频谱分析仪的工作原理和使用方法

合集下载

什么是频谱分析仪,频谱分析仪的工作原理是什么,频谱分析仪怎样使用?

什么是频谱分析仪,频谱分析仪的工作原理是什么,频谱分析仪怎样使用?

什么是频谱分析仪,频谱分析仪的工作原理是什么,频谱分析仪怎样使用?什么是频谱分析仪?频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。

它又可称为频域示波器、跟踪示波器、分析示波器、谐波分析器、频率特性分析仪或傅里叶分析仪等。

现代频谱分析仪能以模拟方式或数字方式显示分析结果,能分析1赫以下的甚低频到亚毫米波段的全部无线电频段的电信号。

仪器内部若采用数字电路和微处理器,具有存储和运算功能;配置标准接口,就容易构成自动测试系统。

频谱分析仪的工作原理以及应用方面推广:频谱分析仪的组成及工作原理图1所示为扫频调谐超外差频谱分析仪组成框图。

输入信号经衰减器以限制信号幅度,经低通输入滤波器滤除不需的频率,然后经混频器与本振(LO)信号混频将输入信号转换到中频(IF)。

LO 的频率由扫频发生器控制。

随着LO频率的改变,混频器的输出信号(它包括两个原始信号,它们的和、差及谐波,)由分辨力带宽滤波器滤出本振比输入信号高的中频,并以对数标度放大或压缩。

然后用检波器对通过IF滤波器的信号进行整流,从而得到驱动显示垂直部分的直流电压。

随着扫频发生器扫过某一频率范围,屏幕上就会画出一条迹线。

该迹线示出了输入信号在所显示频率范围内的频率成分。

频谱仪各部分作用及显示信号分析输入衰减器:保证频谱仪在宽频范围内保持良好匹配特性,以减小失配误差;保护混频器及其它中频处理电路,防止部件损坏和产生过大的非线性失真。

