构建可视化交互大数据查询平台
交互式大数据可视化系统的设计及应用

交互式大数据可视化系统的设计及应用随着大数据技术的发展和普及,数据可视化在各个领域中扮演着越来越重要的角色。
交互式大数据可视化系统可以帮助企业和组织更好地理解和分析他们的数据,从而做出更明智的决策。
本文将探讨交互式大数据可视化系统的设计及其应用,重点介绍其原理、功能和优势。
1.交互式大数据可视化系统的设计原理(1)数据抽取与处理:系统需要能够从海量数据中抽取出需要的数据,并对数据进行预处理和清洗,以确保数据的准确性和完整性。
(2)数据存储与管理:系统需要一个高效的数据存储和管理系统,以便快速存取大规模的数据,并支持多种数据格式和数据结构。
(3)数据分析与可视化:系统需要具备数据分析和可视化的能力,能够对数据进行多维度的分析和展示,帮助用户深入理解数据。
(4)交互设计与用户体验:系统需要设计友好的用户界面和交互方式,让用户能够灵活地探索数据、提出问题和获得答案,从而提升用户体验。
2.交互式大数据可视化系统的功能(1)数据查询与过滤:用户可以通过系统查询和过滤数据,找到感兴趣的数据集合,从而进行更深入的分析。
(2)数据分析与比较:系统可以对数据进行多维度的分析和比较,帮助用户发现数据之间的关联和趋势。
(3)可视化展示与交互操作:系统支持多种数据可视化图表和图形,用户可以根据自己的需求选择合适的可视化方式,并通过交互操作进行进一步的探索。
(4)数据挖掘与机器学习:系统可以集成数据挖掘和机器学习算法,帮助用户发现隐藏在数据中的规律和模式。
(5)实时监控与预警:系统可以实时监控数据变化,并设定预警规则,及时提醒用户数据异常和趋势变化。
3.交互式大数据可视化系统的优势(1)更直观的数据展示:通过可视化展示,用户可以更直观地看到数据之间的关系和趋势,加快对数据的理解和分析。
(2)更灵活的数据探索:交互式设计使用户能够自由地探索数据,进行多维度的分析和比较,从而更全面地了解数据。
(3)更高效的决策支持:系统能够快速生成各种可视化图表和报表,帮助用户做出更明智和及时的决策。
大数据可视化管控平台建设方案

根据厂商发布的新版本或升级包,及 时对平台进行更新和升级,以修复漏
洞和提升性能。
数据备份与恢复
定期备份平台数据,确保数据的安全 性和完整性。
故障处理与应急预案
制定针对可能出现的故障的应急预案 ,并定期进行演练,确保在故障发生 时能够及时响应和处理。
安全保障措施
访问控制
通过身份认证和权限控制 机制,确保只有合法用户 能够访问平台数据和资源 。
部署方案
物理环境准备
准备相应的服务器、存储、网络等硬件资源,并确保环境满足要 求。
软件环境准备
安装和配置相应的操作系统、数据库、中间件等软件环境。
应用软件部署
根据需求,选择合适的大数据可视化管控平台软件,并按照厂商提 供的部署指南进行安装和配置。
运维方案
日常监控和维护
对平台的关键指标进行实时监控,及 时发现和解决潜在的问题。
数据加密
采用数据加密技术,确保 平台数据在传审计
建立安全审计机制,记录 和监控平台的操作行为, 及时发现和处理潜在的安 全风险。
漏洞扫描与修复
定期对平台进行漏洞扫描 ,及时发现和处理存在的 漏洞,确保平台的安全性 和稳定性。
06
平台应用场景与效果评估
应用场景
在这样的背景下,构建一个高效、灵活、易扩展的大数 据可视化管控平台显得尤为重要。
项目意义
01 提高决策效率和准确性
通过数据可视化,能够快速、准确地展示数据信 息,帮助决策者更好地理解数据,提高决策效率 和准确性。
02 提升数据治理能力
大数据可视化管控平台的建设,能够提升数据治 理能力,包括数据质量管理、数据安全管理和数 据标准管理等方面。
可视化编程工具
基于Python的大数据分析与可视化平台设计与实现

基于Python的大数据分析与可视化平台设计与实现一、引言随着互联网和信息技术的快速发展,大数据已经成为当今社会中不可或缺的重要资源。
大数据分析和可视化作为对海量数据进行深入挖掘和呈现的关键技术,在各行各业都扮演着至关重要的角色。
Python作为一种简洁、高效、易学的编程语言,被广泛应用于数据分析和可视化领域。
本文将探讨基于Python的大数据分析与可视化平台的设计与实现。
二、大数据分析平台设计1. 数据采集在构建大数据分析平台之前,首先需要进行数据采集。
