三相异步电动机能耗制动ppt课件
合集下载
三相异步电动机能耗制动ppt

首先,合上电源 开关QS。 单向起动运转:-能耗制动停转:-
2.有变压器单相桥式整流单向起动能耗制动自动控制电路
-
能耗制动的优点: 1)制动平稳,便于实现准确停车; 2)吸收系统储存动能并转换成电能消耗在转 子电路的电阻上;
能耗制动的缺点: 制动较慢,需要一套直流电源装置,而且拖 动系统制动至转速较低时,制动转矩较小,此时 制动效果不理想。
能耗制动控制
能耗制动:是在电动机脱离三相交流电源后,向 定子绕组内通入直流电流,建立静止磁场。转子 以惯性旋转时,转子导体就会切割定子恒定磁场 而产生转子感应电动机及感应电流,感应电流受 到恒定磁场的作用力又产生制动的电磁转矩,达 到制动目的
-
能耗制动控制
1.无变压器单相半波整流单向起动能耗制动自动控制电路
-
2.有变压器单相桥式整流单向起动能耗制动自动控制电路
-
能耗制动的优点: 1)制动平稳,便于实现准确停车; 2)吸收系统储存动能并转换成电能消耗在转 子电路的电阻上;
能耗制动的缺点: 制动较慢,需要一套直流电源装置,而且拖 动系统制动至转速较低时,制动转矩较小,此时 制动效果不理想。
能耗制动控制
能耗制动:是在电动机脱离三相交流电源后,向 定子绕组内通入直流电流,建立静止磁场。转子 以惯性旋转时,转子导体就会切割定子恒定磁场 而产生转子感应电动机及感应电流,感应电流受 到恒定磁场的作用力又产生制动的电磁转矩,达 到制动目的
-
能耗制动控制
1.无变压器单相半波整流单向起动能耗制动自动控制电路
-
《三相异步电动机》PPT课件优选全文

t
()电流入
2024年10月8日星期二
8
三相对称绕组通入三相对称电流就形成
旋转磁场。
2024年10月8日星期二
wt 0
9
2024年10月8日星期二
10
旋转磁场的转速大小
一个电流周期,旋转磁场在空间转过360°。则 同步转速(旋转磁场的速度)为:
I m iA iB iC
t
A YN Z
CS
B
2024年10月8日星期二X
16
电动机转速和旋转磁场同步转速的关系
2024年10月8日星期二
17
转差率 (s) 的概念:
转差率为旋转磁场的同步转速和电动机转速之差。即:
2024年10月8日星期二
18
旋转磁场的旋转方向
旋转方向:取决于三相电流的相序。
iA iB iC
iA iC
Im
Im
t
iB t
n0
n0
改变电机的旋转方向:换接其中两相
转子:在旋转磁场作用下, 产生感应电动势或 电流。 线绕式
定子绕组 (三相)
A
Y
定子
Z
C
B
鼠笼式
转子
X
2024年10月8日星期二
鼠笼转子
机座
3
三相定子绕组:产生旋转磁场。 组成:定子铁心、定子绕组和机座。
2024年10月8日星期二
4
转子:在旋转磁场作用下,产生 感应电动势或电流。
组成:转子铁心、转子绕组和转轴。
u1
e1
e 1
产生的感应电动
i2
e2
e 2 R2
势。
转、定子电路
2024年10月8日星期二
三相异步电动机能耗制动原理及控制电路的识读PPT教案