混频器:完成信号的频谱搬移,将不同频率输入信号变换到相应中频。

在低频段(《3GHz)利用高混频和低通滤波器抑制镜像干扰;在高频段(》3GHz)利用带通跟踪滤波器抑制镜像干扰。

本振(LO):它是一个压控振荡器,其频率是受扫频发生器控制的。

其频率稳定度锁相于参考源。

扫频发生器:除了控制本振频率外,它也能控制水平偏转显示,锯齿波扫描使频谱仪屏幕上从左到右显示信号,然后重复这个扫描不断更新迹线。

频谱分析仪原理

频谱分析仪原理

频谱分析仪原理频谱分析仪是一种用来对信号进行频率分析的仪器,它可以将信号的频谱特性直观地显示出来,帮助人们了解信号的频率成分和功率分布情况。

频谱分析仪广泛应用于无线通信、雷达、声音处理、振动分析等领域。

本文将介绍频谱分析仪的原理及其工作过程。

频谱分析仪的原理基于傅里叶变换,它可以将时域信号转换为频域信号。

在频谱分析仪中,输入信号首先经过模拟或数字滤波器进行预处理,然后进入变换器进行频谱分析。

变换器将输入信号分解为不同频率成分的幅度和相位信息,并将这些信息转换为直流电压或数字信号输出。

最后,输出信号经过显示器或计算机进行处理,形成频谱图谱。

频谱分析仪的工作过程可以分为几个关键步骤。

首先,输入信号经过前置放大器进行放大,然后进入滤波器进行滤波,去除不需要的频率成分。

接下来,信号经过变换器进行频谱分析,得到频率成分的幅度和相位信息。

最后,这些信息经过显示器或计算机进行处理,形成频谱图谱,直观地显示信号的频率特性。

频谱分析仪的原理可以用简单的数学模型来描述。

假设输入信号为f(t),经过变换器变换后得到的频谱信号为F(ω),其中ω为频率。

根据傅里叶变换的原理,F(ω)可以表示为f(t)的频谱分量,即F(ω)=∫f(t)e^(-jωt)dt。

通过对F(ω)进行幅度和相位的分析,就可以得到信号的频谱特性。

频谱分析仪的原理和工作过程为工程技术人员提供了一种有效的手段,帮助他们对信号进行频率分析和特性评估。

通过频谱分析仪,人们可以直观地了解信号的频率成分和功率分布情况,为无线通信、雷达、声音处理、振动分析等领域的工程设计和故障诊断提供了重要参考。

总之,频谱分析仪是一种基于傅里叶变换原理的仪器,它可以将信号的频率特性直观地显示出来,帮助人们了解信号的频率成分和功率分布情况。

频谱分析仪的工作原理和过程为工程技术人员提供了一种有效的手段,帮助他们进行频率分析和特性评估。

通过频谱分析仪,人们可以直观地了解信号的频率特性,为工程设计和故障诊断提供了重要参考。

无线电频谱分析仪的工作原理与应用

无线电频谱分析仪的工作原理与应用

无线电频谱分析仪的工作原理与应用无线电频谱分析仪是一种用于测量和分析无线电频谱的仪器。

它可以实时显示频谱,帮助工程师了解无线电信号的特征及其在各个频率范围内的分布情况。

本文将介绍无线电频谱分析仪的工作原理以及在不同领域的应用。

一、工作原理无线电频谱分析仪的工作原理可以简单概括为以下几个步骤:1. 信号接收:无线电频谱分析仪通过内置或外接天线接收到要分析的无线电信号。

2. 信号放大:接收到的信号经过前置放大电路进行信号放大,以提高信号的幅度和灵敏度。

3. 信号混频:经过放大后的信号和本地振荡器产生的中频信号进行混频操作,得到中频信号。

4. 信号滤波:对混频得到的中频信号进行滤波,去除不需要的频率成分,以便进行后续的频谱分析。

5. 信号解调:对滤波后的中频信号进行解调,恢复信号的原始调制方式,如调幅、调频等。

6. 信号转换:将解调后的信号转换为数字信号,以便进行数字信号处理和显示。

7. 数字信号处理:使用数字信号处理技术对信号进行频谱分析、频谱显示和信号参数计算等操作。

8. 频谱显示:将处理后的信号转换为频谱图形并显示在仪器的显示屏上,供用户查看和分析。

二、应用领域无线电频谱分析仪在多个领域有着广泛的应用,以下将介绍其中几个主要的应用领域。

1. 电信领域:无线电频谱分析仪在电信领域中被广泛应用于对无线电信号进行调制解调、频谱分析、调频定位、无线电干扰监测等工作。

它可以帮助工程师更好地分析和监测无线电信号的质量以及各种干扰情况,从而保证通信系统的正常运行。

2. 广播电视领域:广播电视频谱分析是保障广播电视信号质量的重要手段之一。

无线电频谱分析仪可以帮助广播电视工程师进行频谱监测、频谱规划以及无线电干扰分析等工作,从而提高广播电视信号的传输质量和覆盖范围。

3. 电子设备测试领域:在电子设备测试领域中,无线电频谱分析仪可以用于对设备的射频性能进行测试和分析。