数据可以来源于各种渠道,包括传感器、日志文件、数据库等。
Python提供了丰富的库和工具,如Requests、Scrapy等,可以帮助我们高效地进行数据采集和处理。
2. 数据清洗与预处理采集到的原始数据往往存在缺失值、异常值等问题,需要进行数据清洗和预处理。
Python中的Pandas库提供了丰富的数据结构和函数,可以帮助我们对数据进行清洗、转换和处理,确保数据质量。
3. 数据存储清洗和预处理后的数据需要进行存储,以便后续分析和可视化。
Python中常用的数据库包括MySQL、MongoDB等,可以根据需求选择合适的数据库进行数据存储。
4. 数据分析在数据准备就绪后,我们可以利用Python中强大的数据分析库,如NumPy、SciPy、Scikit-learn等,进行各种统计分析、机器学习等操作,挖掘数据背后的规律和价值。
三、可视化平台设计与实现1. 可视化工具选择Python中有多种强大的可视化工具可供选择,如Matplotlib、Seaborn、Plotly等。
这些工具提供了丰富的图表类型和定制选项,能够帮助我们将复杂的数据直观地呈现出来。
2. 可视化设计原则在设计可视化平台时,需要遵循一些基本原则,如图表简洁明了、色彩搭配合理、标签清晰等。
此外,还可以借鉴一些优秀的可视化案例,学习其设计思路和技巧。
3. 可视化交互功能为了提升用户体验,可视化平台通常会加入交互功能,如下拉菜单、滑块条等。
大数据可视化平台建设方案

数
据 分 析
数据 挖掘
多维 分析
灵活 报表
决策 仪
表盘
据 地图 自助 分 分析 分析 析
Ora智cl慧e 小区云服务E平台整体解K决in方gb案a智se慧D小B区C云lo服ud务平台整体解决方案智慧小区云服务平台整体解决方案
T
DB2
L
MangoD
B
MPP
标准应用接口JDBC、ODBC等
数
据
并行
水平分区
xQuery 灵活报表 决策仪表盘 多维分析 地图分析
任务调度
+
统一语义模型
+
+
+
所有 数据源
监控视频
多维数据库
关系数据 库
Nosql数据库
数据仓库
Smartbi绝不是个报表设计器,而是个集成、扩展的平台
直观的图形展现
• 表现形式丰富:内置全国地图(到区县级)、表格、油量图、泡泡图、雷达图 、地图、柱图、饼图、曲线图等丰富的数据展示形式
在KingbaseDBCloud架构基础上,增加对HDFS 文件存储的支持,实现SQL和NoSQL统一访问接 口,同时支持SQL和NoSQL查询处理
KingbaseDBCloud-系统功能
KingbaseDBCloud
数据共享(标准应用接口JDBC、ODBC等)
数
MPP
并行 SQL
水平分区 垂直分区
配置与变更
系统运维 调度与监控
数据分 析
大数据分析
灾备与恢复
分析决策人员 开发人员 运维人员
安全与审计
通信网络
主机
存储
基础设施
操作系统
数据库
大数据可视化平台建设方案

大数据可视化平台建设方案一、项目背景随着大数据时代的到来,数据的规模和复杂性不断增加,传统的数据分析方法已经无法满足现代企业的需求。
因此,建立一个大数据可视化平台对企业来说是至关重要的。
大数据可视化平台可以将庞大的数据集通过图形、图表等直观的方式展示出来,帮助企业洞察数据中的规律和趋势,做出更明智的决策。
二、目标和价值1.建立大数据可视化平台,将海量的数据转化为可视化的图形和图表,帮助企业更好地理解和利用数据。
2.提供灵活、实时的查询和筛选功能,方便用户根据需要自由地进行数据探索和分析。
3.支持多维度、多角度的数据呈现,帮助用户全面了解数据中的关联和规律。
4.提供定制化的报表和仪表盘,帮助用户监控业务运营状况,及时发现问题并做出调整。
5.提供数据挖掘和预测分析功能,帮助用户发现潜在的商机和风险。
三、建设方案1.数据采集与存储a. 采用分布式存储系统,如Hadoop、NoSQL等,来存储海量的数据。
b.利用ETL工具对数据进行清洗和转化,使其符合可视化平台的数据要求。
2.数据建模与分析a.构建数据模型,将数据进行规范化并建立关联关系。
b.进行数据挖掘和分析,发现数据中的规律和趋势。
3.可视化展示a. 使用现有的可视化工具,如Tableau、Power BI等,对数据进行可视化展示。
