UVVisDRS光谱及其在催化剂表征中的应用
物化实验课件-固体样品的紫外-可见漫反射光谱(uv-vis drs)测定

固体样品的紫外-可见漫反射光谱(UV-Vis DRS)测定一、实验目的1.掌握紫外-可见漫反射原理;2.了解紫外-可见分光光度计的类型和结构;3.数据处理及分析。
二、实验原理1.紫外-可见漫反射光谱与紫外一可见吸收光谱相比,所测样品的局限性要小很多。
吸收光谱符合朗伯-比尔定律,溶液必须是稀溶液才能测量。
而漫反射光谱,所测样品可以是浑浊溶液、悬浊溶液、固体和固体粉末等,试样产生的漫反射符合Kublka-Munk方程式:()2-=R R K S12//∞∞式中:K——吸收系数S——散射系数R∞——表示无限厚样品的反射系数R的极限值,其数值为一个常数。
实际上,一般不测定样品的绝对反射率,而是以白色标准物质为参比(本实验采用BaSO4,其反射系数在紫外-可见区高达98%左右)比较测量得到的相对反射率R∞(样品)/R∞(参比),将此比值对波长作图,构成一定波长范围内该物质的反射光谱。
积分球是漫反射测量中的常用附件之一,其内表面的漫反射物质反射系数高达98%,使得光在积分球内部的损失接近零。
漫反射光是指从光源发出的的光进入样品内部,经过多次反射、折射、散射及吸收后返回样品表面的光。
这些光在积分球内经过多次漫反射后到达检测器。
2.固体漫反射吸收光谱漫反射光谱是一种不同于一般吸收光谱的在紫外、可见和近红外区的光谱,是一种反射光谱,与物质的电子结构有关。
D:漫反射S:镜面反射固体漫反射示意图当光照射固体样品时,固体样品的外层电子产生跃迁。
νλE=h=h*C/式中:E为禁带能h=6.626⨯10-34J⋅S(普朗克常数)C=8⨯108m⋅S-1λ为截止波长,待测本实验测试仪器为岛津公司生产的UV-3600(大附件MPC-3100)分光光度计。
三、实验过程1.打开分光光度计预热20-30min;2.通过UVProbe软件设置相应参数;3.样品漫反射光谱测试;4.数据处理及分析。
四、实验报告及要求1.掌握实验原理以及相关知识;2.参数设置时的技巧;3.计算所测半导体材料的带隙,附图谱。
UV-Vis原理及应用概述

lnT
微分后除以上式可得浓度的相对误差为:
C
C
T T lnT
当溶液的透光率为36.8%或吸光度为0.434时, 浓度的相对误差最小。
T值在65~20%或A值在0.2~0.7之间,浓度相对 误差较小,是测量的适宜范围。
§3 分析条件的选择
仪器测量条件的选择 显色反应条件的选择 参比溶液的选择
A 分子中电子能级、振动能级和转动能级示意图
2. 电子跃迁主要类型
按照价电子性质不同讨论不同的紫外-可 见吸收光谱。 以甲醛分子为例: 存在σ电子,π电子,n(p)电子。
分子轨道理论:
σ成键轨道< π成键轨道< n 非键轨道<π*反键轨道<σ*反键 轨道
分子中外层电子能级及跃迁类型示意图
2.1 σ→σ*跃迁
1. 仪器测量条件的选择
1.1 适宜的吸光度范围
即当A=0.434时,吸光度测量误差最小。 最适宜的测量范围为0.2~0.7之间。
1.2 入射光波长的选择
通常是根据被测组分的吸收光谱,选择最 强吸收带的最大吸收波长(λmax )为入射波 长。当最强吸收峰的峰形比较尖锐时,往往 选用吸收稍低,峰形稍平坦的次强峰进行测 定。
1.3 狭缝宽度的选择
为了选择合适的狭缝宽度,应以减少狭缝 宽度时试样的吸光度不再增加为准。一般来 说,狭缝宽度大约是试样吸收峰半宽度的十 分之一。
2. 显色反应条件的选择
可见分光光度法一般用来测定能吸收可见光 的有色溶液。对某些无色或浅色物质进行测 定,常利用显色反应将被测组分转变为在可 见波长范围有吸收的物质。常见的显色反应 有配位反应、氧化还原反应等。
测定试样溶液的吸光度,需先用参比溶液调 节T为100% (A为0) ,以消除其它成分及 吸收池和溶剂等对光的反射和吸收带来的测 定误差。
漫反射光谱(DRS)分析

1
R 2 R
2
● 实际测定的是 R’∞, 不是绝对反射率 R ∞,即相对 一 个标准样品的相对反射率。 ● 其值依赖于波长 F(R’ ∞)—波长 ●对应于透射光谱的消光系数 ● 在一个稀释的物种的情况下正比于物种的浓度 (相似于 Lambert-Beer law)。
6
● 漫反射光谱的表达
8
1/R∞ 和 Log (1/R∞) ——相当于透射光谱测定中的
吸收率: log (1/R) = log (100/%R) 。 用log (1/R) 单位是因为其与样品组分
的浓度间有线性相关性。
9
10
● R∞的确定
一般不测定样品的绝对反射率,而是以白色标准物 质为参比(假设其不吸收光,反射率为1),得到的相 对反射率。 参比物质:要求在200 nm – 3 微米波长范围反射 率为100%,常用MgO, BaSO4,MgSO4等,其反射率 R ∞定义为1(大约为0.98-0.99). MgO 机械性能不如
代替法
比较法
检测器:光电倍增管(用于紫外-可见光) 硫化铅 (用于近红外区)
18
2. 样品处理
将固体样品研磨成一定的颗粒度,保证重现性, 压成片状,干燥。 参比压成白板。 粉末样品不用压片,用专用样品池测定。 样品也可用稀释剂稀释测定,稀释剂可用MgO, BaSO4,NaCl, SiO2等。
19
2.比比谁的 手更白!