通过对设备发出的无线电信号进行频谱分析,工程师可以了解到设备的发射功率、频率稳定性、谐波等参数,从而评估设备的性能和合格性。

频谱分析仪的原理和应用

频谱分析仪的原理和应用

频谱分析仪的原理和应用一、频谱分析仪的原理频谱分析仪是一种用于分析信号频谱的仪器。

它基于傅里叶变换的原理,将时域信号转换为频域信号,从而可以对信号的频谱特性进行分析。

频谱分析仪的主要原理如下:1.傅里叶变换:傅里叶变换是一种将时域信号转换为频域信号的数学方法。

频谱分析仪通过对信号进行傅里叶变换,可以将信号分解成不同频率的成分,从而得到信号的频谱图。

2.FFT算法:快速傅里叶变换(FFT)是一种高效计算离散傅里叶变换的算法。

频谱分析仪通常使用FFT算法对信号进行频谱分析,以实现实时的频谱显示和分析。

3.功率谱密度:频谱分析仪通过计算信号功率谱密度,可以得到不同频率下的信号功率分布情况。

功率谱密度可以反映信号的频谱特性,包括频率分量的强度、分布和峰值等信息。

4.窗函数:为了减少频谱泄漏和谱分辨率损失,频谱分析仪通常使用窗函数对信号进行加窗处理。

常用的窗函数有矩形窗、汉宁窗、汉明窗等,不同窗函数会对频谱的主瓣宽度和副瓣衰减等产生影响。

二、频谱分析仪的应用频谱分析仪在科学研究、工程领域和日常生活中具有广泛的应用。

下面列举了一些常见的应用场景:1. 无线通信•频率分配:频谱分析仪可以用于无线通信系统中的频率规划和频段分配。

通过分析不同频段的使用情况,可以避免频谱的重叠和冲突,提高通信系统的传输效率和可靠性。

•信道测量:频谱分析仪可以对无线信道进行测量和分析,了解信道的传输特性和衰减情况。

这对于优化信号传输、调整天线方向和减少干扰都是非常重要的。

2. 电子设备测试•信号分析:频谱分析仪可以用于对电子设备的输入和输出信号进行分析。

通过分析信号的频谱特性,可以检测设备是否存在频率误差、频率扭曲和幅度失真等问题。

•干扰检测:频谱分析仪可以用于检测和定位电子设备之间的干扰问题。

通过分析干扰源的频谱特征,可以确定干扰源的位置和频率,从而采取相应的措施进行干扰抑制和消除。

3. 音频处理•音频分析:频谱分析仪可以对音频信号进行频谱分析,了解音频信号的频率分布和能量分布情况。

频谱仪的操作和使用要点及工作原理

频谱仪的操作和使用要点及工作原理

频谱仪的操作和使用要点及工作原理频谱仪的操作和使用要点1、怎样设置才能获得频谱仪较好的灵敏度,以便利观测小信号?首先依据被测小信号的大小设置相应的中心频率、扫宽(SPAN)以及参考电平;然后在频谱分析仪没有显现过载提示的情况下渐渐降低衰减值;假如此时被测小信号的信噪比小于15db,就渐渐减小RBW,RBW越小,频谱分析仪的底噪则越低,灵敏度就越高。

假如频谱分析仪有预放,打开预放。

预放开,可以提高频谱分析仪的噪声系数,从而提高了灵敏度。

对于信噪比不高的小信号,可以削减VBW或者接受轨迹平均,平滑噪声,减小波动。

需要注意的是,频谱仪测量结果是外部输入信号和频谱分析仪内部噪声之和,要使测量结果精准,通常要求信噪比大于20db。

2、辨别率带宽(RBW)越小越好吗?RBW越小,频谱分析仪灵敏度就越好,但是,扫描速度会变慢。

建议依据实际测试需求设RBW,在灵敏度和速度之间找到平衡点–既保证精准测量信号又可以得到快速的测量速度。

3、平均检波方式(Average Type)是如何选择、Power?Logpower?Voltage?Logpower对数功率平均、它通常又称为Videoaveraging,这种平均方式具有最低的底噪,适合于低电平连续波信号测试。

但对”类噪声“信号会有确定的误差,比如宽带调制信号W—CDMA等。

功率平均、又称RMS平均,这种平均方式适合于“类噪声“信号(如CDMA)总功率测量。

电压平均、这种平均方式适合于观测调幅信号或者脉冲调制信号的上升和下降时间测量。

4、扫描模式的选择、SWEEP还是FFT?现代频谱仪的扫描模式通常都具有SWEEP模式和FFT模式。

通常在比较窄的RBW设置时,FFT比SWEEP更具有速度优势,但在较宽RBW的条件下,SWEEP模式更快。

当扫宽小于FFT的分析带宽时,FFT模式可以测量瞬态信号;在扫宽超出频谱分析仪的FFT分析带宽时,假如接受FFT扫描模式,工作方式是对信号进行分段处理,段与段之间在时间上存在不连续性,则可能在信号采样间隙时,丢失有用信号,频谱分析就会存在失真。

