七年级数学平面直角坐标系测试题
平面直角坐标系_单元测试卷人教版(五四制)七年级数学上册

第14章平面直角坐标系单元测试卷学校:__________班级:__________姓名:__________考号:__________一、选择题(本题共计8小题,每题3分,共计24分)1.点()1,2P -在第()象限.A .一B .二C .三D .四2.经过两点()2,3A 、()4,3B -作直线AB ,则直线AB ()A .平行于x 轴B .平行于y 轴C .经过原点D .以上说法都不对3.在直角坐标系中,将点P(-3,2)向右平移4个单位长度,再向下平移6个单位长度后,得到的点位于()A .第一象限B .第二象限C .第三象限D .第四象限4.根据下列表述,能确定具体位置的是()A .官渡古镇南B .东经116 北纬42C .北偏西30D .电影院5.已知点(),A a b 不在坐标轴上,下列说法正确的是()A .点A 到x 轴的距离是aB .若点A 在第二或第四象限角平分线上,则a b=C .0ab ≠D .若点A 在第四象限,则a 的值可以为2-6.在平面直角坐标系中,点()43P -,到原点的距离是()A .3B .4C .5D7.线段AB 的两个端点坐标为A(1,3),B(2,7),线段CD 的两个端点坐标为C(2,-4),D(3,0),则线段AB 与线段CD 的关系是()A .平行且相等B .平行但不相等C .不平行但相等D .不平行且不相等8.在如图所示的象棋盘上,若“帅”和“相”所在的坐标分别是(1,﹣2)和(3,﹣2)上,则“炮”的坐标是()A .(﹣1,1)B .(﹣1,2)C .(﹣2,1)D .(﹣2,2)二、填空题(本题共计7小题,每题3分,共计21分)9.将点()2,1A 向上平移2个单位长度得到点A ',则点A '的坐标是________.10.将点()2,6P -,先向右平移4个单位,再向下平移4个单位,则得到点的坐标为________.11.在平面直角坐标系中,点(-2,-1)在第_________象限.12.如果把2街5巷记为()2,5,那么4街3巷可以表示为________.13.经过点()11,7P -且垂直于x 轴的直线可以表示为直线________.14.在平面直角坐标系中,点A 的坐标为()1,5--,线段AB x 轴,且4AB =,则点B 的坐标为________.15.在平面直角坐标系中,点1(1,3)A ,23(2,2A ,3(3,1)A ,43(4,)4A ⋯,用你发现的规律确定9A 的坐标为________.三、解答题(本题共计7小题,共计75分)16.如图,ABC 绕C 点旋转后,顶点A 的对应点为点A ',试确定顶点B 对应点的位置,以及旋转后的A B C ''' .若以ABC 外一点O 为旋转中心呢?.注意:确定一个三角形旋转后的位置的条件为:(1)三角形原来的位置;(2)旋转中心;(3)旋转方向;(4)旋转角.17.坐标平面内有4个点:()0,2A ,()1,0B -,()1,1C -,()3,0D .(1)建立坐标系,描出这4个点,顺次连接A ,B ,C ,D ,组成四边形ABCD ;(2)求四边形ABCD 的面积.18.在平面直角坐标系中,一平行四边形的三个顶点的坐标分别为()()()0,04,02,4A B C ,,.(1)在所给的平面直角坐标系中描出A B C ,,的位置;(2)你能确定第四个顶点D 的坐标吗?如果能,请写出所有的第四个顶点D 的坐标,并在图中画出所有可能的四边形;如果不能,请说明理由.19.如图,在平面直角坐标系中,一颗棋子从点P处开始依次关于点A、B、C作循环跳动,即第一次跳动到点P关于点A的对称点M处,接着跳到点M关于点B的对称点N处,第三次再跳到点N关于点C的对称点处,…如此下去.(1)在图中画出点M、N,并写出点M、N的坐标:________;(2)求经过第2022次跳动后,棋子落点与点P的距离.20.中国象棋中的马颇有骑士风度,自古有“马踏八方”之说,如图(1),按中国象棋中“马”的行棋规则,图中的马下一步有A、B、C、D、E、F、G、H八种不同选择,它的走法就象一步从“日”字形长方形的对角线的一个端点到另一个端点,不能多也不能少.要将图(2)中的马走到指定的位置P处,即从(四,6)走到(六,4),现提供一种走法:(四,6)→(六,5)→(四,4)→(五,2)→(六,4).(1)下面是提供的另一走法,请你填上其中所缺的一步:(四,6)→(五,8)→(七,7)→____→(六,4);(2)请你再给出另一种走法(只要与前面的两种走法不完全相同即可,步数限定4步以内),①画图:把“马”行走的路线端点,从出发点到目标点先后依次用线段连接;②仿照题(1)表述,写出你所画图①的走法是:_____________.21.请在图中建立平面直角坐标系,使学校的坐标是()2,5,并写出儿童公园,医院,水果店,宠物店,汽车站的坐标.22.在如图所示的平面直角坐标系中,已知点()1,2A ,()3,1B .(1)C 点的坐标为________;(2)点A 关于y 轴对称的点的坐标为________;(3)和点B 关于原点成中心对称的点的坐标为________;(4)将三角形ABC 先向下平移4个单位,再向左平移3个单位,它的像是三角形111A B C ,画出三角形111A B C 并写出1C 的坐标________.。
人教版七年级下册数学平面直角坐标系课时练习(附答案)

人教版七年级下册数学平面直角坐标系课时练习(附答案)一、单选题1.在平面直角坐标系中,点P(3,-4)到x轴的距离是()A.3B.-3C.4D.-42.在平面直角坐标系中,已知点A(m﹣1,2m﹣2),B(﹣3,2).若直线AB∥y轴,则线段AB的长为()A.2B.4C.6D.83.如果把电影票上“5排3座”记作(5,3),那么(4,9)表示()A.“4排4座”B.“9排4座”C.“4排9座”D.“9排9座”4.若点A(-3,m)在x轴上,那么点B(m+1,m-2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系中,点P(a,b)在第二象限,则点P(−a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限6.在平面直角坐标系中,点A(x,y)在第四象限,且|x|=2,|y|=3,将点A向左平移3个单位长度后得到点A′,则点A′的坐标是()A.(−2,3)B.(5,−3)C.(−1,−3)D.(2,−6)7.已知点A(2x−4,x+3)在第二象限,则x的取值范围是()A.−3<x<2B.x>−3C.x<2D.x>28.在平面直角坐标系中,点A(0,a),点B(0,4﹣a),且A在B的下方,点C(1,2),连接AC,BC,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a的取值范围为()A.﹣1<a≤0B.0<a≤1C.1≤a<2D.﹣1≤a≤1二、填空题9.在平面直角坐标系中,点M在第四象限,且到x轴y轴的距离分别为6,4,则点M的坐标为.10.若点A(m+3,m−3)在x轴上,则m=.11.点(2,3)在哪个象限.12.已知平面直角坐标系中的点P(a﹣3,2)在第二象限,则a的取值范围是13.已知点P的坐标为(2,﹣5),则P点到x轴的距离为个单位长度.14.在平面直角坐标系中,若点P(m+3,3−m)在y轴上,则m的值是.15.已知点P(-2x,3x+1)是平面直角坐标系中第二象限内的点,且点P到两坐标轴的距离之和为11,则点P的坐标16.点A(m−1,m+2)在x轴上,则此点坐标为;点B(3,a−1)在二、四象限的角分线上,则此点坐标为;点C在x轴下方,距离x轴2个单位长度,距离y轴3个单位长度,则此点的坐标为.17.点P(3+a,a+1)到x轴距离为3,则点P到y轴的距离为.18.如图,李老师家在2街与2巷的十字路口附近,如果用(2,2)→(2,3)→(2,4)→(3,4)→(4,4)→(5,4)表示李老师从家到学校上班的一条路线.请你用同样的方式写出从家到学校的另外一线:.19.在平面直角坐标系中,若点A(a,−b)在第三象限,则点B(−ab,b)在第象限.20.如图,在平面直角坐标系中,一个质点P从点P1(−1,0)出发,运动到点P2(−1,−1),运动到点P3(1,−1),运动到点P4(1,1),运动到点P5(−2,1),运动到点P6(−2,−2)……按照上述规律运动下去,则点P2022的坐标为.三、作图题21.对于边长为6的等边三角形ABC,建立适当的直角坐标系,写出各个顶点的坐标.22.如图,是由边长为1个单位长度的小正方形组成的网格图.⑴请在图中建立平面直角坐标系,使A、B两点的坐标分别为A(2,3)、B(﹣2,0);⑴正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形,在图中画出格点⑴ABC使得AB=AC,请写出在⑴中所建坐标系内所有满足条件的点C的坐标.四、解答题23.如图所示,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)→(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?请至少给出3种不同的路径.24.五子棋和象棋、围棋一样,深受广大棋友的喜爱,其规则是:15×15的正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜.如下图是两个五子棋爱好者甲和乙的对弈图;(甲执黑子先行,乙执白子后走),观察棋盘思考:若A点的位置记做(8,4),甲必须在哪个位置上落子,才不会让乙马上获胜.答案1.C 2.D 3.C 4.D 5.A 6.C 7.A 8.B 9.(4,﹣6)10.3 11.第一象限12.a<3 13.5 14.-3 15.(-4,7)16.(−3,0);(3,−3);(−3,−2)或(3,−2)17.1或518.答案不唯一:如(2,2)→(3,2)→(4,2)→(5,2)→(5,3)→(5,4)19.一20.(-506,-506)21.解:以BC边所在直线为x轴,BC边的垂直平分线为y轴建立如图所示的直角坐标系.OA=√AC2−OC2=√62−32=√27=3√3∴各顶点坐标分别为:A(0,3√3),B(−3,0),C(3,0).22.解:⑴如图所示:⑴如图所示,点C即为所求,其坐标为(﹣3,3)或(﹣1,﹣1)或(2,﹣2)或(5,﹣1)或(6,0)或(7,3).23.解:答案不唯一,如:⑴(3,5)→(4,5)→(4,4)→(5,4)→(5,3);⑴(3,5)→(4,5)→(4,4)→(4,3)→(5,3);⑴(3,5)→(3,4)→(4,4)→(5,4)→(5,3);⑴(3,5)→(3,4)→(4,4)→(4,3)→(5,3);⑴(3,5)→(3,4)→(3,3)→(4,3)→(5,3)等.24.解:∵白棋已经有三个在一条直线上,∴甲必须在(5,3)或(1,7)位置上落子,才不会让乙马上获胜.。
七年级数学《平面直角坐标系》练习题及答案

七年级数学《平面直角坐标系》练习题A 卷•基础知识班级 姓名 得分一、选择题(4分×6=24分) 1.点A (4,3-)所在象限为( )A 、 第一象限B 、 第二象限C 、 第三象限D 、 第四象限 2.点B (0,3-)在()上A 、 在x 轴的正半轴上B 、 在x 轴的负半轴上C 、 在y 轴的正半轴上D 、 在y 轴的负半轴上3.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为() A 、(3,2) B 、 (3,2--) C 、 (2,3-) D 、(2,3-) 4. 若点P (x,y )的坐标满足xy =0,则点P 的位置是()A 、 在x 轴上B 、 在y 轴上C 、 是坐标原点D 、在x 轴上或在y 轴上 5.某同学的座位号为(4,2),那么该同学的所座位置是()A 、 第2排第4列B 、 第4排第2列C 、 第2列第4排D 、 不好确定6.线段AB 两端点坐标分别为A (4,1-),B (1,4-),现将它向左平移4个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为()A 、 A 1(0,5-),B 1(3,8--) B 、 A 1(7,3), B 1(0,5)C 、 A 1(4,5-) B 1(-8,1)D 、 A 1(4,3) B 1(1,0) 二、填空题( 1分×50=50分 ) 7.分别写出数轴上点的坐标:A ( )B ( )C ( )D ( )E ( ) 8.在数轴上分别画出坐标如下的点:)1(-A )2(B )5.0(C )0(D )5.2(E )6(-FA-19. 点)4,3(-A 在第 象限,点)3,2(--B 在第 象限 点)4,3(-C 在第 象限,点)3,2(D 在第 象限 点)0,2(-E 在第 象限,点)3,0(F 在第 象限10.在平面直角坐标系上,原点O 的坐标是( ),x 轴上的点的坐标的特点 是 坐标为0;y 轴上的点的坐标的特点是 坐标为0。
第7章 平面直角坐标系 综合训练2022-2023学年人教版七年级数学下册

第7章平面直角坐标系综合训练一、选择题1.如图,在平面直角坐标系中,被手盖住的点的坐标可能为( )A.(4,5)B.(−4,5)C.(−4,−5)D.(4,−5)2.以下能够准确表示宣城市政府地理位置的是()A.离上海市282千米B.在上海市南偏西80°C.在上海市南偏西282千米D.东经30.8°,北纬118°3.在平面直角坐标系中,一个长方形三个顶点的坐标为(−1,−1),(−1,2),(3,−1),则第四个顶点的坐标为( )A.(2,2)B.(3,2)C.(3,3)D.(2,3)4.若点P在y轴负半轴上,则点P的坐标有可能是( )A.(−1,0)B.(0,−2)C.(3,0)D.(0,4)5.在大型爱国主义电影《长津湖》中,我军缴获了敌人防御工程的坐标地图碎片(如图),若一号暗堡坐标为(4,2),四号暗堡坐标为(﹣2,4),指挥部坐标为(0,0),则敌人指挥部可能在()A.A处B.B处C.C处D.D处6.在平面直角坐标系中,已知线段AB的两个端点分别是A(−4,−1),B(1,1),将线段AB平移后得到线段AʹBʹ,若点Aʹ的坐标为(−2,2),则点Bʹ的坐标为( )A.(4,3)B.(3,4)C.(−1,−2)D.(−2,−1)7.在平面直角坐标系中,若m为实数,则点(−2,m2+1)在( )A.第一象限B.第二象限C.第三象限D.第四象限8.平面直角坐标系内,AB∥y轴,AB=5,点A的坐标为(−5,3),则点B的坐标为( )A.(−5,2)B.(0,3)C.(0,3)或(−10,3)D.(−5,8)或(−5,−2)9.如图,在5×5的方格纸中,每个小正方形的边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使三角形ABC的面积为3,则这样的点C共有( )A.2个B.3个C.4个D.5个10.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0)⋯根据这个规律探索可得,第100个点的坐标为( )A.(14,8)B.(13,0)C.(100,99)D.(15,14)二、填空题11.点A的坐标(−4,−3),它到y轴的距离为.12.若点P(x,y)在第四象限,且∣x∣=2,∣y∣=3,则x+y=.13.如图,建立适当的平面直角坐标系,使点B,C的坐标分别为(−2,0)和(2,0),则点D的坐标是.14.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是.15.对有序数对(m,n)定义“f运算”:f(m,n)=(12m+a,12n−b),其中a,b为常数,f运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”;点A(x,y)在F变换下的对应点,即为坐标为f(x,y)的点Aʹ.若点P(4,−4)在F变换下的对应点是它本身,则a=,b=.16.一个电子跳蚤在数轴上做跳跃运动.第一次从原点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2;第三次从A2点起跳,落点为OA2的中点A3;如此跳跃下去⋯⋯最后落点为OA2021的中点A2022.则点A2022表示的数为.三、解答题17.已知点A(a−3,1−a)在第三象限且它的坐标都是整数,求点A的坐标.18.在平面直角坐标系中,有四点A(4,0),B(3,2),C(−2,3),D(−3,0),请你画出图形,并求四边形ABCD的面积.19.如图,在平面直角坐标系中,小方格边长为1,点A,B,P都在格点上.且P(1,−3).(1) 写出点A,B的坐标;(2) 将线段AB平移,使点B与点P重合,请在图中画出平移得到的线段并写出此时点A的对应点Aʹ坐标.20.“若点P,Q的坐标分别是(x1,y1),(x2,y2),则线段PQ中点的坐标为(x1+x22,y1+y22)”.如图,已知点A,B,C的坐标分别为(−5,0),(3,0),(1,4),利用上述结论求线段AC,BC的中点D,E的坐标,并判断DE与AB的位置关系.21.已知平面直角坐标系中有一点M(2m−3,m+1).(1) 点M到y轴的距离为1时,求M的坐标.(2) 点N(5,−1),且MN∥x轴时,求M的坐标.(3) 点M在第二象限的角平分线上,求M的坐标.22.如图,在平面直角坐标系中,已知A(−1,0),B(3,0).(1) 如果在第三象限内有一点M(−2,m)请用含m的式子表示△ABM的面积;(2) 在(1)的条件下,当m=−3时,在y轴上有一点P,使得△BMP的面积与△ABM2的面积相等,请求出点P的坐标.23.已知整点(横纵坐标都是整数)P0在平面直角坐标系内做“跳马运动”(即中国象棋“日”字型跳跃).例如在图1中,从点A做一次“跳马运动”,可以到点B,也可以到达点C.设P0做一次跳马运动到点P1,做第二次跳马运动到点P2,做第三次跳马运动到点P3,…,如此依次进行.(1)若P0(1,0),则P1可能是下列的点.D(﹣1,2);E(﹣2,0);F(0,2).(2)已知点P0(4,2),P2(1,3),则点P1的所有可能坐标为;(3)若P0(0,0),则P12、P13可能与P0重合的是.(4)如图2,点P0(1,0)沿x轴正方向向右上方做跳马运动,若P跳到Q1位置,称为做一次“正横跳马”;若P跳到Q2位置,称为做一次“正竖跳马”.当点P连续做了a次“正横跳马”和b次“正竖跳马”后,到达点P n(14,11),求a+b的值.24.如图,在平面直角坐标系中,A(m,0),B(n,0),C(−1,2),且满足式子∣m+2∣+(m+n−2)2=0.(1) 求出m,n的值.(2) 解答下列问题:①在x轴的正半轴上存在M,使△COM的面积等于△ABC面积的一半,求出点M的坐标.②在坐标轴的其他位置是否存在点M,使△COM的面积等于△ABC面积的一半仍然成立,若存在,请直接写出符合条件的点M的坐标.(3) 如图,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分∠AOP,OF⊥OE,当点P运动时,∠OPD的值是否会改变?若不变,求其值;若∠DOE改变,说明理由.。
