浅析频谱分析仪和EMI接收机
EMI测试接收机

1300.5053.12
4.2
E-1
R&S ESL
仪器功能 – 接收机
测量参数
本节介绍设置测量参数所需的所有菜单。包括以下主题和按键说明。有关更改模式的详细信息,请参阅 “测量 模式”。 � � � � � � � “初始化配置 - PRESET 键”,第 4.4 页 “在独立频率下运行 - FREQ 键”,第 4.6 页 “电平显示和 RF 输入配置 - AMPT 键”,第 4.9 页 “设置 IF 带宽 - BW 键”,第 4.13 页 “频率扫描 - SWEEP 键”,第 4.18 页 “触发扫描 - TRIG 键”,第 4.26 页 “轨迹的选择和设置 - TRACE 键”,第 4.28 页
打开幅度菜单
� 按“AMPT(幅度)”键。 显示幅度菜单。
菜单和软键说明
– 幅度菜单的软键 若要显示某个软键的帮助,按“HELP(帮助)”键,然后按要显示其帮助的软键。若要关闭帮助窗口, 请 按“ESC”键。有关详细信息,请参阅如何“使用帮助系统”一节。
幅度菜单的软键
菜单/命令 RF Atten Manual(手动 RF 衰减) Preamp On/Off(前置放大器 On/Off) 10 dB Min On Off(10 dB 最小 On/Off) Auto Range On Off(自动量程变换 On/Off) Autopreamp On/Off(自动前置放大器 On/Off) Unit(单位) Grid Level(网格电平) Grid Range Log 100 dB(网格范围 – 对数 100 dB) Grid Range Log Manual(网格范围 – 对数/手动) Grid Min Level(网格最小电平) 命令
接收机与频谱仪的区别

接收机与频谱分析仪的差异接收机与频谱分析仪的差异——EMC测量设备的选择在EMC测试设备选型时,常遇到这样的问题:EMI接收机与频谱仪到底有何不同,为何EMI测试要选用接收机?本文依据CISPR16-1(GB/T6113)和GJB152,对于接收机的测试原理进行剖析,分析接收机与频谱测试设备的选择提供参考-符合标准的接收机是EMC合格评定测试的唯一选择。
1、接收机和频谱分析仪的原理差异频谱分析仪是当前频谱分析的主要工具,尤其是扫频外差式频谱分析仪是当今频谱仪的主流,应用扫频测量技术,通过扫频信号源得到外差信号进行频域动态分析。
接收机是进行EMC测试的主要工具,以点频法为基础,应用本振调谐的原理测试相应频点的电平值。
接收机的扫描模式应当是以步进点频调谐的方式得到的。
1.1基本原理图根据工作原理,频谱分析仪和接收机可分为模拟式和数字式两大类。
外差式分析是当前使用最为广泛的接收和分析方法。
下面就外差式频谱分析仪与接收机之间的主要差别作一分析。
从原理图上看,频谱仪与接收机类似,但是频谱仪与接收机在以下几方面差别较大:前端预选器;本振信号扫描;中频滤波器;杂散信号和精度。
1.2输入RF信号的前端处理接收机与频谱仪在输入端对信号进行的处理是不同的。
频谱仪的信号输入端通常有一组较为简单的低通滤波器,而接收机要采用对宽带信号有较强的抗扰能力的预选器。
通常包括一组固定带通滤波器和一组跟踪滤波器,完成对信号的预选。
由于RF信号的谐波、交调和其它杂散信号的影响,造成频谱仪和接收机测试误差。
相对于频谱仪而言,接收机需要更高的精度,这要求在接收机的前端比普通频谱仪多出一个预选器,提高选择性。
接收机的选择性在GB/T6113(CISPR16)中有明确规定。
1.3本振信号的调节现在的EMC测量,人们不止要求能手动调谐搜索频率点,也需要快速直观观察EUT的频率电平特性。
这就是要求本振信号既能测试规定的频率点,也能够在一定频率范围扫描。