你能猜出每条反射曲对应 的是哪只手吗?
B
右上图:手背皮肤的紫外可见漫
反射曲线
A C
左下图:上图所测曲线的各个“样 品”
20
三、催化剂研究中的应用
1. 光吸收性质的研究 TiO2光催化剂
光谱测量方法
(完整版)紫外可见漫反射光谱基本原理

紫外可见漫反射光谱基本原理前言:1.紫外可见光谱利用的哪个波段的光?紫外光的波长范围为:10-400 nm; 可见光的波长范围:400-760 nm; 波长大于760 nm为红外光。
波长在10-200 nm范围内的称为远紫外光,波长在200-400 nm的为近紫外光。
而对于紫外可见光谱仪而言,人们一般利用近紫外光和可见光,一般测试范围为200-800 nm.2. 紫外可见漫反射光谱可以做什么?紫外可见漫反射(UV-Vis DRS)可用于研究固体样品的光吸收性能,催化剂表面过渡金属离子及其配合物的结构、氧化状态、配位状态、配位对称性等。
备注:这里不作详细展开,我们后面会结合实例进行分析。
3. 漫反射是什么?当光束入射至粉末状的晶面层时,一部分光在表层各晶粒面产生镜面反射(specular reflection);另一部分光则折射入表层晶粒的内部,经部分吸收后射至内部晶粒界面,再发生反射、折射吸收。
如此多次重复,最后由粉末表层朝各个方向反射出来,这种辐射称为漫反射光(diffuse reflection)。
4. 紫外可见光谱的基本原理对于紫外可见光谱而言,不论是紫外可见吸收还是紫外可见漫反射,其产生的根本原因多为电子跃迁.有机物的电子跃迁包括n-π,π-π跃迁等将放在紫外可见分光分度法中来介绍。
对于无机物而言:a. 在过渡金属离子-配位体体系中,一方是电子给予体,另一方为电子接受体。
在光激发下,发生电荷转移,电子吸收某能量光子从给予体转移到接受体,在紫外区产生吸收光谱。
其中,电荷从金属(Metal)向配体(Ligand)进行转移,称为MLCT;反之,电荷从配体向金属转移,称为LMCT.b. 当过渡金属离子本身吸收光子激发发生内部d轨道内的跃迁(d-d)跃迁,引起配位场吸收带,需要能量较低,表现为在可见光区或近红外区的吸收光谱。
c. 贵金属的表面等离子体共振:贵金属可看作自由电子体系,由导带电子决定其光学和电学性质。
《基于缺陷型CeO2的金属基光催化材料设计及其高效催化小分子产氢研究》范文

《基于缺陷型CeO2的金属基光催化材料设计及其高效催化小分子产氢研究》篇一一、引言随着全球能源需求的增长和环境污染的加剧,寻找清洁、可持续的能源成为了科学研究的热点。
氢能作为一种高效、清洁的能源,其制备技术备受关注。
在众多的氢气制备方法中,光催化产氢技术以其资源丰富、环保等优势成为了一种理想的选择。
缺陷型CeO2作为光催化材料的重要组成部分,其独特的物理化学性质为光催化产氢提供了可能。
本文旨在设计基于缺陷型CeO2的金属基光催化材料,并研究其高效催化小分子产氢的性能。
二、缺陷型CeO2的结构与性质CeO2作为一种典型的n型半导体材料,具有较高的化学稳定性、优异的氧储存能力和良好的可见光响应能力。
在CeO2中引入缺陷,如氧空位,可以有效地调控其电子结构和光学性质,从而提高其光催化性能。
缺陷型CeO2的表面具有丰富的活性位点,能够促进光生电子和空穴的分离和传输,提高光催化反应的效率。
三、金属基光催化材料的设计为了进一步提高光催化产氢的效率,我们将金属元素引入到缺陷型CeO2中,形成金属基光催化材料。
通过选择合适的金属元素,可以调控材料的电子结构,增强其对可见光的吸收能力,提高光生电子和空穴的分离效率。
此外,金属的引入还可以提供更多的活性位点,促进反应物的吸附和活化。
在金属基光催化材料的设计中,我们主要考虑以下几个方面:1. 金属元素的选择:选择具有合适能级和电子结构的金属元素,如贵金属、过渡金属等。