b.根据用户需求和场景,自定义图表、仪表盘等可视化界面。
4.查询和分析功能a.提供灵活、实时的查询功能,支持多维度、多角度的数据筛选和组合分析。
b.提供交互式查询界面,支持用户自由探索和分析数据。
5.报表和仪表盘a.提供定制化的报表和仪表盘功能,帮助用户监控业务运营状况。
b.支持报表和仪表盘的定时自动更新和分享。
6.数据挖掘和预测分析a.利用机器学习和数据挖掘算法,对数据进行挖掘和预测分析。
b.基于挖掘结果,提供商机发现和风险预警的功能。
7.安全和权限管理a.建立严格的安全策略,确保数据的安全性和隐私性。
b.根据用户角色和权限,进行数据访问和操作的控制。
大数据可视化分析平台介绍

大数据可视化分析平台介绍随着数字化时代的到来,数据已经成为了企业经营发展的生命线,而大数据技术的兴起也使得企业可以更好地利用数据开展业务。
然而,对于一些小型企业或者初创企业,难以承担高昂的大数据分析和可视化成本,而要实现高效的数据分析和可视化,需要一款便捷、多功能的大数据可视化分析平台。
本篇文章就将介绍这样一个平台。
一、什么是大数据可视化分析平台大数据可视化分析平台,顾名思义,是应用于大数据处理、计算以及可视化的一项技术工具。
它不仅能够帮助企业对海量的数据进行深入的挖掘、分析,而且还提供更加直观、生动和易于理解的图表、报表,从而更好地传达数据的内涵。
大数据可视化分析平台在行业中的地位越来越重要,不仅可以减轻员工的工作负担,同时还可以帮助企业提高决策的准确性和效率。
二、大数据可视化分析平台的特性1、可针对自身需求自定义。
大数据可视化分析平台多为可定制化、自动化的工具,用户可以根据自身数据的特点和需要,在平台中进行数据定义和可视化配置,最终生成符合自己需求的数据图表。
2、云计算架构。
大数据可视化分析平台大多都采用云计算架构,用户在使用平台时不需要考虑硬件的配置,可以直接使用虚拟机、云存储等云技术来实现快速的数据分析和计算。
3、可跨平台使用。
由于大数据可视化分析平台已经成为了企业数据分析的标配,同时也逐渐普及到了移动平台上,比如能够支持在手机、平板、PC端、Web端、云端等多平台上进行使用。
4、推荐算法实现多样化。
大多数大数据可视化分析平台都支持多种推荐算法,适合不同的业务场景,比如聚类算法、分类算法、回归算法等。
用户可以根据自身所需的数据分析和可视化目标来选择相应的算法。
5、数据安全性能强大。
大数据可视化分析平台拥有多层安全防御机制,如具有传输数据加密机制,为用户的数据安全保护做出最大的努力。
三、大数据可视化分析平台功能详述1、数据处理与存储数据处理与存储是大数据可视化分析平台的基础功能。
通过数据的清洗、加工、处理、整合等一系列多个环节,为数据可视化做好数据准备工作。
hue用法

hue用法Hue是一个基于Web的用户界面,用于处理和可视化大数据集群。
它是Apache Hadoop生态系统的一部分,提供了一个用户友好的界面,使用户能够轻松管理和操作大数据集群。
以下是有关Hue用法的详细介绍:1. 数据查询和可视化:Hue提供了一个交互式查询界面,使用户能够轻松地查询大数据集群中的数据。
它支持SQL查询语言和HiveQL,用户可以通过提供查询参数和条件来执行查询操作。
此外,Hue还提供了数据可视化功能,可以将查询结果以图表或图表的形式显示,便于用户更直观地理解和分析数据。
2. 工作流编排:Hue还提供了一个工作流编排器,允许用户创建和管理复杂的数据处理和分析工作流。
用户可以通过简单的拖放操作将不同的任务组合在一起,并指定它们的依赖关系和执行顺序。
这使得工作流的创建和管理变得简单而直观,而无需编写复杂的脚本。
3. 数据导入和导出:Hue允许用户轻松地将数据导入和导出大数据集群。
它支持从各种数据源中导入数据,包括关系型数据库、文本文件和Hadoop分布式文件系统(HDFS)。
此外,Hue还提供了导出数据到不同格式和目标的功能,例如CSV文件或表格数据库。
4. 管理集群和资源:Hue提供了一个集群管理界面,使用户能够监控和管理大数据集群中的资源使用情况。
它可以显示集群中各个节点的健康状况和性能指标,并提供了一套工具来管理和调整集群配置。
此外,Hue还提供了权限管理功能,允许管理员为不同的用户和用户组分配不同的权限和访问权限。