emi测试标准

emi测试标准EMI测试标准。
EMI(Electromagnetic Interference)是指电磁干扰,是指电子设备或系统在电磁环境中正常工作时,由于电磁场的存在而受到的干扰。
为了保证电子设备在电磁环境中的正常工作,需要进行EMI测试,以确定设备是否符合规定的电磁兼容性标准。
一、EMI测试的目的。
EMI测试的主要目的是评估电子设备在电磁环境中的电磁兼容性,包括设备本身对外界电磁干扰的抵抗能力以及设备本身产生的电磁干扰对其他设备的影响。
通过EMI测试,可以评估设备在电磁环境中的抗干扰能力,保证设备在正常工作时不会对周围的其他设备产生干扰,也不会受到外界电磁干扰的影响。
二、EMI测试的标准。
EMI测试的标准通常由国家或国际标准化组织制定,常见的EMI 测试标准包括CISPR(国际电工委员会无线电干扰特别委员会)发布的CISPR 22(信息技术设备的无线电骚扰特性)和CISPR 25(汽车电子设备的无线电骚扰特性)等。
此外,不同国家和地区也可能有自己的EMI测试标准,例如美国的FCC(联邦通信委员会)发布的FCC Part 15(无线电频率设备的无线电干扰特性)。
三、EMI测试的方法。
EMI测试通常包括辐射发射和传导发射两种测试方法。
辐射发射测试是指评估设备产生的电磁辐射对周围其他设备的干扰程度,常用的测试设备有EMI接收天线和频谱分析仪。
传导发射测试是指评估设备通过电源线、信号线等传导途径对其他设备的干扰程度,常用的测试设备有传导发射测试夹具和频谱分析仪。
四、EMI测试的要求。
在进行EMI测试时,需要严格按照测试标准的要求进行测试,包括测试环境、测试设备、测试方法等方面的要求。
同时,还需要对测试结果进行合理的评估和分析,确保测试结果的准确性和可靠性。
在测试过程中,还需要注意保持测试环境的稳定性,避免外界因素对测试结果的影响。
五、EMI测试的意义。
EMI测试是保证电子设备在电磁环境中正常工作的重要手段,通过EMI测试可以评估设备的电磁兼容性,保证设备在正常工作时不会对周围的其他设备产生干扰,也不会受到外界电磁干扰的影响。
emi接收机工作原理

emi接收机工作原理EMI接收机,即电磁干扰(Electromagnetic Interference)接收机,是一种用于接收和识别电磁干扰信号的设备。
在日常生活中,电子设备和无线通信系统都可能受到外部电磁干扰的影响,这些干扰信号会引起设备性能下降甚至故障。
因此,为了保证设备的正常运行,需要使用EMI接收机进行电磁干扰监测和识别。
EMI接收机的工作原理涉及到电磁波的接收、放大、频谱分析等过程。
下面将详细介绍EMI接收机的工作原理。
首先,EMI接收机的接收部分主要包括天线和前置放大器。
天线是接收来自外部的电磁波信号的装置,将电磁波信号转化为电信号。
前置放大器用于放大电信号的弱小幅度,以提高信号的质量和可检测性。
接下来,经过前置放大器放大的电信号会进入频率转换部分。
这部分主要由频率混频器和本振电路组成。
频率混频器是用于将电信号的频率转换为新的中频频率,以便后续的处理。
本振电路则提供一个稳定的频率用于混频。
经过频率转换,电信号的频率在合适的范围内进行处理。
然后,经过频率转换的信号进入带宽滤波器。
带宽滤波器用于提取所关注的频段内的电信号,排除其他频率成分的干扰信号。
通过选择合适的带宽,可以确保只有所关注频段内的信号被处理,提高接收机的性能和可靠性。
接下来,经过滤波的信号会进入信号处理部分。
这部分包括放大器、混频器、频谱分析器等。
放大器用于进一步放大信号的幅度,增强信号强度。
混频器用于进一步转换信号的频率,使其适合于后续的分析处理。
频谱分析器则是用于对信号的频谱进行精确分析,识别和定位可能存在的电磁干扰源。