七年级数学(下)第七章《平面直角坐标系》练习题含答案

七年级数学(下)第七章《平面直角坐标系》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.点P(3,–2)在平面直角坐标系中所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】由点的坐标特征可得点P(3,–2)在第四象限,故选D.2.已知点P位于x轴上方,到x轴的距离为2,到y轴的距离为5,则点P坐标为A.(2,5)B.(5,2)C.(2,5)或(–2,5)D.(5,2)或(–5,2)【答案】D【解析】由题意得P(5,2)或(–5,2).故选D.3.在平面直角坐标系中,点P在x轴的下方,y轴右侧,且到x轴的距离为5,到y轴距离为1,则点P的坐标为A.(1,–5) B.(5,1)C.(–1,5) D.(5,–1)【答案】A故选A.4.如图,小手盖住的点的坐标可能为A.(5,2) B.(–6,3)C.(–4,–6) D.(3,–4)【答案】C【解析】根据图示,小手盖住的点在第三象限,第三象限的点坐标特点是:横负纵负;分析选项可得只有C符合.故选C.5.在平面直角坐标系中,将点P(–1,–3)向右平移2个单位后得到的点位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】先确定移动后的点,再根据各象限符号特征进行判断.由题意得移动后的点为(1,–3),再由1>0和–3<0可知移动后的该点位于第四象限.故选D.二、填空题:请将答案填在题中横线上.6.点A的坐标(–3,4),它到y轴的距离为__________.【答案】3【解析】点A的坐标(–3,4),它到y轴的距离为|–3|=3,故答案为:3.7.直线a平行于x轴,且过点(–2,3)和(5,y),则y=__________.【答案】3∴y=3.故填3.8.在平面直角坐标系中,若点A坐标为(–1,3),AB∥y轴,线段AB=5,则B点坐标为__________.【答案】(–1,8)或(–1,–2)【解析】∵AB与y轴平行,∴A、B两点的横坐标相同,又AB=5,∴A点纵坐标为:3+5=8,或3−5=−2,∴A点的坐标为:(−1,8)或(−1,−2).故答案为:(−1,8)或(−1,−2).9.在平面直角坐标系中,已知点A的坐标为(a–2,7–2a),若点A到两坐标轴的距离相等,则a的值为__________.【答案】3或5【解析】∵点A(a–2,7–2a)到两坐标轴的距离相等,∴|a–2|=|7–2a|,∴a–2=7–2a或a–2=–(7–2a),解得a=3或a=5.故答案为:3或5.10.将点A(–2,–3)先向右平移3个单位长度再向上平移4个单位长度得到点B,则点B所在象限是第__________象限.【答案】一【解析】将点A(–2,–3)先向右平移3个单位长度再向上平移4个单位长度得到点B(–2+3,–3+4),即(1,1),在第一象限.故答案为:一.三、解答题:解答应写出文字说明、证明过程或演算步骤.11.在如图所示的平面直角坐标系中,用有序数对表示出A,B,C,D各点的位置.【解析】A(1,2),B(2,1),C(–2,1),D(–1,–2).12.在直角坐标系中,标出下列各点的位置,并写出各点的坐标.(1)点A在x轴上,位于原点的左侧,距离坐标原点4个单位长度;(2)点B在y轴上,位于原点的上侧,距离坐标原点4个单位长度;(3)点C在y轴的左侧,在x轴的上侧,距离每个坐标轴都是4个单位长度.【解析】(1)如图所示:A(-4,0);(2)如图所示:B(0,4);(3)如图所示:C(-4,4).。
七年级数学下册第第七章《平面直角坐标系》单元测试题(含答案)

七年级数学下册第第七章《平面直角坐标系》单元测试题(含答案)一、选择题(本大题共6小题,每小题3分,共18分)1.下列坐标中,在第三象限的是( )A .(4,5)--B .(4,5)-C .(4,5)D .(4,5)- 2.已知点(3,2)P a a +在x 轴上,则P 点的坐标是( )A .(3,2)B .(6,0)C .(6,0)-D .(6,2) 3.在平面直角坐标系中,将点(,)A x y 向左平移5个单位长度,再向上平移3个单位长度后与点(3,2)B -重合,则点A 的坐标是( )A .(2,5)B .(8,5)-C .(2,1)-D .(8,1)--4.如图,用方向和距离描述少年宫相对于小明家的位置,正确的是( )A .北偏东55°,2kmB .东北方向C .东偏北35°,2kmD .北偏东35°,2km5.若点P (m ,n )在第三象限,则点Q (﹣m ,﹣n )在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位,得到点A 1(0,1)、A 2(1,1)、A 3(1,0)、A 4(2,0)…,那么点A 2022的坐标为( )A .(1011,0)B .(1011,1)C .(2022,0)D .(2022,1) 二、填空题(本大题共6小题,每小题3分,共18分)7.点A (1,﹣2)到x 轴的距离是 .8.在平面直角坐标系中,若对于平面内任一点(,)a b 有如下变换:(f a ,)(b a =-,)b ,如 (1f ,3)(1=-,3),则(5,3)f -= .9.在平面直角坐标系中,点(a 2+1,﹣1)一定在第 象限.10.线段AB 平移后得到线段CD ,已知(2,3)A 的对应点为(1,4)C -,则(3,2)B 的对应 点D 的坐标为 .11.已知点P (a ,b )在第三象限,且点P 到x 轴的距离为3,到y 轴的距为5,到点P 的坐标为 .12.在平面直角坐标系中,已知点(2,3)P -,//PA y 轴,3PA =,则点A 的坐标为 .三、(本大题共4小题,每小题6分,共24分)13.建立平面直角坐标系,使点C 的坐标为(4,0),写出点A 、B 、D 、E 、F 、G 的坐标.14.点(2,36)P a a -+到两条坐标轴的距离相等,求点P 的坐标.15.点P 是平面直角坐标系中的一点且不在坐标轴上,过点P 向x 轴、y 轴作垂线段,若垂线段的长度的和为4,则点P 叫做“垂距点”,例如:如图中的点P (1,3)是“垂距点”.(1)在点A (﹣2,2),B (,﹣),C (﹣1,5)中,“垂距点”是 ;(2)若D (m ,m )是“垂距点”,求m 的值.16.如图,△ABC 的顶点A (﹣1,4),B (﹣4,﹣1),C (1,1).若△ABC 向右平移4个单位长度,再向下平移3个单位长度得到△A 'B 'C ',且点C的对应点坐标是C '.(1)画出△A 'B 'C ',并直接写出点C '的坐标;(2)若△ABC 内有一点P (a ,b )经过以上平移后的对应点为P ',直接写出点P '的坐标;(3)求△ABC 的面积.四、(本大题共2小题,每小题9分,共18分)17.在平面直角坐标系中,已知点P(2m+4,m﹣1),试分别根据下列条件,求出点P的坐标.求:(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过A(2,﹣5)点,且与x轴平行的直线上.18.三角形ABC与三角形A B C'''在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A;B;C;(2)三角形ABC由三角形A B C'''经过怎样的平移得到?答:.(3)若点(,)P x y是三角形ABC内部一点,则三角形A B C'''内部的对应点P'的坐标为;(4)求三角形ABC的面积.五、(本大题2小题,第19题10分,第20题12分,共22分)19.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O →C→B→A→O的路线移动(移动一周).(1)写出点B的坐标;(2)当点P移动了4秒时,求出点P的坐标;(3)在移动过程中,当△OBP的面积是10时,直接写出点P的坐标20.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(﹣3,2).(1)直接写出点E的坐标;(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t=秒时,点P的横坐标与纵坐标互为相反数;②求点P在运动过程中的坐标(用含t的式子表示,写出过程);③当三角形P AB的面积为3.2时,求此时P点的坐标;④P点在运动过程中,三角形P AB面积的最大值是.参考答案一、选择题1-6.ACCDAB二、填空题7.28.(﹣5,﹣3)9.四10.(0,3)11.(﹣5,﹣3)12.(﹣2,6)或(﹣2,0)三.解答题13.解:如图所示,以B为坐标原点,BC所在直线为x轴,过点B且垂直于x轴的直线为y 轴建立平面直角坐标系,则A(﹣2,3),B(0,0),D(6,1),E(5,3),F(3,2),G(1,5).14.