总而言之,Hue是一个功能强大且易于使用的工具,可以帮助用户更轻松地管理和操作大数据集群。
无论是数据查询和可视化、工作流编排、数据导入和导出,还是集群和资源管理,Hue都提供了直观和高效的解决方案。
通过使用Hue,用户可以更好地利用大数据的潜力,实现更高效的数据处理和分析。
机构数据可视化分析平台建设方案

机构数据可视化分析平台建设方案第一章引言 (2)1.1 项目背景 (3)1.2 项目目标 (3)1.3 项目意义 (3)第二章需求分析 (3)2.1 用户需求 (3)2.1.1 用户群体定位 (3)2.1.2 用户需求分析 (4)2.2 功能需求 (4)2.2.1 数据管理 (4)2.2.2 数据处理 (4)2.2.3 数据可视化 (4)2.2.4 用户管理 (5)2.2.5 系统管理 (5)2.3 功能需求 (5)2.3.1 响应时间 (5)2.3.2 数据存储容量 (5)2.3.3 系统稳定性 (5)2.4 安全需求 (5)2.4.1 数据安全 (5)2.4.2 系统安全 (5)第三章技术选型 (6)3.1 数据可视化技术 (6)3.1.1 可视化工具选型 (6)3.1.2 可视化效果优化 (6)3.2 数据存储技术 (6)3.2.1 关系型数据库 (6)3.2.2 非关系型数据库 (6)3.3 数据处理技术 (6)3.3.1 数据清洗与预处理 (6)3.3.2 数据挖掘与分析 (6)3.4 系统架构设计 (7)3.4.1 分布式架构 (7)3.4.2 微服务架构 (7)3.4.3 安全性设计 (7)3.4.4 弹性伸缩 (7)3.4.5 系统监控与运维 (7)第四章数据采集与清洗 (7)4.1 数据来源 (7)4.2 数据采集方法 (7)4.3 数据清洗策略 (8)4.4 数据质量评估 (8)第五章数据存储与管理 (8)5.1 数据存储方案 (8)5.2 数据库设计 (9)5.3 数据备份与恢复 (9)5.4 数据安全性保障 (9)第六章数据分析与挖掘 (10)6.1 数据分析方法 (10)6.2 数据挖掘算法 (10)6.3 模型评估与优化 (10)6.4 数据挖掘结果可视化 (11)第七章可视化展示 (11)7.1 可视化组件设计 (11)7.2 可视化界面布局 (12)7.3 可视化交互设计 (12)7.4 可视化效果优化 (12)第八章系统开发与实现 (12)8.1 系统开发流程 (12)8.2 系统模块设计 (13)8.3 系统测试与调试 (13)8.4 系统部署与维护 (14)第九章项目管理 (14)9.1 项目进度管理 (14)9.1.1 进度计划编制 (14)9.1.2 进度监控与调整 (15)9.2 项目成本管理 (15)9.2.1 成本预算编制 (15)9.2.2 成本控制与监督 (15)9.3 项目风险管理 (15)9.3.1 风险识别 (15)9.3.2 风险评估与应对 (16)9.4 项目质量管理 (16)9.4.1 质量策划 (16)9.4.2 质量控制与监督 (16)第十章总结与展望 (16)10.1 项目成果总结 (16)10.2 项目不足与改进 (17)10.3 未来发展趋势 (17)10.4 下一步工作计划 (18)第一章引言1.1 项目背景信息技术的飞速发展,大数据时代已经来临。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为什么要开发交互式平台
一一个最根本的原因是,不是所有人人都会用用Linux shell 不是所有人人都能从shell操作Hadoop, Hive, Spark...,而而且这样不安全 让专业的人人做专业的事,让产品经理自自己己去写无无聊的SQL吧 一一个数据分析作业在运行行以前,可以在界面面里里先进行行测试 界面面化交互式平台可以解决以上问题 别人人开发的东⻄西难用用,不会维护 最重要的事情提高高数据分析工工作的开发效率,干什么都要快
RESTful YARN/MR
通过curl访问YARN/MapReduce curl -i -L "http://x.x.x.x:8088/ws/v1/cluster/info"
可以获取所有我们想要的作业相关信息,也可以提交作业,不过,首首先你得把 作业的jar包放进HDFS,然后再写一一 "http://x.x.x.x:50070/webhdfs/v1/TokyoHot? op=MKDIRS&=xianglei"