三相异步电动机能耗制动原理及控制电 路的识读
会计学
1
(一)能耗制动原理
能耗制动是通过在定子绕组中通入直流电以消耗转子惯性运转 的动能来实现制动的。
能耗制动是在切除三相交流电源后,定子绕组通直流电流,在定子、转 子之间的气隙中产生静止磁场,惯性转动的转子导体切割该磁场,形成感 应电流,产生与惯性转动方向相反的电磁力矩而使电动机迅速停转,并在 制动结束后将直流电源切除,其制动原理如图6-11所示。
用四只整流二极管构成桥式整流电路,有分立元件的,也有集成元件的。 这种整流电路输出的脉动电压较之半波整流平稳。 由于能耗制动并不要求恒稳电压,所以不需要设置滤波电路和稳压电路。
3.直流电源的选择
能耗制动中,通入电动机的直流电流不能太大,过大会烧坏定子绕组。 因此,能耗制动直流电源的选择有一定的要求
以单相桥式整流电路为例,直流电源估算方法和步骤如下:
(二)直流电源
在能耗制动控制线路中,直流电源一般通过整流环节直接从三相 电源获得。常用的整流环节有半波整流和全波整流。
1.半波整流
半波整流能耗制动一般选用一个整流二极管串接在电动机定子绕组 其中一相电源电路中,利用晶体二极管的单向导通特性,把380V的交流 电压整流为脉动的直流电压。
2.全波整流
① 先测量出电动机三相绕组任意两相之间的电阻R0(Ω) ② 测量电动机的空载电流 I0(A) ③ 能耗制动所需的
直流电流IL= KI0(A) 直流电压UL=IL R0(V)
其中K是系数,一般取 3.5~4。若考虑到电动机定子绕组发热情况,并 使制动达到较为满意的效果,对于转速高、惯性大的拖动系统可取上限。
图6-14 电动机能耗制动停止的控制流程
图6-12中KT的瞬动常开触点除了起自锁作用外,在KT出现 线圈断线或机械卡住等故障时,按下并松开SB2后能使电动机制 动后脱离直流电源(规避KM2自锁不能解除的现象)。
会计学
1
(一)能耗制动原理
能耗制动是通过在定子绕组中通入直流电以消耗转子惯性运转 的动能来实现制动的。
能耗制动是在切除三相交流电源后,定子绕组通直流电流,在定子、转 子之间的气隙中产生静止磁场,惯性转动的转子导体切割该磁场,形成感 应电流,产生与惯性转动方向相反的电磁力矩而使电动机迅速停转,并在 制动结束后将直流电源切除,其制动原理如图6-11所示。
用四只整流二极管构成桥式整流电路,有分立元件的,也有集成元件的。 这种整流电路输出的脉动电压较之半波整流平稳。 由于能耗制动并不要求恒稳电压,所以不需要设置滤波电路和稳压电路。
3.直流电源的选择
能耗制动中,通入电动机的直流电流不能太大,过大会烧坏定子绕组。 因此,能耗制动直流电源的选择有一定的要求
以单相桥式整流电路为例,直流电源估算方法和步骤如下:
(二)直流电源
在能耗制动控制线路中,直流电源一般通过整流环节直接从三相 电源获得。常用的整流环节有半波整流和全波整流。
1.半波整流
半波整流能耗制动一般选用一个整流二极管串接在电动机定子绕组 其中一相电源电路中,利用晶体二极管的单向导通特性,把380V的交流 电压整流为脉动的直流电压。
2.全波整流
① 先测量出电动机三相绕组任意两相之间的电阻R0(Ω) ② 测量电动机的空载电流 I0(A) ③ 能耗制动所需的
直流电流IL= KI0(A) 直流电压UL=IL R0(V)
其中K是系数,一般取 3.5~4。若考虑到电动机定子绕组发热情况,并 使制动达到较为满意的效果,对于转速高、惯性大的拖动系统可取上限。
图6-14 电动机能耗制动停止的控制流程
图6-12中KT的瞬动常开触点除了起自锁作用外,在KT出现 线圈断线或机械卡住等故障时,按下并松开SB2后能使电动机制 动后脱离直流电源(规避KM2自锁不能解除的现象)。
中职电子电工对口升学《电机拖动》第五节 三相异步电动机的制动与调速 课件(共14张PPT).ppt