解:∵点P(a﹣2,3a+6)到两条坐标轴的距离相等,∴a﹣2=3a+6或a﹣2+3a+6=0得a=﹣4或a=﹣1∴(﹣6,﹣6)或(﹣3,3).15.解:(1)根据题意,对于点A而言,|﹣2|+|2|=4,所以A是“垂距点”,对于点B而言,||+|﹣|=3,所以B不是“垂距点”,对于点C而言,|﹣1|+|5|=6≠4,所以C不是“垂距点”,故答案为:A.(2)由题意可知:,①当m>0时,则4m=4,解得m=1;②当m<0时,则﹣4m=4,解得m=﹣1;∴m=±1.16.解:(1)如图所示:∴点C(5,﹣2);(2)∵△ABC向右平移4个单位长度,再向下平移3个单位长度得到△A'B'C',∴点P'(a+4,b﹣3);(3)S△ABC=5×5﹣×3×5﹣×2×3﹣×5×2=25﹣7.5﹣3﹣5=9.5.17.解:(1)令2m+4=0,解得m=﹣2,所以P点的坐标为(0,﹣3);(2)令m﹣1﹣(2m+4)=3,解得m=﹣8,所以P点的坐标为(﹣12,﹣9);(3)令m﹣1=﹣5,解得m=﹣4.所以P点的坐标为(﹣4,﹣5).18.解:(1)A(1,3),B(2,0),C(3,1),故答案为:(1,3),(2,0),(3,1).(2)三角形A'B'C'向右平移4个单位,再向上平移2个单位得到三角形ABC.故答案为:三角形A'B'C'向右平移4个单位,再向上平移2个单位得到三角形ABC.(3)P′(x﹣4,y﹣2),故答案为:(x﹣4,y﹣2),(4)S三角形ABC=2×3﹣×1×3﹣×1×1﹣×2×2=2.19.解:(1)∵A点的坐标为(4,0),C点的坐标为(0,6),∴OA=4,OC=6,∴点B(4,6);(2)∵点P移动了4秒时的距离是2×4=8,∴点P的坐标为(2,6);(3)如图,①当点P在OC上时,S△OBP=×OP1×4=10,∴OP1=5,∴点P(0,5);②当点P在BC上,S△OBP=×BP2×6=10,∴BP2=,∴CP2=4﹣=,∴点P(,6);③当点P在AB上,S△OBP=×BP3×4=10,∴BP3=5,∴AP3=6﹣5=1,∴点P(4,1);④当点P在AO上,S△OBP=×OP4×6=10,∴OP4=,∴点P(,0).综上,点P的坐标为(0,5)或(,6)或(4,1)或(,0).20解:(1)∵C(﹣3,2),A(1,0),∴BC=3,OA=1,∵BC=AE=3,∴OE=AE﹣AO=2,∴E(﹣2,0),故答案为:(﹣2,0).(2)①由题意当P(﹣2,2)时,满足条件,此时t=2.故答案为:2.②当点P在线段BC上时,点P的坐标(﹣t,2),当点P在线段CD上时,点P的坐标(﹣3,5﹣t).③当点P在线段BC上时,三角形P AB的面积最大为×BC×OB=×3×2=3,所以三角形P AB的面积为3.2时,P点只能在线段CD上.如图,设此时PD的长为m.∵△P AB的面积=四边形ABCD的面积﹣△PBC的面积﹣△P AD的面积=(3+4)×2﹣×(2﹣m)×3﹣m×4=7﹣3+m﹣2m=4﹣m,∴4﹣m=3.2,m=1.6此时P点的坐标是(﹣3,1.6).④当点P与D重合时,△P AB的面积最大,最大值为×4×2=4,故答案为:4。
七年级数学下册第七章《平面直角坐标系》综合测试卷-人教版(含答案)

七年级数学下册第七章《平面直角坐标系》综合测试卷-人教版(含答案)一、选择题(每小题3分,共18分)1.根据下列表述,能确定位置的是( ).A.红星电影院第2排 B.北京市四环路C.北偏东30° D.东经118°,北纬40°2.下列关于有序数对的说法正确的是( ).A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2)与(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置3.点P(3,﹣1)在第()象限.A.一 B.二 C.三 D.四a a>,那4.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数(1)么所得的图案与原来图案相比().A.形状不变,大小扩大到原来的a倍; B.图案向右平移了a个单位;C .图案向上平移了a 个单位;D .图案向右平移了a 个单位,并且向上平移了a 个单位.5.雷达二维平面定位的主要原理是:测量目标的两个信息——距离和角度,目标的表示方法为(m ,α),其中,m 表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A ,B ,C 处有目标出现,其中,目标A 的位置表示为A (5,30°),用这种方法表示目标B 的位置,正确的是( ).A .(﹣4,150°) B .(4,150°)C .(﹣2,150°) D .(2,150°)6.已知点P 在第二象限,有序数对(m ,n )中的整数m ,n 满足m -n =-6,则符合条件的点P 共有( )A .5个B .6个C .7个D .无数个 二,填空题(每小题3分,共18分)7.七(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作__________. 8.如果点P (x -4,y +1)是坐标原点,则2xy =_________9.若点P (x ,y )在第三象限,且点P 到x 轴的距离为3,到y 轴的距离为2,则点P 的坐标是_________10. 在平面直角坐标系中,若A 点坐标为(﹣3,3), B 点坐标为(2,0),则△ABO 的面积为__________. 11.若点P (a ,b )在第四象限,则点M (b -a ,a -b ) 在第________象限.(第5题)(第10题)12.线段AB与线段CD平行且相等,若端点坐标为A(1,3),B(2,7),C(2,-4),则另一个端点D的坐标为__________.三,解答题(每小题6分,共30分)13.已知平面直角坐标系中有一点)1m2(mM+,3-(1)若点M在y轴上,求M的坐标.(2)若点M在x轴上,求M的坐标.14.已知△ABC中,点A(1,-2),B(3,-2),C(2,0),D(4,1),E(2,4),F(0,1).在直角坐标系中,标出各点并按A—B—C—D—E—F—C—A顺次连接.(第14题)15.如图,如果“士”所在位置的坐标为(-2,-2),“相”所在位置的坐标为(1,-2),(1)画出直角坐标系.(2)“炮”现在所在位置的坐标为____ _. (3)下一步如果走“相”则走完后其坐标是______________.16.如图,已知单位长度为1的方格中有三角形ABC.(1)请画出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系,然后写出点B,点B’的坐标:B(_____________),B’(______________).17.一个等腰直角三角形如图放置于直角坐标系内,∠ABO=90°,∠AOB=45°,若A点坐标为(8-6x,3x+1),求B点的坐标. (第15题)(第16题)(第17题)四,解答题(每小题8分,共24分)18.如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足0+b2a,点C的坐标为(0,3).4-=+(1)求A,B的坐标(2)求三角形ABC的面积(第18题)19.在平面直角坐标系中,点M的坐标为(a+3,a﹣3).(1)当a=﹣1时,点M在坐标系的第______象限;(直接填写答案)(2)无论a为何值,点M一定不在第______象限;(直接填写答案)(3)将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N到两坐标轴距离相等时,求a的值.20.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.(第20题)五,解答题(每小题9分,共18分)21.如图,长方形ABCD 的各边与坐标轴都平行,点A ,C 的坐标分别为 (-1,1),(2,-3).(1)求点B 的坐标是_____.点D 的坐标是_____.(2)一动点P 从点A 出发,沿长方形的边AB ,BC 运动至点C 停止,运动速度为每秒1个单位长度,设运动时间为t s . ①当t =1 时,点P 的坐标是_____. ②当t =4.5 时,点P 的坐标是_____. ③当t =4.5 时,求三角形PDC 的面积.22.先阅读下列一段文字,再回答后面的问题.已知在平面内两点P 1(x 1,y 1)、P 2(x 2,y 2),其两点间的距离公式P 1P 2=212212)()(y y x x -+-,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2-x 1|或|y 2-y 1|. (1)已知P (-3,4)试求线段OP ;(第21题)(2)已知M、N在平行于y轴的直线上,点M的纵坐标为5,点N的纵坐标为-1,试求M、N两点间的距离.(3)已知A(3,2),点B在x轴上,若AB=5,求点B 的坐标.六,解答题(12分)23.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A、B 的对应点C,D,连接AC,BD,CD.(1)点C的坐标为,点D的坐标为(2)在y轴上是否存在一点P,连接P A,PB,使△P AB的面积与四边形ABDC的面积相等,若存在这样一点,求出点P的坐标;若不存在,试说明理由.