2. 金属与CeO2的相互作用:通过控制金属的负载量、分散度和价态等,实现金属与CeO2之间的有效相互作用。
3. 材料的制备方法:采用合适的制备方法,如溶胶凝胶法、沉积法等,实现金属基光催化材料的可控合成。
四、高效催化小分子产氢研究我们以基于缺陷型CeO2的金属基光催化材料为研究对象,对其高效催化小分子产氢的性能进行了研究。
具体步骤如下:1. 催化剂的制备:采用合适的制备方法,合成出具有不同金属含量和缺陷程度的催化剂。
催化剂的表征与性能评价

催化剂的表征与性能评价催化剂的表征和性能评价是研究催化剂特性和性能的重要组成部分。
通过对催化剂进行表征和评价,我们能够了解其物理和化学性质,进而优化催化剂的合成和设计过程,提高其催化性能。
本文将介绍几种常见的催化剂表征方法和性能评价指标。
一、表征方法1. X射线衍射(XRD)XRD是一种常用的催化剂表征方法,通过射线与晶体相互作用而产生衍射图样,可以得到催化剂晶体结构、晶格常数等信息。
XRD可以帮助我们确定催化剂的晶体相、相纯度以及晶体尺寸等参数,进而推断其催化性能。
2. 透射电子显微镜(TEM)TEM可以观察催化剂的微观形貌和晶体结构,对于了解催化剂的微观结构和局域化学环境具有重要意义。
通过TEM可以获得催化剂粒子的形貌、粒径以及分布情况等信息,这些信息对于理解催化剂活性和选择性具有重要的指导作用。
3. 扫描电子显微镜(SEM)SEM能够观察催化剂的表面形貌和粒子分布情况,通过SEM可以了解催化剂的表面形貌、粒子形状和大小分布等特征。
这些信息对催化剂的反应活性和稳定性具有重要影响。
4. 紫外可见吸收光谱(UV-vis)UV-vis光谱可以帮助我们了解催化剂的电子结构和吸收性能。
通过UV-vis光谱可以获得催化剂的能带结构、价带和导带等信息,进一步推断其电子传输性能和催化活性。
二、性能评价指标1. 催化活性催化活性是评价催化剂性能的重要指标之一。
通过测定反应物的转化率、产物的选择性和产率等参数,可以评价催化剂的活性。
活性的高低决定了催化剂的实际应用性能。
2. 催化稳定性催化稳定性是衡量催化剂寿命和循环使用性能的重要指标。
通过长时间反应的实验,观察催化剂的活性变化情况,评估其稳定性。
催化剂的稳定性直接影响其在实际工业生产中的应用前景。
3. 表面酸碱性催化剂的表面酸碱性是其催化性能的重要基础。
通过吸附剂和探针分子等的测试,可以评估催化剂的酸碱性。
催化剂的酸碱性对于催化反应的催化活性和选择性具有直接的影响。
UV-Vis DRS光谱及其在催化剂表征中的应用ppt课件

反射峰通常很弱,同时,它与吸收峰基本重合,仅仅使吸收
峰稍有减弱而不至于引起明显的位移。对固体粉末样品的镜面 反射光及漫反射光同时进行检测可得到其漫反射光谱。
图3 漫反射光示意图
1.4 漫反射定律(Kubelka—Munk 方程式)[5,13]
F (R )K /S1 2 R R 2
比色分析法:比较有色溶液深浅来确定物质含量 的方法,属于可见吸收光度法的范畴。
分光光度法:使用分光光度计进行吸收光谱分析 的方法。
紫外可见波长范围:
远紫外光区:10-200 nm; 近紫外光区:200-400 nm; 可见光区:400-780 nm。
注:由于O2、N2、CO2、H2O等在真空紫外区(60-200 nm)均有
在可见光区或近红外区的吸收光谱。
收集这些光谱信息,即获得一个漫反射光谱,基于此可 以确定过渡金属离子的电子结构(价态、配位对称性)。
1.2 紫外-可见吸收光谱(UV-Vis)
定义:根据溶液中物质的分子或离子对紫外和可 见光谱区辐射能的吸收来研究物质的组成和结构的方 法[4]。包括比色分析法和分光光度法。
吸收,测定这一范围光谱时须将光学系统抽真空并充入惰性
气体。所以真空紫外分光光度计非常昂贵,在实际应用中受
