其转换结果送计算机是可采用简单的光电耦合,因此有较强的抗干扰能力,电压频率转换器和计算机的接口你叫简单,转换的精度和线性度也比较好。

在这个过程中经常找不到解决问题的方法,就像在示波器上看到很宽的波形,看过书本后,在开关电路中三极管的集电级的电阻是调节脉动宽度的,于是我就改了开关电路的集电极的电阻,但是脉冲的宽度依然没有改变看了相关的笔记和室友的帮助下,我知道脉动的宽度值可能与电容的充电时间有关,于是我想到了积分电路上的电容,时间应该和RC有关,于是我开始改变R的值,但是哈市没有变化,这时我的心里十分着急,后来我改变电容数值,我把2.2uf的电容改成了1uf,终于脉冲的宽度就变窄了,这时我的心情激动地难以表达,这也是我经历失败后的成功,也是我做课程设计的快乐之处。

通过这次课程设计,让我对以学的知识有所回忆,加深了Multisim的应用,并且学到了许多新的知识。

这次课程设计,也让我对以前模电学过的积分电路与稳压管有了进一步的了解,对由数电中的555定时器组成的单稳态触发器不止停留在了书本上的介绍,知道了的它具体用处。

整个课程设计的过程中,感受到这个不仅是一个课程设计,也是一个令我对书上的知识有了个更好的更深的理解的一个途径,对于知识,这就是更加形象化了,一味的看书,背公式,做试题,在理论上好像能理解的东西,但一旦真正应用于实践中,就会产生挺多的问题和困难。

理论结合实际,这就是课程设计的真正目的所在。

七、参考文献
[1] 《电子技术课程设计指导》彭介华编,高等教育出版社,1997年
[2] 《电子技术基础》李效芳编,西安电子科技大学出版社,2010年
[3] 《数字电子技术》周开利编,华中科技大学出版社,2009年。

相关文档
最新文档