(3)点Q从点C出发,沿“CD→DB”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t= 秒时,∠QOB=∠CAB;②当t= 秒时,∠QBA=∠CAB;(第23题)参考答案一、选择题(每小题3分,共18分)1. D. 2.C 3.D 4.D. 5.B. 6.A.二、填空题(每小题3分,共18分)7.(5,2) 8.-8 9.(-2,-3)10.3 11.二 12.(3,0)或(1,-8)三、解答题(每小题6分,共30分)13.解:(1)∵点M在y轴上∴2m-3=0解得:m=1.5 则m+1=2.5∴M的坐标为(0,2.5)(2)∵点M在x轴上∴m+1=0解得:m=-1 则2m-3=-5∴M的坐标为(-5,0)14.解:如图15.解:(1)如图所示(2) (-4,1) (3)(-1,0)或(3,0)16.解:(1)如图所示(2)B (1,2),B ’(3,5).17.解:由题意可知AB =BO ∵A 点坐标为(8-6x ,3x +1) ∴-(8-6x )=3x +1解得:x =3, 则8-6x= -10 ∴ B 点的坐标为(-10,0) 四、解答题(每小题8分,共24分) 18.解:(1)∵0=4-+2+b a ∴a =-2,b =4yxO∴A点的坐标为(-2,0), B点的坐标为(4,0)(2)∵A(-2,0), B(4,0)∴AB=6∵C(0,3).∴OC=3∴三角形ABC的面积S=6×3÷2=919.解:(1)四(2)二(3)∵M(a+3,a﹣3)向左平移2个单位向上平移1个单位得到点N∴N(a+1,a﹣2)∵点N到两坐标轴距离相等∴∣a+1│=∣a﹣2│∵a+1≠a﹣2∴a+1=-(a﹣2)解得a=0.520.解:S△ABO=S△ADO+S梯形ABCD-S△OBC=1×3÷2+(1+3)×2÷2-3×1÷2=4五、解答题(每小题9分,共18分)21.解(1)B的坐标是(2,1).点D的坐标是(-1,-3)P(2)①点P的坐标坐标是(0,1)②∵A(-1,1),B(2,1),C(2,-3).∴DC=AB=3,BC=4∵当t =4.5 时AB+BP=4.5,∴CP=3+4-4.5=2.5∴P 的坐标坐标是(2,-0.5)三角形PDC 的面积=3×2.5÷2=415 22.解(1)OP=525040322==+)()(---(2)MN=|y 2-y 1|=|5-(-1)|=6(3)由点B 在x 轴上可设B 的坐标为(x,0) 则AB =4)3)02()3222+=+x x ---(( ∵AB =5∴54)32=+x -(∴(3-x )2=1 解得:x =2或x =4∴B 的坐标为(2,0)或(4,0)六、解答题(12分)23.解(1)点C 的坐标为(0,2),点D 的坐标为(4,2)(2)由题意可知OC=2,AB=4,∴四边形ABDC 的面积=2×4=8∵△P AB 的面积=四边形ABDC 的面积=8且AB=4, ∴OP=4∴P的坐标为(0,4)或(0,-4)(3)①当t=1秒时,∠QOB=∠CAB;②当t=2秒时,∠QBA=∠CABQ。
人教版初中数学七年级数学下册第三单元《平面直角坐标系》测试(含答案解析)

一、选择题 1.如图是北京市地图简图的一部分,图中“故宫”、“颐和园”所在的区域分别是( )D E F 6颐和园 奥运村 7故宫 日坛 8天坛 C .E7,D6 D .E6,D7 2.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4 B .6- C .1-或4 D .6-或23 3.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1)4.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b -B .(),a b -C .(),a b --D .(),a b 5.在平面直角坐标系中,点A 的坐标为(-4,3),AB ∥y 轴,AB=5,则点B 的坐标为( )A .(1,3)B .(-4,8)C .(-4,8)或(-4,-2)D .(1,3)或(-9,3) 6.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( )A .(-2,3)B .(2,-3)C .(3,2)D .不能确定 7.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点B 的坐标为()1,4,则点A 的坐标为( )A .()6,3-B .()3,6-C .()4,3-D .()3,4- 8.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( ) A .(-3,1) B .(0,-2) C .(3,1) D .(0,4)9.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-,D .(0,4)- 10.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2021次运动后,动点P 的坐标是( )A .(2021,0)B .(2020,1)C .(2021,1)D .(2021,2) 11.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2) 12.已知点M (12,﹣5)、N (﹣7,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交 二、填空题13.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B .C .D 处的其它甲虫,规定:向上向右走为正,向下向左走为负、如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C →(______,______),B C →(______,______),C →______(1+,______);(2)若图中另有两个格点M .N ,且M A →(3,4)a b --,M N →(5,2)a b --,则N A →应记为______.14.若线段AB 的端点为()1,3-,()1,3,线段CD 与线段AB 关于x 轴轴对称,则线段CD 上任意一点的坐标可表示为___________.15.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.16.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.17.如图,在平面直角坐标系中,已如点A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A 处,并按A B C D A →→→→的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是__________.18.已知点(1,0)A 、(0,2)B ,点P 在x 轴上,且PAB △的面积为5,则点P 的坐标为__________.19.如图,若棋盘中“帅”的坐标是(0,1),“卒”的坐标是(2,2),则“马”的坐标是________.20.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.则点2019A 的坐标是_________.三、解答题21.如图,在平面直角坐标系中,四边形OABC 各顶点的坐标分别是()0,0O ,()0,12A ,()10,8B -,()14,0C -,求四边形OABC 的面积.22.在平面直角坐标系中,ABC 的位置如图所示,把ABC 先向左平移2个单位,再向下平移4个单位可以得到A B C '''.(1)画出三角形A B C ''',并写出,,A B C '''三点的坐标;(2)求A B C '''的面积.23.如图,已知三角形,ABC 把三角形ABC 先向上平移3个单位长度,再向右平移2个单位长度,得到三角形'''A B C .(1)在图中画出三角形'''A B C ,并写出',','A B C 的坐标;(2)连接,AO BO ,求三角形ABO 的面积;(3)在y 轴上是否存在一点P ,使得三角形BCP 与三角形ABC 面积相等?若存在请直接写出点P 的坐标;若不存在,请说明理由.24.如图,三角形ABC 三个顶点坐标分别是()4,3A ,()3,1B ,()1,2C ,三角形ABC 内任意一点(),M m n .(1)将三角形ABC 平移得到三角形111A B C ,点C 的对应点为()14,4C ,请画出三角形111A B C 并写出1A 的坐标;(2)若三角形PQR 是三角形ABC 经过某种变换后得到的图形.点A 的对应点为P ,点B 的对应点为Q ,点C 的对应点为R .观察变换前后各对应点之间的关系,若点M 经过这种变换后的对应为N ,则点N 的坐标为(______,______)(用含m ,n 的式子表示)25.已知点P(m +2,3),Q(−5,n−1),根据以下条件确定m 、n 的值(1)P 、Q 两点在第一、三象限的角平分线上;(2)PQ ∥x 轴,且P 点与Q 点的距离为3.26.如图,∠ABC 在建立了平面直角坐标系的方格纸中,方格纸中的每个小方格都是边长为1个单位长度的正方形.