Doc: /docs/r2.7.1/hadoop-project-dist/hadoop-hdfs/WebHDFS.html
集群作业监控 Y
典型案例
一一个典型的例子子是我在那家涨停N次以后停牌的公司做phpHiveAdmin的时候 不要问我关于那家公司股票的问题,我没有的
结果出乎意料 1. 极大大的提高高了在Hive上做数据分析的效率 2. 进而而极大大的提高高了数据的产出效率 3. 开源后有N多国内外公司使用用,并提交patch 4. 但是我仍然建议最好自自己己写一一个 5. 这是一一个公司从核心心技术层面面深入入了解Hadoop和Spark的好机会 6. 将Spark/Hadoop/HBase/Hive整合为一一个统一一管理的可视化数据平台, 大大幅度降低分别管理和维护的成本。 7. 大大幅度降低数据分析业务开发的周期和成本。
REST = REpresentational State Transfer
Restful HDFS
通过浏览器或CURL访问HDFS curl -i -L "http://x.x.x.x:50070/webhdfs/v1/?OP=LISTSTATUS&=hdfs" HTTP GET组内OP参数可以列⺫目目录,文文件状态...... HTTP PUT组内OP参数可以创建文文件夹,改名,设权限...... HTTP POST组内OP参数可以APPEND, CONCAT, TRUNCATE HTTP DELETE组内OP参数可以删除文文件和快照......
各平台对比
HUE 开源 开发语言言 部署难度 功能 二二次开发 Spark支持 HDFS管理 可维护性 架构 Yes Python/Django Easy 多/强大大 Python+Java Y Y 较难 B/S+C/S phpHiveAdmin Yes php/CodeIgniter Medium Hive 容易 N N Half 矛盾 B/S Qubole No Python/java SDK AWS Hive Only SDK N ? ? 找Qubole Unknown
向 磊
EasyHadoop创始人
构建可视化交互大数据查询平台
大数据的交互式查询
1. 交互式查询很重要 我们不能要求所有人人使用用Linux命令行行 减轻开发人人员压力力 需求即结果 2. 可选择余地很少 HUE, Qubole, phpHiveAdmin, Shib... 3. 难点 作业的提交 作业监控 集群监控 操作HDFS
因何降低成本?
把N多数据分析作业以众包形式分解,以提高分析作业的开 发效率
自己开发一个难吗?
关键在了解各种接口口及对接口口数据的获取 HDFS ResOul ThriT CLI Y N Y YARN/MR Y N Y Hive N Y Y Pig N N Y HBase Y Y Y Spark 1.4 later SparkSQL Y
需要各接口口的整合开发,首首先以HDFS为例: Hadoop提供基于HTTP/HTTPS的HDFS访问接口口 - 同时支支持对HDFS的读写操作 - 可以从程序或脚本中访问 - 可以用用命令行行工工具如curl或wget来实现数据 文文件 的上传下载 - 启用用webhdfs或httpfs - webHDFS为内置,但不支支持HA - httpfs为外置tomcat,但支支持HA - 题外话,集群对拷也可以用用webhdfs方方式
Doc: /docs/r2.7.1/hadoop-yarn/hadoop-yarn-site/ResourceManagerRest.html
关于Hive和HBase的Thrift
Hive, HBase, SparkSQL都可以通过thrift / thrift2来访问 - 实际上SparkSQL用用的就是Hive的接口口 - thrift2实际上是thrift接口口的一一个增强版,增加了安全性(cyrus-sasl authentication),并发性(Zookeeper Quorum)... Hive有个HiveMetastore的9083端口口的什么鬼鬼,还有个10000端口口的 HiveServer / HiveServer2的什么鬼鬼。