频谱分析仪的工作原理及操作

频谱分析仪的工作原理及操作

五、 操作:
(一) 硬键、软键和旋钮:这是仪器的基本操作手段。1、 三个大硬键和一个大旋钮:大旋钮的功能由三个大硬键设定。按一下频率硬键,则旋钮可以微调仪器显示的中心频率;按一下扫描宽度硬键,则旋钮可以调节仪器扫描的频率宽度;按一下幅度硬键,则旋钮可以调节信号幅度。旋动旋钮时,中心频率、扫描宽度(起始、终止频率)、和幅度的dB数同时显示在屏幕上。2、 软键:在屏幕右边,有一排纵向排列的没有标志的按键,它的功能随项目而变,在屏幕的右侧对应于按键处显示什么,它就是什么按键。3、 其它硬键:仪器状态(INSTRUMNT STATE)控制区有十个硬键:RESET清零、CANFIG配置、CAL校准、AUX CTRL辅助控制、COPY打印、MODE模式、SAVE存储、RECALL调用、MEAS/USER测量/用户自定义、SGL SWP信号扫描。光标(MARKER)区有四个硬键:MKR光标、MKR 光标移动、RKR FCTN光标功能、PEAK SEARCH峰值搜索。控制(CONTRL)区有六个硬键:SWEEP扫描、BW带宽、TRIG触发、AUTO COVPLE自动耦合、TRACE跟踪、DISPLAY显示。在数字键区有一个BKSP回退,数字键区的右边是一纵排四个ENTER确认键,同时也是单位键。大旋钮上面的三个硬键是窗口键:ON打开、NEXT下一屏、ZOOM缩放。大旋钮下面的两个带箭头的键STEP配合大旋钮使用作上调、下调。
(三) 测试准备:1、限制性保护:规定最高输入射频电平和造成永久性损坏的最高电压值:直流25V,交流峰峰值100V。2、 预热:测试须等到OVER COLD消失。3、 自校:使用三个月,或重要测量前,要进行自校。4、 系统测量配置:配置是测量之前把测量的一些参数输入进去,省去每次测量都进行一次参数输入。内容:测试项目、信号输入方式(频率还是频道)、显示单位、制式、噪声测量带宽和取样点、测CTB、CSO的频率点、测试行选通等。配置步骤:按MODE键——CABLE TV ANALYZER软键——Setup软键,进入设置状态。细节为tune config调谐配置:包括频率、频道、制式、电平单位。Analyzer input输入配置:是否加前置放大器。Beats setup拍频设置、测CTB、CSO的频点(频率偏移CTB FRQ offset、CSO FRQ offset)。GATING YES NO是否选通测试行。C/N setup载噪比设置:频点(频率偏移C/N FRQ offset)、带宽。

(工作分析)频谱分析仪工作原理和应用

(工作分析)频谱分析仪工作原理和应用

(工作分析)频谱分析仪工作原理和应用频谱分析仪工作原理和应用《频谱分析仪工作原理和应用》原始文档本章除了说明频谱分析仪工作原理、操作使用说明之外,也将其应用领域范围作详细的介绍,尤其应用于天线特性的量测技术将有完整说明。

本章的内容包括:本章要点1-1概论1-2频谱分析仪的工作原理1-3频谱分析仪的应用领域实习一频谱分析仪1-1概论就量测信号的技术观之,时域方面,示波器为一项极为重要且有效的量测仪器,它能直接显示信号波幅、频率、周期、波形与相位之响应变化,目前,一般的示波器至少为双轨迹输出显示装置,同时也具有与绘图仪连接的 IEEE-488、IEEE-1394 或 RS-232 接口功能,能将屏幕上量测显示的信息绘出,作为研究比较的依据,但它仅局限于低频的信号,高频信号则有其实际的困难。

频谱分析仪乃能弥补此项缺失,同时将一含有许多频率的信号用频域方式来呈现,以识别在各个频率的功率装置,以显示信号在频域里的特性。

图 1.1 说明方波在时域与频域的关系,此立体坐标轴分别代表时间、频率与振幅。

由傅立叶级数(Fourier Series)可知方波包含有基本波(Fundamental Wave)及若干谐波(Harmonics),信号的组合成份由此立体坐标中对应显示出来。

低频时,双轨迹模拟与数字示波器为目前信号时域的主要量测设备,模拟示波器可量测的输入信号频率可达 100 MHz,数字示波器有 100 MHz 与 400(或 500)MHz 等多种。