最后,经过信号处理的结果可以通过显示器或数据接口输出。
显示器用于直观显示干扰信号的频谱特性和幅度变化,方便用户进行分析和判断。
数据接口则可以将结果传输到其他设备进行进一步的处理和存储。
总结来说,EMI接收机通过接收、放大、频谱分析等步骤实现了对电磁干扰信号的监测和识别。
其关键部分包括天线、前置放大器、频率转换器、带宽滤波器、信号处理器等。
Rohde Schwarz EMI测试接收机 ESL 说明书

EMI测试接收机:ESL经济型EMI测试接收机R&S® ESL EMI测试接收机,是一台能依据最新标准进行电磁干扰测试的EMI 接收机,同时也是一台全功能的频谱分析仪。
R&S® ESL,具有符合CISPR 16-1-1最新版本的各类加权检波器:最大/最小,峰值,准峰值,RMS,平均值,CISPR平均值和CISPR RMS。
Rohde & Schwarz(罗德与施瓦茨) 最新推出的ESL EMI预兼容测试接收机,是专为预算有限,但想在3GHz~6GHz频段执行精确先期验证和诊断测量的使用者所设计。
R&S ESL是市场上首部外型轻巧,价格经济,并提供符合CISPR 16-1-1标准的最新加权检波器(weighting detectors)的全自动EMI测试接收机。
如同R&S其它EMI测试接收机,R&S ESL也能当频谱分析仪使用,提升使用者的投资效益。
R&S®ESL经济型EMI测量接收机,具有用于依据商业标准进行EMC测量所需的所有功能、带宽和加权检波器。
特别适合于元器件、模块和设备制造商,用于产品开发早期的电磁干扰预测试。
这不仅避免在已完工的产品上进行昂贵的重新开发工作,进一步也节省在认证过程中所耗费的时间和金钱。
由于ESL具有良好的RF特性,也具有快速而精确测量所需的所有功能,同时还能依据商业EMC标准评估被测物的EMC特性,在同类仪器中,ESL具有绝对的优势。
R&S®ESL具有强大的分析能力、高速测量和能节省时间的自动测试程序,使之成为企业EMC实验室的首选设备。
R&S ESL可将测量设置及结果储存于硬盘中,利用R&S ES-SCAN EMI预兼容测试软件可产生完整报告。
由于其具备精简、轻巧及电池操作的特性,对需要现场测试并定位干扰来源工作的网络营运商和政府机构来说,是最理想的解决方案。
关于频谱分析仪和EMI接收机的详细分析和探讨

关于频谱分析仪和EMI接收机的详细分析和探讨频谱分析仪和EMI(电磁干扰)接收机是电子测试仪器中常用的设备,用于检测和分析电磁信号。
本文将对这两种设备进行详细分析和探讨。
首先,频谱分析仪(Spectrum Analyzer)是一种能够显示信号频谱分布的仪器。
它通过将时间域信号转换为频域信号,以图形方式显示信号的频谱特性。
频谱分析仪广泛应用于电子通信、雷达、无线电导航、无线电电视等领域中,用于测试和分析信号的频谱特性,例如信号的幅度、频率、相位等。
它可以帮助工程师找到信号中的各个组成部分,从而更好地设计和优化系统。
频谱分析仪的工作原理基于傅里叶分析理论。
在信号输入到频谱分析仪后,它会将信号转换为数字形式,并进行快速傅里叶变换(FFT)来计算信号的频谱分布。
然后,频谱分析仪将得到的频谱数据显示在屏幕上,用户可以通过调节参数如中心频率、带宽等来观察信号的特性。
频谱分析仪通常有两种类型:实时频谱分析仪和扫描频谱分析仪。
实时频谱分析仪能够快速地捕捉到信号的瞬态特性,对于频率波动性较大的信号特别有用。
而扫描频谱分析仪则能够提供更高的分辨率和更精确的频率测量,适用于对静态信号进行分析。
与频谱分析仪相比,EMI接收机(Electromagnetic Interference Receiver)更专注于电磁干扰的检测和测量。