(1)请写出三角形ABC 各顶点的坐标;(2)直接写出三角形ABC 的面积;(3)把三角形ABC 平移得到A B C '''∆,点B 经过平移后对应点为()6,5B ',请在图中画出A B C '''∆.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】直接利用已知网格得出“故宫”、“颐和园”所在位置.【详解】如图所示:图中“故宫”、“颐和园”所在的区域分别是:E7,D6.故选:C .【点睛】此题主要考查了坐标确定位置,正确理解位置的意义是解题关键.2.C解析:C【分析】由点M 到两坐标轴的距离相等可得出32=6a a -+,求出a 的值即可.【详解】解:∵点M 到两坐标轴的距离相等, ∴32=6a a -+∴32=6a a -+,()32=-6a a -+∴a=4或a=-1.故选C .【点睛】 本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出32=6a a -+,注意不要漏解.3.D解析:D【分析】由123B B B ,,的规律写出n B 的坐标.【详解】∵点B 1的坐标为(1,1),点B 2的坐标为(3,2),∴点B 3的坐标为(7,4),∴Bn 的横坐标是:2n ﹣1,纵坐标是:2n ﹣1.则B n 的坐标是(2n ﹣1,2n ﹣1). 故选:D .【点睛】本题考查点的坐标规律探索,观察图形前面某些点的坐标,找出规律后再写出图形一般点的坐标.4.C解析:C【分析】直接利用各象限内点的坐标符号得出答案.【详解】解:∵点A (a ,-b )在第三象限,∴a <0,-b <0,∴-a >0,b >0,∴(),a b -在第三象限,(),a b -在第一象限,(),a b --在第四象限,(),a b 在第二象限. 故选:C .【点睛】此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.5.C解析:C【分析】线段AB ∥x 轴,A 、B 两点横坐标相等,B 点可能在A 点上边或者下边,根据AB 长度,确定B 点坐标即可.【详解】∵AB ∥y 轴,∴A 、B 两点横坐标都为-5,点A 的坐标为(-4,3),又∵AB=5,∴当B 点在A 点上边时,B (-4,8),当B 点在A 点下边时,B (-4,-2);故选:C .【点睛】本题考查了坐标与图形的性质,平行于y 轴的直线上的点横坐标相等,要求能根据两点相对的位置及两点距离确定点的坐标.6.B解析:B【分析】根据第四象限内的点的坐标第四象限(+,-),可得答案.【详解】解:M 到x 轴的距离为3,到y 轴距离为2,且在第四象限内,则点M 的坐标为(2,-3),故选:B .【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 7.A解析:A【分析】过点A 作x 轴的垂线交于点E ,过点B 作x 轴的垂线交于点F ,运用AAS 证明ACE CBF ∆≅∆得到AE CF =,CE BF =即可求得结论.【详解】解:过点A 作x 轴的垂线交于点E ,过点B 作x 轴的垂线交于点F ,90AEC CFB ∴∠=∠=︒90A ACE ∴∠+∠=︒,90ACB ∠=︒90ACE BCF ∴∠=∠=︒A BCF ∴∠=∠,在ACE ∆和CBF ∆中,90A BCF AEC CFB AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()ACE CBF AAS ∴∆≅∆AE CF ∴=,CE BF =,(2,0)C -,(1,4)B4BF ∴=,1(2)3CF =--=,3AE CF ∴==,4CE BF ==,426OE CE OC ∴=+=+=,()6,3A ∴-故选A .【点睛】此题考查了坐标与图形,证明ACE CBF ∆≅∆得到AE CF =,CE BF =是解决问题的关键.8.B解析:B【分析】根据题目已知条件先表示出6个坐标,观察其中的规律即可得出结果.【详解】解:由题可得:A 1(3,1),A 2(0,4),A 3(-3,1),A 4(0,-2),A 5(3,1),A 6(0,4)…, 所以是四个坐标一次循环,2020÷4=505,所以是一个循环的最后一个坐标,故A 2020(0,-2),故选:B【点睛】本题主要考查的是找规律,根据题目给的已知条件找出规律是解题的关键.9.A解析:A【分析】直接利用关于x 轴上点的坐标特点得出m 的值,进而得出答案.【详解】 解:点224P m m +(,﹣)在x 轴上,240m ∴﹣=,解得:2m =,24m ∴+=,则点P 的坐标是:()4,0.故选A .【点睛】此题主要考查了点的坐标,正确得出m 的值是解题关键.10.C解析:C【分析】分析点P的运动规律找到循环规律即可.【详解】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,因为2021=505×4+1所以,前505次循环运动点P共向右运动505×4=2020个单位,剩余一次运动向右走1个单位,且纵坐标为1.故点P坐标为(2021,1)故选:C.【点睛】本题是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合解决问题.11.D解析:D【分析】先判断出点P在第一或第二象限,再根据点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值求解.【详解】解:∵点P在x轴上方,∴点P在第一或第二象限,∵点P到x轴的距离为2,到y轴的距离为3,∴点P的横坐标为3或-3,纵坐标为2,∴点P的坐标为(-3,2)或(3,2).故选D.【点睛】本题考查点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.12.D解析:D【分析】由点M、N的坐标得出点M、N的纵坐标相等,据此知直线MN∥x轴,继而得出直线MN⊥y轴,从而得出答案.【详解】解:∵点M(12,-5)、N(-7,-5),∴点M、N的纵坐标相等,∴直线MN∥x轴,则直线MN⊥y轴,故选:D.【点睛】本题主要考查坐标与图形性质,熟记纵坐标相同的点在平行于y 轴的直线上是解题的关键.二、填空题13.【分析】(1)根据向上向右走均为正向下向左走均为负分别写出各点的坐标即可;(2)根据已知条件可知从而得到点向右走个格点向上走个格点到点反过来即可得到答案【详解】解:(1)∵规定:向上向右走为正向下向 解析:3+ 4+ 2+ 0 D 2- ()2,2--【分析】(1)根据向上向右走均为正,向下向左走均为负分别写出各点的坐标即可;(2)根据已知条件,可知5(3)2a a ---=,2(4)2b b ---=,从而得到点A 向右走2个格点,向上走2个格点到点N ,反过来即可得到答案.【详解】解:(1)∵规定:向上向右走为正,向下向左走为负∴A C →记为()3,4++,B C →记为()2,0+,C D →记为()1,2+-;(2)∵()3,4→--M A a b ,()5,2→--M N a b∴5(3)2a a ---=,2(4)2b b ---=∴点A 向右走2个格点,向上走2个格点到点N∴N A →应记为()2,2--.故答案是:(1)3+,4+,2+,0,D ,2-;(2)()2,2--【点睛】本题考查了利用坐标确定点的位置的方法,解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.14.(x-3)()【分析】关于x 轴对称点的坐标特点是横坐标相同纵坐标互为相反数即可求解【详解】解:∵线段AB 的端点为线段CD 与线段AB 关于x 轴轴对称∴线段CD 的端点为∴线段CD 上任意一点的坐标可表示为(解析:(x ,-3)(1x 1-≤≤).【分析】关于x 轴对称点的坐标特点是横坐标相同,纵坐标互为相反数,即可求解.【详解】解:∵线段AB 的端点为()1,3-,()1,3,线段CD 与线段AB 关于x 轴轴对称, ∴线段CD 的端点为()1,3--,()1,3-,∴线段CD 上任意一点的坐标可表示为(x ,-3)(1x 1-≤≤).故答案为:(x ,-3)(1x 1-≤≤).【点睛】此题主要考查利用关于x轴对称点的坐标特点来解题,正确理解轴对称的性质是解题关键.15.(ab)【分析】利用已知得出图形的变换规律进而得出经过第2020次变换后所得A点坐标与第4次变换后的坐标相同求出即可【详解】解:∵在平面直角坐标系中对△ABC进行循环往复的轴对称变换∴对应图形4次循解析:(a,b).【分析】利用已知得出图形的变换规律,进而得出经过第2020次变换后所得A点坐标与第4次变换后的坐标相同求出即可.【详解】解:∵在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,∴对应图形4次循环一周,∵2020÷4=505,∴经过第2020次变换后所得A点坐标与第4次变换后的坐标相同,故其坐标为:(a,b).故答案为:(a,b).【点睛】此题主要考查了关于坐标轴以及原点对称点的性质,得出A点变化规律是解题关键.16.-1【分析】根据点A和点B的坐标以及对应点的坐标确定出平移的方法从而求出ab的值再代入代数式进行计算即可【详解】解:∵A(10)A1(2a)B(02)B1(b3)∴平移方法为向右平移1个单位向上平移解析:-1【分析】根据点A和点B的坐标以及对应点的坐标确定出平移的方法,从而求出a、b的值,再代入代数式进行计算即可.