屏幕上显示信号的意义为横轴代表时间,纵轴代表信号电压的振幅,用示波器量测可得到信号时间的相位及信号与时间的关系,但无法获知信号失真的数据,亦即无法获知信号谐波分量的分布情况,同时量测微波领域(如 UHF 以上的频带)信号时,基于设备电子组件功能的限制、输入端杂散电容等因素,量测的结果无可避免地将产生信号失真及衰减,为解决量测高频信号上述的问题,频谱分析仪为一适当而必备的量测仪器,频谱分析仪的主要功能是量测信号的频率响应,横轴代表频率,纵轴代表信号功率或电压的数值,可用线性或对数刻度显示量测的结果。

频谱分析仪的原理操作应用pdf

频谱分析仪的原理操作应用pdf

频谱分析仪的原理操作应用1. 介绍频谱分析仪是一种常用的电子测试仪器,用于分析信号的频谱特征。

本文将介绍频谱分析仪的原理、操作和应用。

2. 频谱分析仪的原理频谱分析仪基于傅里叶变换原理,将信号从时域转换为频域,通过显示信号在不同频率下的幅度和相位信息,实现对信号频谱特性的分析。

2.1 傅里叶变换傅里叶变换是将一个信号从时域转换为频域的数学工具。

它将一个连续或离散的时域信号分解成不同频率分量的叠加,得到信号在频域上的表示。

2.2 快速傅里叶变换快速傅里叶变换(FFT)是一种快速计算离散傅里叶变换(DFT)的算法。

它通过降低计算复杂度,提高计算速度,广泛应用于频谱分析仪中。

3. 频谱分析仪的操作频谱分析仪的操作步骤如下:1.连接信号源:将待分析的信号源与频谱分析仪进行连接,确保接口连接正确。

2.设置参数:根据需要设置频谱分析仪的参数,包括采样率、带宽、中心频率等。

3.选择窗函数:窗函数用于减小信号频谱泄露和谱线扩展的影响,根据需要选择合适的窗函数。

4.启动分析:启动频谱分析仪,开始对信号进行频谱分析。

5.分析结果显示:频谱分析仪会将信号的频谱特征以图表的形式显示出来,包括幅度谱、相位谱等。

4. 频谱分析仪的应用频谱分析仪在各个领域都有广泛的应用,以下是几个常见的应用场景:4.1 通信领域在通信领域,频谱分析仪用于对通信信号进行分析和测试,包括调制解调、频谱占用等方面的研究。