它主要用于检测设备或系统产生的电磁干扰,以及寻找干扰源并分析其特性。
EMI接收机主要包括天线、前置放大器、带通滤波器、检波器、显示器等组件。
EMI接收机的工作原理是通过天线接收环境中的电磁信号,并经过前置放大器放大后输入到带通滤波器。
带通滤波器用于滤除不感兴趣的频段,确保只有干扰信号通过滤波器。
接下来的检波器将信号转换为直流信号,并输出到显示器上。
通过观察显示器上的输出结果,用户可以了解干扰信号的频谱特性和强度。
EMI接收机的应用非常广泛,特别是在电磁兼容性测试和认证领域。
它可以帮助工程师在设计和生产过程中检测和纠正电磁干扰问题,确保设备的电磁兼容性符合标准要求。
罗德与施瓦茨- ESCI 认证级EMI测试接收机功能介绍

韦风一五九一九九八九三九七
ESCI 认证级EMI测试接收机
符合CISPR16-1-1对准峰值检波器的脉冲加权
时域分析,例如测量喀呖声干扰
符合CISPR的EMI测量带宽:200Hz,9kHz,120kHz,1MHz
内置11个预选滤波器和20dB的前置放大器
应用
EMI测试接收机:ESCI 适合于所有民品标准认证测试的EMI测试接收机
EMI测试接收机ESCI为具有频谱分析仪平台的EMI 测试接收机系列中增添了一款顶级仪器。
ESCI完全符合CISPR16-1-1。
该仪器的工作频率范围为9kHz ~ 3GHz,并且配有一个21厘米TFT彩色显示器。
EMI测试接收机ESCI 依照所有民用标准进行电磁发射测量,并且将多种类型的仪器集于一身。
产品特性
1. 卓越的测试接收机特性,适用于所有商业EMI要求,如CISPR、EN、ETS、FCC、ANSI、C63.4、VCCI和VDE;
2. 峰值(最大、最小)、准峰值、均方根、CISPR平均、平均检波器(最多可同时使用三个检波器);
3. 各个检波器可以用条形图显示,带峰值保持指示;
4. 符合CISPR16-1-1对准峰值检波器的脉冲加权;
5. 时域分析,例如测量喀呖声干扰;
6. 符合CISPR的EMI测量带宽:200Hz,9kHz,120kHz,1MHz;
7. 内置11个预选滤波器和20dB的前置放大器;
8. 脉冲保护型射频输入;
9. 传感器、探头和天线等附件的电源;
10. 过载指示;
11. 内置AF解调器;
12. 明亮的21厘米TFT彩色显示屏;
13. 强大的固化软件功能;
14. 高测量速度;
15. 频谱分析平台。
EMI接收机

按
进入接收机模式。(开机默认进入接收机模式)。
设置“起始频率”,“终止频率”,“扫描模式下单点测量时间”,“终测模式下单点测量时间”以及“裕 量”。(设置方法可参考表 4)
8
深圳市优测科技有限公司
选择测试标准。按下
按键,显示菜单栏,使用鼠标选择“Set”----“Limit”----“Select Limit”,
说明 复位软件到初始状态 在扫描运行过程中不要进行相关设置工作,在停止后进行设置 可以对扫描的数据进行编辑,包括峰值查找,添加和删除频点等 可以对数据表中的频点进行终测测试 快速生成检测报告 进入 Spot 模式,单点测量 返回上一级菜单
表 5:接收机软件主界面
接收机模式快速操作步骤
①Scan 扫描测试设置和测试
选择所需标准并确定。如需添加新标准可参考”如何绘制标准曲线”。
选择补偿曲线。实际的应用中,在被测信号接入到接收机之前通常会有 LISN,天线,CDN,限幅器, 衰减器以及线缆等仪器设备,所以必须进行相关损耗补偿,可通过添加补偿曲线进行修正。如果没有 所需的补偿值可手动绘制补偿曲线,具体方法参考“如何绘制补偿曲线”。
射频衰减≥10dB
30dBm(=1W) 150V
分辨率带宽
预选器 前置放大器 测量时间 检波器
分析仪模式 接收机模式 在分析仪中可以被关闭 可以被开启/关闭 接收机模式 接收机模式