【详解】解:∵A(1,0),A1(2,a),B(0,2),B1(b,3),∴平移方法为向右平移1个单位,向上平移1个单位,∴a=0+1=1,b=0+1=1,∴a2 2b=1²-2×1=-1;故答案为:-1.【点睛】本题考查了坐标与图形变化,注意到平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.(10)【分析】根据点的坐标求出四边形ABCD的周长然后求出另一端是绕第几圈后的第几个单位长度从而确定答案【详解】∵A(11)B(-11)C(-1-2)D(1-2)∴AB=1-(-1)=2BC=1-解析:(1,0)【分析】根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】∵A(1,1),B(-1,1),C(-1,-2),D(1,-2),∴AB=1-(-1)=2,BC=1-(-2)=3,CD=1-(-1)=2,DA=1-(-2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2019÷10=201…9,∴细线另一端在绕四边形第202圈的第9个单位长度的位置,即在DA上从点D 向上2个单位长度所在的点的坐标即为所求,也就是点(1,0),故答案为:(1,0).【点睛】本题考查了规律型——点的坐标,根据点的坐标求出四边形ABCD一周的长度,从而确定2019个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.18.(-40)或(60)【分析】设P(m0)利用三角形的面积公式构建绝对值方程求出m即可;【详解】如图设P(m0)由题意:•|1-m|•2=5∴m=-4或6∴P (-40)或(60)故答案为:(-40)或解析:(-4,0)或(6,0)【分析】设P(m,0),利用三角形的面积公式构建绝对值方程求出m即可;【详解】如图,设P(m,0),由题意:12•|1-m|•2=5,∴m=-4或6,∴P(-4,0)或(6,0),故答案为:(-4,0)或(6,0)【点睛】此题考查三角形的面积、坐标与图形性质,解题的关键是学会利用参数构建方程解决问题.19.(-22)【分析】根据帅和卒的坐标得出原点的位置即可求得马的坐标【详解】如图所示:马的坐标是:(-22)故答案为(-22)【点睛】本题考查了坐标确定位置正确得出原点的位置是解题关键解析:(-2,2)【分析】根据“帅”和“卒”的坐标得出原点的位置,即可求得“马”的坐标.【详解】如图所示:“马”的坐标是:(-2,2).故答案为(-2,2).【点睛】本题考查了坐标确定位置,正确得出原点的位置是解题关键.20.【分析】根据图象可得移动4次图形完成一个循环从而可得出点的坐标【详解】解:由图象可得移动4次图形完成一个循环即所以:故答案为:【点睛】本题考查的是点的坐标规律的探究掌握规律探究的方法是解题的关键 解析:()20191009,0A .【分析】根据图象可得移动4次图形完成一个循环,从而可得出点2019A 的坐标.【详解】解:由图象可得移动4次图形完成一个循环,201945043,20204505,∴÷=÷=()()()48122,0,4,0,6,0,,A A A()20205052,0,A ∴⨯即()20201010,0,A所以:()20191009,0.A故答案为:()20191009,0.A【点睛】本题考查的是点的坐标规律的探究,掌握规律探究的方法是解题的关键.三、解答题21.116OABC S =四边形【分析】过B 作BD ⊥x 轴,垂足为D ,根据A ,B ,C ,O 四点坐标求解CD ,BD ,OD ,OA 的长,再利用BCD OABC OABD S SS =+四边形四边形可求解.【详解】 解:过B 作BD ⊥x 轴,垂足为D ,∵B (-10,8),∴D (-10,0),∴OD=10,BD=8,∵A (0,12),C (-14,0),∴OC=14,OA=12,∴CD=4,∴S 四边形OABC =S △BCD +S 四边形OABD =12BD•CD+12(BD+OA)•OD =12×8×4+12(8+12)×10 =16+100=116.【点睛】本题主要考查三角形的面积,点的坐标,作辅助线将四边形转化为直角三角形和梯形是解题的关键.22.(1)画图见解析,()()()4,2,0,4,1,1A B C '''----;(2)7【分析】(1)首先确定A 、B 、C 三点平移后的位置,然后再连接即可;(2)利用矩形面积减去周围多余三角形的面积即可.【详解】(1)如图所示,A B C '''∆即为所求,由图可知:()()()4,2,0,4,1,1A B C '''----(2)11135152413222A B C S '''∆=⨯-⨯⨯-⨯⨯-⨯⨯ 5315422=--- 7=【点睛】本题主要考查了作图平移变换,关键是正确确定组成图形的关键点平移后的位置.23.(1)画图见解析,()()0,41,,,1,1(3A B C '''-);(2)72;(3)存在,()0,1P 或()0,5P -【分析】 (1)先将A 、B 、C 三点按题意平移得到对应点,然后再顺次连接,最后直接写出坐标即可;(2)先将△AOB 拼成正方形BDEF ,然后再用正方形的面积减去三个正方形的面积即可; (3)根据同底等高的三角形面积相等解答即可.【详解】解:()1如图所示,三角形'A B C ''即为所求()()0,41,,,1,1(3A B C '''-);()2BDEF ABO ABD AEO BFO S S S S S =---长方形三角形三角形三角形三角形11133132123222=⨯-⨯⨯-⨯⨯-⨯⨯ 72=;()3设P (0,p )∵△BCP 与△ABC 同底等高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章《平面直角坐标系》精讲精析提要:本章的考查重点是要求能正确画出直角坐标系,并能在直角坐标系中,根据坐标找出点,由点求出坐标.直角坐标系的基本知识是学习全章的基础.通过对这部分知识的反复而深入的练习、应用,渗透坐标的思想,进而形成数形结合的的数学思想.本节的难点是平面直角坐标系中的点与有序实数对间的一一对应.习题:一、填空题1.在奥运游泳馆“水魔方”一侧的座位席上,5排2号记为(5,2),则3排5号记为 .2.已知点M (m ,m -1)在第二象限,则m 的值是 . 3.已知:点P 的坐标是(m ,1-),且点P 关于x 轴对称的点的坐标是(3-,n 2),则_________,==n m . 4.点 A 在第二象限 ,它到 x 轴 、y 轴的距离分别是3 、2,则坐标是 .5.点P 在x 轴上对应的实数是3-,则点P 的坐标是 ,若点Q 在y 轴上对应的实数是31,则点Q 的坐标是 ,若点R (m ,n )在第二象限,则 0_____m ,0_____n (填“>”或“<”号).6.已知点P 在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P ;点K 在第三象限,且横坐标与纵坐标的积为8,写出两个符合条件的点 .7.若点 ()m m P +-21,在第一象限 ,则m 的取值范围是 . 8.若 ),()与,(13-m n N m M 关于原点对称,则 __________,==n m .9.已知0=mn ,则点(m ,n )在 .10.已知正方形ABCD 的三个顶点A (-4,0)B (0,0)C (0,4),则第四个顶点D的坐标为 . 11.如果点M ()ab b a ,+在第二象限,那么点N ()b a ,在第___象限.12.若点M ()m m -+3,12关于y 轴的对称点M ′在第二象限,则m 的取值范围是 .13.若点P 到x 轴的距离为2,到y 轴的距离为3,则点P 的坐标为_____,它到原点的距离为_____.14.点K ()n m ,在坐标平面内,若0>mn ,则点K 位于___象限;若0<mn ,则点K 不在___象限.15.已知点P ()3,3b a +与点Q ()b a 2,5+-关于x 轴对称,则___________==b a .16.已知点M ()a a -+4,3在y 轴上,则点M 的坐标为_____. 17.已知点M ()y x ,与点N ()3,2--关于x 轴对称,则______=+y x .18.点H 坐标为(4,-3),把点H 向左平移5个单位到点H ’,则点H ’的坐标为 . 二、选择题19.在平面直角坐标系中,点()1,12+-m 一定在( )A .第一象限B .第二象限C .第三象限D .第四象限20.若点P ()n m ,在第二象限,则点Q ()n m --,在( )A .第一象限B .第二象限C .第三象限D .第四象限21.已知两圆的圆心都在x 轴上,A 、B 为两圆的交点,若点A 的坐标为()1,1-,则点B 坐标为( )A .()1,1B .()1,1--C .()1,1-D .无法求出22.已知点A ()2,2-,如果点A 关于x 轴的对称点是B ,点B 关于原点的对称点是C ,那么C 点的坐标是( )A .()2,2B .()2,2-C .()1,1--D .()2,2--23.在平面直角坐标系中,以点P ()2,1为圆心,1为半径的圆必与x 轴有 个公共点( )A .0B .1C .2D .3 24.