到一定的限制。
故通常所说的紫外-可见分光光度法,实际上是指近紫 外-可见分光光度法(200-780 nm) 。
1.3 漫反射光谱(DRS)
当光照射到固体表面时,发生反射和散射(如图1、2)
镜面反射:
注:K 为吸收系数,S 为散射系数,
R∞ 表示无限厚样品的反射系数R 的极限值。
F (R∞ ) 称为减免函数或Kubelka—Munk函数。
歧化和异构化的反应数据

△,G:=△,职一TA,s:
(3)
1n∥=一簪
(4)
则3.0 MPa时气相反应的平衡转化率可由各物 质平衡组成),i表示,采用公式(5)计算(设此体系为 真实气体的理想混合物),结果见表1。
n(yj叻)巧=(5)以叶∥
(5)
式(5)中逸度系数妒,利用普遍化的Vifial系数法求取。
Table 1
表1歧化反应的△,醒。△,s:,△,G:。∥以及平衡转化率数值
唯一成功用于工业装置的歧化反应催化剂。该技术 丁烯的单程转化率可以在60%以上,丙烯的选择性 在90%以上Mj。由于w基催化剂具有抗毒性能好 的优点隋】,采用该类催化剂进行歧化制丙烯的研究 备受关注,到目前为止,催化性能最好的W基催化 剂载体依然是由氧化硅材料制备的载体。虽然 OCT技术已工业化十余套,但是以WO,/SiP:为催 化剂,专门针对c。烯烃歧化生产丙烯这一目标,进 行相关催化剂的详细研究以及相关工艺条件的考 察,这方面的报道并不多见。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
积分球用于测定反射光谱的方法(2种):
代替法:其基本原理如
右图5所示,从外部过来的 辐射通过小孔1进入球内, 落在样品表面2上,用外部 光度计通过小孔3测量球壁 辐射强度,然后用标准物 代替样品进行重复测量, 强度的相对值用来量度以 标准物为基准的样品反射 能力。
图5 代替法
• 比较法:样品和标准物在整个测
2R
注:K 为吸收系数,S 为散射系数,
R∞ 表示无限厚样品的反射系数R 的极限值。
F (R∞ ) 称为减免函数或Kubelka—Munk函数。
● 实际测定的是R′∞, 不是绝对反射率 R∞,即相对
一 个标准样品的相对反射率。
● 其值依赖于波长 F(R′∞)—波长
● 对应于透射光谱的消光系数
● 在一个稀释的物种的情况下正比于物种的浓度
(相似于 Lambert-Beer law)。
1.5 漫反射光谱的表达 朗伯比尔定律描述入射光和吸收光之间的关系。 漫反射定律描述一束单色光入射到一种既能吸 收光,又能反射光的物体上的光学关系。
A=-㏑T
LogF (R
)
LogK
LogS
Log
1 R
2R
2
图4 吸收光谱曲线与漫反射光谱曲线
比色分析法:比较有色溶液深浅来确定物质含量 的方法,属于可见吸收光度法的范畴。
分光光度法:使用分光光度计进行吸收光谱分析 的方法。
紫外可见波长范围:
远紫外光区:10-200 nm; 近紫外光区:200-400 nm; 可见光区:400-780 nm。
注:由于O2、N2、CO2、H2O等在真空紫外区(60-200 nm)均有
1.1 固体中金属离子的电荷跃迁
在过渡金属离子-配位体体系中,一方是电子给予体,另 一方为电子接受体。在光激发下,发生电荷转移,电子吸收
某能量光子从给予体转移到接受体,在紫外区产生吸收光谱。
当过渡金属离子本身吸收光子激发发生内部d轨道内的跃 迁(d-d)跃迁,引起配位场吸收带,需要能量较低,表现为
吸收,测定这一范围光谱时须将光学系统抽真空并充入惰性
气体。所以真空紫外分光光度计非常昂贵,在实际应用中受
到一定的限制。
故通常所说的紫外-可见分光光度法,实际上是指近紫 外-可见分光光度法(200-780 nm) 。
1.3 漫反射光谱(DRS)
当光照射到固体表面时,发生反射和散射(如图1、2)