10Hz 到 1MHz(-3dB)采用 1/2/3/5/10 步长 200Hz, 9kHz, 120kHz (–6dB) 1MHz (pulse bandwidth) 15 路固定滤波器
12
深圳市优测科技有限公司
③绘制 PK 曲线 绘制 PK 曲线与绘制 QP 曲线方法相同。绘制完 PK 曲线点 Save。然后 Exit 曲线标准绘制完毕。例如
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EMI接收机和频谱分析仪两种仪器主要不同点随着电力电子技术的广泛应用,带来了很大的便利,但同时也带来了不容忽视的电磁干扰(EMI)问题,这就要求必须对EMI特性进行准确的测量,这对提高电力电子装置的电磁兼容性(EMC)具有重要意义。
近几年,在整个电磁兼容测量技术及所属服务领域不断出现许多新的测试仪器和测试方法,最基本且有效的测试设备还是频谱分析仪和EMI接收机。
一:频谱分析仪谈到测量电信号,电气工程师首先想到的可能就是示波器。
示波器是一种将电压幅度随时间变化的规律显示出来的仪器,它相当于电气工程师的眼睛,使你能够看到线路中电流和电压的变化规律,从而掌握电路的工作状态。
但是示波器并不是电磁干扰测量与诊断的理想工具。
这是因为:(1)最关键的是动态范围,干扰频谱不同分量的差别有5个量级以上,需要100 dB以上的动态范围;而八位的示波器仅有40 dB左右的动态范围,不能满足电磁干扰的测量要求。
(2)所有电磁兼容标准中的电磁干扰极限值都是在频域中定义的,而示波器显示出的是时域波形,因此测试得到的结果无法直接与标准比较。
为了将测试结果与标准相比较,必须将时域波形变换为频域频谱。
(3)电磁干扰相对于电路的工作信号往往都是较小的,并且电磁干扰的频率往往比信号高,而当一些幅度较低的高频信号叠加在一个幅度较大的低频信号时,用示波器无法进行测量。
(4)示波器的灵敏度在毫伏级,而由天线接收到的电磁干扰的幅度通常为微伏级,因此示波器不能满足灵敏度的要求。
测量电磁干扰更合适的仪器是频谱分析仪,频谱分析仪是一种将电压幅度随频率变化的规律显示出来的仪器,它显示的波形称为频谱。
频谱分析仪克服了示波器在测量电磁干扰中的缺点,它能够精确测量各个频率上的干扰强度。
对于电磁干扰问题的分析而言,频谱分析仪是比示波器更有用的仪器,用频谱分析仪可以直接显示出信号的各个频谱分量。
(5)1.1 频谱分析仪的原理频谱分析仪是一台在一定频率范围内扫描接收的接收机,它的原理图如图1所示。
频谱分析仪采用频率扫描超外差的工作方式。
混频器将天线上接收到的输入信号与本振产生的信号混频,当混频的频率等于中频时,这个信号可以通过中频放大器,被放大后,进行峰值检波。
检波后的信号被视频放大器进行放大,然后显示出来。
由于本振电路的振荡频率随着时间变化,因此频谱分析仪在不同的时间输出的频率是不同的。
当本振荡器的频率随着时间进行扫描时,屏幕上就显示出了被测信号在不同频率上的幅度,将不同频率上信号的幅度记录下来,就得到了被测信号的频谱。
根据这个频谱,就能够知道被测设备是否有超过标准规定的干扰发射,或产生干扰的信号频率是多少。
1.2 频谱仪的使用方法要获得正确的测量结果,必须正确地操作频谱分析仪。
本节简单介绍频谱分析仪的使用方法。
正确使用频谱分析仪的关键是正确设置频谱分析仪的各个参数。
下面解释频谱分析仪中主要参数的意义和设置方法。
(1)频率扫描范围规定了频谱分析仪扫描频率的上限和下限。
通过调整扫描频率范围,可以对感兴趣的频率进行细致的观察。
在频率分辨率一定的情况下,扫描频率范围越宽,则扫描一遍所需要时间越长,频谱上各点的测量精度越低,因此,在可能的情况下,尽量使用较小的频率范围。