一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为( ) A .(2,2) B .(3,2) C .(3,3) D .(2,3) 25.已知点A ()b a 2,3在x 轴上方,y 轴的左边,则点A 到x 轴.y 轴的距离分别为( ) A .b a 2,3- B .b a 2,3- C .a b 3,2- D .a b 3,2- 26.将点P ()3,4-先向左平移2个单位,再向下平移2个单位得点P ′,则点P ′的坐标为( )A .()5,2-B .()1,6-C .()5,6-D .()1,2- 27.若点P (a ,b )到x 轴的距离是2,到y 轴的距离是3,则这样的点P 有 ( ) A.1个 B.2个 C.3个 D.4个28.若点P (m -1, m )在第二象限,则下列关系正确的是 ( )A .10<<mB .0<mC .0>mD .1>m29.点(x ,1-x )不可能在 ( )A .第一象限B .第二象限C .第三象限D .第四象限30.如果点P (m -,3)与点P 1(5-,n )关于y 轴对称,则m ,n 的值分别为 ( ) A .3,5=-=n m B .3,5==n m C .3,5-=-=n m D .5,3=-=n m三、解答题31.如图6-1,这是某市部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别写出各地的坐标.32.在平面直角坐标系内,已知点(1-2a ,a -2)在第三象限的角平分线上,求a 的值及点的坐标?33.如图6-2,线段AB 的端点坐标为A (2,-1),B (3,1).试画出AB 向左平移4个单位长度的图形,写出A 、B 对应点C 、D 的坐标,并判断A 、B 、C 、D 四点组成的四边形的形状.(不必说明理由)图6-1图6-234.在图6-3中适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点.(1)看图案像什么?(2)作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?图6-335.如图6-4,四边形ABCD各个顶点的坐标分别为(–2,8),(–11,6),(–14,0),(0,0).(1)确定这个四边形的面积,你是怎么做的/(2)如果把原来ABCD各个顶点纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?图6-436.如图6-5,(1)请写出在直角坐标系中的房子的A、B、C、D、E、F、G的坐标.(2)源源想把房子向下平移3个单位长度,你能帮他办到吗?请作出相应图案,并写出平移后的7个点的坐标.37.如图6-6,对于边长为6的正△ABC ,建立适当的直角坐标系,并写出各个顶点的坐标.38.如图6-7,已知A 、B 两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x 轴上行驶,从原点O 出发.(1)汽车行驶到什么位置时离A 村最近?写出此点的坐标. (2)汽车行驶到什么位置时离B 村最近?写出此点的坐标. (3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?39.如图6-8是某体育场看台台阶的一部分,如果A 点的坐标为(0,0),B 点的坐标为(1,1)图6-6(1)请建立适当的直角坐标系,并写出C ,D ,E ,F 的坐标;(2)说明B ,C ,D ,E ,F 的坐标与点A 的坐标相比较有什么变化? (3)如果台阶有10级,你能求的该台阶的长度和高度吗?40.如图6-8所示,在直角梯形O ABC 中,CB ∥O A ,CB =8,O C =8,∠O AB =45°(1)求点A 、B 、C 的坐标; (2)求△ABC 的面积图6-8O CBAy图6-8参考解析一、填空题 1.(3,5) 2.m<0;(点拨:点M (m ,m -1)在第二象限,则要满足横坐标为负,纵坐标正) 3.-3,21;(点拨:关于坐标对称的点的坐标的特点是,关于横轴对称,则横坐标不变,纵坐标互为相反数,关于纵轴对称,则纵坐标不变,横坐标互为相反数)4.()3,2-;(点拨:点到横轴的距离等于纵坐的绝对值,到纵轴的距离等于横坐标的绝对值)5.(3-,0);(0,13);<;> 6.本题答案不唯一 7.-2<m<1; 8.21,-3;(点拨:关于原点对称的两个点的坐标关系是横、纵坐标分别互为相反数) 9.坐标轴上; 10.(-4,4)(点拨:在平面直角坐标系中描出已知的三个点,即可看出第四个点的坐标)11.三;(点拨:因为点M ()ab b a ,+在第二象限,所以a+b 是负数,而ab 是正数,由此可分析出,a 、b 两数同为负数,那么点N ()b a ,在三象限)12.321<<-m (点拨:点M ()m m -+3,12关于y 轴的对称点M ′在第二象限,所以点M 在第一象限)13.()()()()2,3,2,3,2,3,2,3----,13;14.一、三,一、三;(点拨:0>mn ,则点K 的横纵坐标同号,则点K 位于一、三象限;若0<mn ,说明点K 的横纵坐标异号,则点K 位于二、四象限)15.2,1-==b a ;16.()7,0; (点拨:在横轴上的点的纵坐标为0,在纵轴上的点的横坐标为0) 17.1; 18.(9,-3)(点拨:将一个点左右平移时,纵坐标不变,横坐标相应的减去或加上平移的距离,将一个点上下平移时,横坐标不变,纵坐标相应的加上或减去平移的距离)二、选择题19.B (点拨:由于一个数的平方具有非负性,所以()1,12+-m 的纵坐标一定大于0,所以点在第二象限)20.D (点拨:点P ()n m ,在第二象限可知m 、n 的符号分别为负、正,所以Q ()n m --,的横纵坐标的符号分别是正、负,因此点Q 在第四象限)21.A (点拨:根据题意,画出图形,不难发现,两个圆的交点应该关于x 轴对称,所以另一点的坐标为()1,1)22.D (点拨:点A ()2,2-关于x 轴的对称点是B (2,2),所以点B (2,2)关于原点的对称点是C (-2,-2))23.B (点拨:根据题意画出图形后,容易发现圆心到x 轴的距离刚好等于圆的半径1) 24.B (点拨:根据题目的描述,画出图形后,容易发现第四个点的坐标)25.C (点拨:由于点A ()b a 2,3在x 轴上方,y 轴的左边,则说明点A 在第2象限,则点A 到x 轴.y 轴的距离分别为a b 3,2-)26.B (点拨:坐标平面内的点平移进,向右向上为加,向左向下为减)27.D (点拨:到x 轴的距离是2,到y 轴的距离是3的点在第一、二、三、四象限各有一个)28.D (点拨:点P (m -1, m )在第二象限,则应满足横、纵坐标分别为负数和正数,从而得到一个关于m 的不等式组,可求得结果)29.B (点拨:当x 为负数时,x-1不可能为正数,所以点(x ,1-x )的横纵坐标不可能出现负、正的情况,从而可知这个点不可能在第二象限)30.A (点拨:点P (m -,3)与点P 1(5-,n )关于y 轴对称,则应满足横坐标互为相反数,纵坐标相等这一关系,所以可解得3,5=-=n m )三、解答题 31.解析: 火车站(0,0),医院(– 2,– 2),文化宫(– 3,1),体育场(– 4,3),宾馆(2,2),市场(4,3),超市(2,– 3)32. a=1、(-1,-1) 33.C (-2,-1)、D (-1,1)、平行四边形 34. 图略(1)像“鱼” ;(2) 三角形AOB 的面积为10.35.解析:本题意在综合考查点的坐标、图形平移后的坐标变化等内容,并通过探究活动考查分析问题、解决问题能力及未知转化为已知的思想.(1)80(可分别割成直角三角形和长方形或补直角三角形成长方形). (2)80 36.解析: (1)(2,3),(6,5),(10,3),(3,3),(9,3),(3,0),(9,0); (2)平移后坐标依次为(2,0),(6,2),(10,0),(3,0),(9,0),(3,– 3),(9,– 3).37.略38.解析:(1)在x 轴上离A 村最近的地方是过A 作x 轴垂线的垂足,即点(2,0); (2)离B 村最近的是点(7,0);(3)找出A 关于x 轴的对称的点(2,-2),并将其与B 加连接起来,容易看出所连直线与x 轴交于点(4,0),所以此处离两村和最短.39.解析:(1)以A 点为原点,水平方向为x 轴,建立平面直角坐标系. 所以C ,D ,E ,F 各点的坐标分别为C (2,2),D (3,3),E (4,4),F (5,5). (2)B ,C ,D ,E ,F 的坐标与点A 的坐标相比较,横坐标与纵坐标分别加1,2,3,4,5.(3)每级台阶高为1,宽也为1,所以10级台阶的高度是10,长度为11.40.解析:(1)如答图6-1,OC =8,所以点C 的坐标为()8,0,作BD ⊥OA 于D ,则BD =OC =8又因为BC =8∴点B 的坐标为()8,8又因为∠OAB =45°,∴△ABD 是等腰直角三角形 ∴AD =BD =8 又∵OD =CB =8∴AO =OD +DA =16 ∴点A 的坐标为()0,16(2)连AC 、OB ,则梯形OABC 的面积=ABC COA AOB COB S S S S ∆∆∆∆+=+,B 点坐标为()B B y x ,所以3281621816218821=⨯⨯-⨯⨯+⨯⨯=∆ABC S (平方单位)。