镜面反射:
目录
1. 紫外可见漫反射光谱基本原理 2. 紫外可见漫反射光谱研究方法 3. 紫外可见漫反射在催化剂表征中的应用 4. 结语
1.UV-Vis DRS 基本原理
漫反射光谱是一种不同于一般吸收光谱的在紫 外、可见和近红外区的光谱,是一种反射光谱,与 物质的电子结构有关。
漫反射光谱不仅可以用于研究催化剂表面过渡 金属离子及其配合物的结构、氧化状态、配位状态、 配位对称性,而且在光催化研究中还可用于催化剂 的光吸收性能的测定;可用于色差的测定等等。
漫反射光。
反射峰通常很弱,同时,它与吸收峰基本重合,仅仅使吸收
峰稍有减弱而不至于引起明显的位移。对固体粉末样品的镜面 反射光及漫反射光同时进行检测可得到其漫反射光谱。
图3 漫反射光示意图
1.4 漫反射定律(Kubelka—Munk 方程式)[5,13]
F (R )
K
/SBiblioteka 1 R 2在可见光区或近红外区的吸收光谱。
收集这些光谱信息,即获得一个漫反射光谱,基于此可 以确定过渡金属离子的电子结构(价态、配位对称性)。
1.2 紫外-可见吸收光谱(UV-Vis)
定义:根据溶液中物质的分子或离子对紫外和可 见光谱区辐射能的吸收来研究物质的组成和结构的方 法[4]。包括比色分析法和分光光度法。
2. UV-Vis DRS的研究方法
2.1 仪器:
紫外—可见分光光度计(附带漫反射测定装置— 积分球)
基本组成:
光源
单色器
样品室
检测器
显示器
可见光区:钨灯。其辐射波长范围在320~2500 nm 紫外区:氢、氘灯。发射180~375 nm的连续光谱
• 紫外可见与紫外可见漫反射分光光度计的区别:
前者:采用透射方式 ,所测样品为溶液。 后者:采用漫反射的方式(积分球),所测样品为固
量过程中构成球壁的一部分,如图6 所示,对入射到样品2和标准物3上 的辐射,其球壁上的辐射强度进行 比较。在一个理想的积分球中,样 品和标准物应该同样被照明,以便 在直接照明样品和标准物时所测的 强度比等于相对反射率[14]。
• 注:附设在积分球上的检测器有
入射光
反射角=入射角 光不被吸收!
反射光
图1 镜面反射图
漫反射:
入射光
反射光
图2 漫反射图
当光束入射至粉末状的晶面层时,一部分光在表层各晶粒
面产生镜面反射;另一部分光则折射入表层晶粒的内部,经部
分吸收后射至内部晶粒界面,再发生反射、折射吸收。如此多 次重复,最后由粉末表层朝各个方向反射出来,这种辐射称为
紫外可见漫反射光谱及其在催化剂表 征中的应用
主讲人:冯芳
概论
随着光谱技术的迅速发展, 光学测量在表面表征 中已占有非常重要的位置[1]。由测量染料、颜料而发 展起来的紫外—可见漫反射光谱(可以用UV-Vis DRS或 DRUVS表示)是检测非单晶材料的一种有效方法。近几 年,紫外—可见漫反射光谱在多相催化剂研究中,用于 研究过渡金属离子及其化合物结构、氧化还原状态、 配位对称性和金属离子的价态等,尤其是研究活性组分 与载体间的相互作用[ 2,3],日益受到重视。该方法具有 很高的分辨率,灵敏度高,设备简便,是测试物质表面结 构的快速方法之一。
体、粉末、乳浊液和悬浊液。
漫反射光和积分球:
• 漫反射光:指从光源发出的光进入样品内部,经过
多次反射、折射、散射及吸收后返回样品表面的光。
• 积分球:它可以把样品和标准物中反射回来的辐射
通量收集起来,通过辐射在球上的检测器测量。积分 球内部是一种具有反射能力很强的涂料做涂层,这种 涂料要满足标准物那样的要求。历来,这种涂料是采 用MgO,但由于近来广泛使用BaSO4做标准物,所以 BaSO4用作积分球涂料已成为发展趋势。最近有一种多 氟烃也用作涂料使用,它在化学和机械上的稳定性优 于MgO和BaSO4,使积分球在DRUVS光谱能量范围内更有 效。