在设置这个参数时,可以通过设置扫描开始频率和终止频率来确定,例如:startfrequency=l MHz,stop frequency=ll MHz。
也可以通过设置扫描中心频率和频率范围来确定,例如:center frequency=6 MHz,span=10 MHz。
这两种设置的结果是一样的。
(2)中频分辨带宽规定了频谱分析仪的中频带宽,这项指标决定了仪器的选择性和扫描时间。
调整分辨带宽可以达到两个目的,一个是提高仪器的选择性,以便对频率相距很近的两个信号进行区别。
另一个目的是提高仪器的灵敏度。
因为任何电路都有热噪声,这些噪声会将微弱信号淹没,而使仪器无法观察微弱信号。
噪声的幅度与仪器的通频带宽成正比,带宽越宽,则噪声越大。
因此减小仪器的分辨带宽可以减小仪器本身的噪声,从而增强对微弱信号的检测能力。
分辨带宽一般以3 dB(或者6 dB)带宽来表示。
当分辨带宽变化时,屏幕上显示的信号幅度可能会发生变化。
若测量信号的带宽大于通频带带宽,则当带宽增加时,由于通过中频放大器的信号总能量增加,显示幅度会有所增加。
若测量信号的带宽小于通频带宽,如对于单根谱线的信号,则不管分辨带宽怎样变化,显示信号的幅度都不会发生变化。
信号带宽超过中频带宽的信号称为宽带信号,信号带宽小于中频带宽的信号称为窄带信号。
根据信号是宽带信号还是窄带信号能够有效地鉴别干扰源。
(3)扫描时间仪器接收的信号从扫描频率范围的最低端扫描到最高端所使用的时间叫做扫描时间。
扫描时间与扫描频率范围是相匹配的。
如果扫描时间过短,频谱仪的中频滤波器不能够充分响应,结果幅度和频率的显示值变为不正确。
(4)视频带宽视频带宽至少与分辨带宽相同,最好为分辨带宽的3至5倍。
视频带宽反映的是测量接收机中位于包络检波器和模数转换器之间的视频放大器的带宽。
改变视频带宽的设置,可以减小噪声峰一峰值的变化量,提高较低信噪比信号测量的分辨率和复现率,易于发现隐藏在噪声中的小信号。
1.3 频谱仪的种类频谱仪通常可以分为常规扫频分析仪和实时频谱分析仪,通过比较可以知道实时频谱分析仪适用性更强。
(1)常规扫频分析仪(2)图2是常规扫频分析仪的框图。
此例涉及两个RF输入信号。
RF信号通过扫描定位振荡器被转化为IF(中间频率)。
IF输出通过带通滤波器,此处频谱分析仪分辨率被定义。
(3)滤波器由Fstart扫至Fstop,见图3。
此时仅观察到滤波器带宽内的一个点的信号。
信号A首先被探测和显示,然后是信号B(间歇信号,如突发现象一般不会被探测到,除非在滤波器扫过时,在某一准确时间出现)。
(2)实时频谱分析仪实时频谱分析仪是由一系列带通滤波器组成,如下图4所示。
信号通过这些滤波器观察和连续纪录。
信号A和B同时采集和显示,如图5。
二:EMI接收机由电力电子设备产生的电磁发射通常是宽带、连续的,其频率范围从工频到几十兆赫。
通常传导EMI应在这一频率范围被测量。
由于许多国家和国际标准只在O.15 MHz~30 MHz的频率范围内确定传导发射,传导EMI的测量也仅仅在这一范围内讨论信号的测量方法。
在O.15 MHz~30 MHz频率乃至低至10 kHz范围内的EMI分量,由EMI接受装置测量。
EMI接收机测得的是一个被测设备的输出电压。
实质上EMI接收机是可调谐的、有频率选择的、具有精密的振幅响应的电压计,如图6所示。
各部分功能如下:(1)传感器。
可由电压探头、电流探头、各类天线等部件组成。
根据测量的目的,选用不同部件来提取信号。
(2)输入衰减器。
可将外部进来的过大信号或干扰电平给予衰减,调节衰减量高低,保证测量接收机输入的电平在测量接收机可测范围之内,同时也可避免过电压或过电流造成测量接收机损坏。
(3)校准信号源。