4.2 音频领域在音频领域,频谱分析仪用于音频信号的分析和处理,可以用于音乐制作、音频调试等方面。

4.3 无线电领域在无线电领域,频谱分析仪用于无线电信号的分析和监测,可以用于无线电频段的占用情况、频率干扰等方面的研究。

4.4 电力领域在电力领域,频谱分析仪用于电力系统的故障检测和干扰分析,可以帮助发现电力设备的故障和电磁干扰源。

5. 总结本文介绍了频谱分析仪的原理、操作和应用。

频谱分析仪通过傅里叶变换将信号从时域转换为频域,并显示信号在不同频率下的幅度和相位信息,实现对信号频谱特性的分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们知道,当一个信号随时间做周期或准周期 变化时,用付里叶变换可以表示成一个基波分 量及许多谐波分量之和的形式。基波和各次谐 波的能量按其频率高低的次序排列就是信号的 频谱。 对于非周期性信号(如随机信号)可以看成是一 个周期T为无限大的周期信号,即频率间隔为 无限小,其谱线是连续的,称为连续谱。
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
2.1.1 实时频谱分析仪
图2.3是付里叶分析仪原理框图。由于取样与 A/D转换速度的限制,快速付里叶变换(FFT)式 频谱分析仪无法用于高频及微波范围的频谱分 析仪。
模拟滤波器 模/数变换器 数字滤波器 衰减器 取样器 处理器 显示器 A D
FFT
图2.3付里叶分析 仪原理框图
fs
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
3 频谱分析仪性能参数的基本概念
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
1.2频谱仪的发展
30年代末期,第一代扫频式频谱仪诞生。 60年代末期,可以为频谱仪提供频率和幅度的校准, 前端预选的频谱仪问世,它标志着频谱仪从此进入了 定量测试的时代。 70 70年代末,随着集成电路技术,快速A/D变换技术, A/D 频率合成技术,数字存储技术,尤其是微处理器技术 的飞速发展,频谱仪的技术指标大幅度提高。频率范 围扩展到100Hz-20GHz,分辨力带宽达到10Hz。 现在,频谱分析仪的测量频率范围已达到30Hz50GHz,外混频可以扩展到mm波波段,分辨力带宽 从1Hz-3MHz,测量信号的动态范围100dB,显示平均 噪声-110dBm。
镜像频率干扰
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
频谱仪是一台超外差式接收机,它 的混频器是宽带的,因此在用频谱 仪测量信号时除了出现所需的信号 频率谱线外,还会显示出不需要的 镜像频谱。如图所示只要满足;,条 件时,和都会出现在频谱仪的显示 屏幕上,这就是镜像频率干扰。 有两种方案可以抑制镜像频率响应 的干扰:采用预选器和上变频的高 中频。
对数放大器
带通滤波器 预选器 第三本振 300MHz
带宽滤波器 检波器
第一本振 YTO (4~8)GHz
扫描发生器
显示器
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
2.3 基波及谐波混频
如果希望扩展频谱仪的工作频率范围,必须加 宽第一本振的调谐或扫频范围,只得增加本振 的频段和插件数目。这种基波混频方式虽然有 好处,但是设备繁复,不经济。实际上完全可 以利用本振的谐波来与信号混频,从而大大扩 展工作频段。 镜像频率干扰 频谱仪是一台超外差式接收机,它的混频器是 宽带的,因此在用频谱仪测量信号时除了出现 所需的信号频率谱线外,还会显示出不需要的 镜像频谱。
2.2 超外差扫频频谱分析仪的工作原理
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
F11F(3.9214GHz)
第 一 变 低通滤 第二变 低通滤波器 频器 波器 频器
F21F(321.4MHz)
F31F(21.4MHz)
MXR1 YTF
(0~70)dB 第二本振 3.6GHz
第三变 步进放 大器 频器
1.2频域分析 频域分析
观察并分析信号的幅度(电压或功率)与频率的关系,它 能够获取时域测量中所得不到的独特信息。例如谐波 分量,寄生信号,交调、噪声边带。最典型的频域信 号分析是测量调制,失真和噪声。通常进行信号频域 分析的仪器就是频谱分析仪。
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
2.3 基波及谐波混频
多重响应- 多重响应-本振的基波和谐波与同一信号混频 产生同一中频。 产生同一中频。 谐波响应——本振的基波和谐波与信号的多个 谐波响应 本振的基波和谐波与信号的多个 频率成分进行混频产生同一中频。 频率成分进行混频产生同一中频。
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
2.1.2 扫频频谱分析仪
扫频分析仪 A
滤波器扫过关注的测量 频率范围
全频谱LCD 显示
f1
f2
f
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
2.1.2 扫频频谱分析仪
调谐滤波器 检波器 显示器
扫描发生器
2.2 超外差扫频频谱分析仪的工作原理
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