与普通接收机相区别,测量接收机本身提供内部校准信号源,可随时对测量接收机的增益加以自我校准,以保证测量值的准确。
(4)射频放大器。
利用选频放大原理,仅选择所需的测量信号进入下级电路,而外来的各种杂散信号(包括镜像频率信号、中频率信号、交调谐波信号等)均排除在外。
(5)混频器。
将来自射频放大器的射频信号和来自本机振荡器的信号合成产生一个差频信号输入到中频放大级,由于差频信号的频率远低于射频信号频率,使得中频放大级增益得以提高。
(6)本机振荡器。
提供一个频率稳定的高频振荡信号。
(7)中频放大器。
由于中频放大器的调谐电路可提供严格的频率带宽,又能获得较高的增益,因此保证接收机的总选择性和整机灵敏度。
(8)检波器。
测量接收机的检波方式与普通接收机的检波方式有着重大差异。
测量接收机除可接收正弦波信号外,更常用于测量脉冲骚扰电平,因此测量接收机除了通常具有的平均值检波功能外还增加了峰值检波和准峰值检波功能。
三:频谱仪和接收机原理差异频谱分析仪是当前频谱分析的主要工具,尤其是扫频外差式频谱分析仪是当今频谱仪的主流,应用扫频测量技术,通过扫频信号源得到外差信号进行频域动态分析。
接收机是进行EMC测试的主要工具,以点频法为基础,应用本振调谐的原理测试相应频点的电平值。
接收机的扫描模式应当是以步进点频调谐的方式得到的。
3.1 基本原理图根据工作原理,频谱分析仪和接收机可分为模拟式和数,字式两大类。
外差式分析是当前使用最为广泛的接收和分析方法。
下面就外差式频谱分析仪与接收机之间的主要差别作一分析。
原理图如7所示,频谱仪与接收机类似,但是频谱仪与接收机在以下几方面差别较大:前端预选器、本振信号扫描、中频滤波器、测量精度。
3.2 输入RF信号的前端处理接收机与频谱仪在输入端对信号进行的处理是不同的。
频谱仪的信号输入端通常是较为简单的低通滤波器,而接收机要采用对宽带信号有较强的抗扰能力的预选器。
通常包括一组固定带通滤波器和一组跟踪滤波器,完成对信号的预选。
由于RF信号的谐波、交调和其它杂散信号的影响,造成频谱仪和接收机测试误差。
相对于频谱仪而言,接收机需要更高的精度,故在接收机的前端比普通频谱仪多出一个预选器,提高选择性。
接收机的选择性在GB/T6113(CISPRl6)中有明确规定。
3.3 本振信号的调节现在的EMC测量,人们不止要求能手动调谐搜索频率点,也需要快速直观观察EUT(Equipment under test一被测设备)的频率电平特性。
这就是要求本振信号既能测试规定的频率点,也能够在一定频率范围扫描。
频谱仪是通过扫频信号源实现扫频测量的。
通常通过斜波或锯齿波信号控制扫频信号源,在预设的频率跨度内扫描,获得期望的混频输出信号。
接收机的频率扫描是步进的,离散的,是离散的点频测试。
接收机按照操作者预先设定的频率间隔,通过处理器的控制,在每一个频率点进行电平测量,显示的测试结果曲线实际是单个点频测试的结果。
3.4 中频滤波器频谱仪和接收机的中频滤波器的带宽是不同的。
通常定义频谱仪分辨率带宽是幅频特性的3 dB带宽,而接收机的中频带宽是幅频特性的6 dB带宽。
当频谱仪与接收机设定相同级别的带宽时,它们对信号的实际测试值是不同的。
具体的表示如图8和图9所示。
从频谱仪和接收机中频滤波器的幅频特性可以看出,当频谱仪3 dB带宽BW与接收机6 dB带宽BW值设为一样时,实际通过两种滤波器的信号幅频特性是不一样的。
依据EMC标准,无论是民用还是军用标准,带宽均应为6 dB。
3.5 检波器依据EMC标准,要求测试接收机带有峰值、准峰值和平均值检波器,通用频谱分析仪一般带有峰值和平均值检波器,没有准峰值检波器。
3.6 精度从接收机对信号的处理方式以及EMC测试要求看,接收机要比频谱仪有更高的精度,更低的乱真响应。