1 概述
1.1 时域分析 1.2 频域分析 1.3 频谱仪的发展
1 概述
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
无论你是一个电子设备或系统的设计制造工程 师,还是一个电子器件或系统的现场维护/修理 人员,都需要一台能观察并帮助你分析你的设 备或系统产生的电信号或电信号通过你的器件 或系统后质量变化的情况,比如,信号的功率 和幅度,调制或边带等等,通过分析来验证你 的设计,确定器件或系统的性能,判别故障点, 找出问题的所在,这就是信号特性分析。 目前,信号分析主要从时域,频域和调制域三 个方面进行。
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
频谱分析仪的工作原理和使用方法
1. 2 3 4 5 6 概述 频谱分析仪的工作原理 频谱分析仪性能参数的基本概念 频谱分析仪的测量准确度 频谱分析仪使用中应注意的问题 频谱分析仪使用实例- 频谱分析仪使用实例-E4405B
频谱分析仪的工作原理和使用方法
频谱分析仪的工作原理和使用方 法 3.6 动态范围 3.7 灵敏度 3.8 视频带宽(VBW) 3.9 信号/失真 3.10 信号/噪声 4 频谱分析仪的测量准确度 4.1 频率测量准确度 4.2 幅度测量准确度 5 频谱分析仪使用中应注意的 问题 6 频谱分析仪使用实例- E4405B 6.1 E4405B的前后面板开关,旋 钮,接头的功能 6.2 测量实例-测量AM信号波形 6.3 测量实例-看懂校准证书
2.1.2 扫频频谱分析仪
调谐滤波式频谱分析仪是用扫描发生器驱动调谐滤波 器,在整个频率范围内改变一个带通滤波器的中心频 率来工作的。随着中心频率的移动,依次选出的被测 信号各频谱分量,再经滤波器和视频放大后加到显示 器的垂直偏转电路。而水平偏转的输入信号来自驱动 并调谐带通滤波器的同一扫描发生器。这样,水平轴 就可以用于表示频率。 目前大量使用的是超外差式频谱分析仪。它又可以分 为扫中频和扫高频(扫前端)两种。 较老式的频谱仪大都是扫中频。由于扫频宽度不大, 故又称窄带频谱仪。扫中频频谱仪的另一个缺点是可 能出现杂波干扰和假响应较多,而且动态范围小,灵 敏度又低,现在基本被淘汰。
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
现代扫前端超外差频谱分析仪的框图见图2.6。 主要组成部分有射频输入衰减器,预选器或低 通滤波器,混频器,中频(IF)放大器,中频滤 波器,检波器,视频放大器,本振,扫描发生 器和LCD显示器。
2.2 超外差扫频频谱分析仪的工作原理
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
1 概述
Amplitude (power)
f re
y enc qu
tim e
时域测量
频域测量
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
1 概述
1.1 时域分析
所谓时域分析就是观察并分析电信号随时间的变化情 况。例如,信号的幅度,周期或频率等。时域分析常 用仪器是示波器。但是示波器还不能提供充分的信息, 因此就产生了用频域分析的方法来分析信号。
2.1.1 实时频谱分析仪
所谓实时频谱分析仪是指能实时显示信号在某 一时刻的所有频率成分的分析结果。见图2.2。
滤波 检波 指示
输入
预放
图2.2 实时频谱分析 仪
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
2.1.1 实时频谱分析仪
被测输入信号经过宽带预放放大后,由多路分 配器分别送到并联的多个带通滤波器,每个滤 波器从被测信号中选出与其相对应的频谱分量, 经检波器检波后送到各个显示器保持并显示。 现在基本不用。 还有一种快速付里叶变换(FFT)式频谱分析仪 也属于实时型频谱分析仪,见图2.1。
1.2频域分析 频域分析
.
调制 调制 噪声 噪声 失真 失真
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
1.2频域分析 频域分析
频谱分析仪(频谱仪)是信号频域特性分析的重 要工具。它将一个由许多频率分量组成复杂的 信号分解成各个频率分量。每一个频率分量的 电平被依次显示出来。 频域分析测量有许多独特的优点。用频谱分析 的方法很容易测量一个信号频率,功率,谐波 分量,调制假信号和噪声等。
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
2.1.1 实时频谱分析仪
还有一种快速付里叶变换(FFT)式频谱分析仪也 属于实时型频谱分析仪,见图2.1。
傅里叶分析
实时并联滤波测量
A
全频谱LCD 显示
图2.1 傅立叶 分析仪
f1
f2
f
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
1. 概述 1.1 时域分析 1.2 频域分析 1.3 频谱仪的发展 2 频谱分析仪的工作原理 2.1 频谱分析仪的类型 2.1.1. 实时频谱分析仪 2.1.2. 扫频频谱分析仪 2.2 超外差扫频频谱分析仪的 工作原理 2.3 基波及谐波混频 3 频谱分析仪性能参数的基 本概念 3.1 分辨力(RBW) 3.2 选择性 3.3 剩余调频 3.4 边带噪声 (相位噪声) 3.5 自适应关系
相关文档
最新文档