2. 制动的定义 在电动机的轴上加一个与其旋转方向相反的转矩,使电动机减速或停转,对位能性负载 (起重机上的重物),制动运行可获得稳定的下降速度。 3. 制动的分类
课前知识准备
根据制动力矩产生方法不同,制动可分为机械制动和电气制动两类。 (1)机械制动是利用机械装置使电动机断开电源后迅速停转的方法,常用的有电磁抱闸 制动(断电型制动和通电型制动)和电磁离合器制动。 (2)电气制动是电动机在停转过程中,产生一个和电动机实际旋转方向相反的电磁力矩 作为制动力矩,从而使电动机停止转动,如反接制动、能耗制动、电容制动和再生制动。 常见电气制动时旋转磁场与转子的关系如图1-5-2所示。
转速也不变;变极调速和变频调速,都改变了旋转磁场的同步转速,但变极调速同步转速的关
系是2倍
,从图1-5-3中可以看出,两条曲线中的同步转速不是2倍
的关系,所以应
该是变频调速。 【解答】从图1-5-3中可以看出同步转速不相等,而且两个同步转速之间不是两倍的关系,
所以应该是变频调速。故选A。
课堂全程导学
①△/YY联结的双速电动机变极调速前后输出功率基本不变,故适用于恒功率负载的调速, 较多用于金属切削机床上;Y/YY联结的双速电动机变极调速前后输出转矩基本不变,故适用 于恒转矩负载的调速,如起重机、运输带等设备。
②△和Y为低速,YY为高速。(YY的磁极对数为p,△和Y的磁极对数为2p) ③变极调速时为保证电动机的转向不变,需要改变电源的相序。 (3)变转差率调速 ①笼型异步电动机通过改变定子电压调速,这种调速方法对于恒转矩负载调速范围很窄, 实用价值不大;但对于通风机负载(不稳定运行区),调速范围较宽。 ②绕线转子异步电动机通过改变转子电阻调速,这种调速方法的优点是所需设备简单,并 可在一定范围内进行调速,缺点是调速电阻上有一定的能量损耗,电阻越大机械特性越软,在 空载和轻载时调速范围窄,此方法主要用于运输、起重机械设备的绕线式转子异步电动机上。
课前知识准备
根据制动力矩产生方法不同,制动可分为机械制动和电气制动两类。 (1)机械制动是利用机械装置使电动机断开电源后迅速停转的方法,常用的有电磁抱闸 制动(断电型制动和通电型制动)和电磁离合器制动。 (2)电气制动是电动机在停转过程中,产生一个和电动机实际旋转方向相反的电磁力矩 作为制动力矩,从而使电动机停止转动,如反接制动、能耗制动、电容制动和再生制动。 常见电气制动时旋转磁场与转子的关系如图1-5-2所示。
转速也不变;变极调速和变频调速,都改变了旋转磁场的同步转速,但变极调速同步转速的关
系是2倍
,从图1-5-3中可以看出,两条曲线中的同步转速不是2倍
的关系,所以应
该是变频调速。 【解答】从图1-5-3中可以看出同步转速不相等,而且两个同步转速之间不是两倍的关系,
所以应该是变频调速。故选A。
课堂全程导学
①△/YY联结的双速电动机变极调速前后输出功率基本不变,故适用于恒功率负载的调速, 较多用于金属切削机床上;Y/YY联结的双速电动机变极调速前后输出转矩基本不变,故适用 于恒转矩负载的调速,如起重机、运输带等设备。
②△和Y为低速,YY为高速。(YY的磁极对数为p,△和Y的磁极对数为2p) ③变极调速时为保证电动机的转向不变,需要改变电源的相序。 (3)变转差率调速 ①笼型异步电动机通过改变定子电压调速,这种调速方法对于恒转矩负载调速范围很窄, 实用价值不大;但对于通风机负载(不稳定运行区),调速范围较宽。 ②绕线转子异步电动机通过改变转子电阻调速,这种调速方法的优点是所需设备简单,并 可在一定范围内进行调速,缺点是调速电阻上有一定的能量损耗,电阻越大机械特性越软,在 空载和轻载时调速范围窄,此方法主要用于运输、起重机械设备的绕线式转子异步电动机上。
三相异步电动机电气控制课件PPT45页

1、反接制动控制线路
2、能耗制动控制线路 (3) 异步电动机调速控制系统
1、双速电动机控制线路 2、变频调速系统 (4)电动机的保护环节
2021/91/1、5 短路保护 2、过载保护 3、过电流保护
1
任三务相3 异机步床电控制动线机路电的气基控本环制节
全压启动
2021/9/15
2
任三务相3 异机步床电控制动线机路电的气基控本环制节
任三务相3 异机步床电控制动线机路电的气基控本环制节
三相异步电动机几种典型电气控制
(1)三相异步电动机的起动控制线路
全压启动
1.点动控制线路 2.长动控制线路 3.两地控制线路
降压启动
1.丫-△降压起动控制线路
2.串电阻(电抗器)降压起动控制线路
3.定子串自耦变压器降压启动
正反转控制 (2)三相异步电动机的制动控制线路
2021/9/15
25
任三务相3 异机步床电控制动线机路电的气基控本环制节
2、自动往返控制
SQ 2
SQ 1
(a) 往 返 运 动 图
FR
SB 1
SB 3
KM 1
SQ 1
KM 2 KM 1 SQ 2
SQ 2 SB 2
KM 1 KM 2
KM 2
SQ 1
2021/9/15
(b )
自动往返控制电路
按下正向起动按钮SB1,电动机 正向起动运行,带动工作台向前运 动。当运行到SQ2位置时,挡块压下 SQ2,接触器KMl断电释放,KM2通电 吸合,电动机反向起动运行,使工 作台后退。工作台退到SQl位置时, 挡块压下SQl,KM2断电释放,KM1通 电吸合,电动机又正向起动运行, 工作台又向前进,如此一直循环下 去,直到需要停止时按下SB3,KMl 和KM2线圈同时断电释放,电动机脱 离电源停止转动。
2、能耗制动控制线路 (3) 异步电动机调速控制系统
1、双速电动机控制线路 2、变频调速系统 (4)电动机的保护环节
2021/91/1、5 短路保护 2、过载保护 3、过电流保护
1
任三务相3 异机步床电控制动线机路电的气基控本环制节
全压启动
2021/9/15
2
任三务相3 异机步床电控制动线机路电的气基控本环制节
任三务相3 异机步床电控制动线机路电的气基控本环制节
三相异步电动机几种典型电气控制
(1)三相异步电动机的起动控制线路
全压启动
1.点动控制线路 2.长动控制线路 3.两地控制线路
降压启动
1.丫-△降压起动控制线路
2.串电阻(电抗器)降压起动控制线路
3.定子串自耦变压器降压启动
正反转控制 (2)三相异步电动机的制动控制线路
2021/9/15
25
任三务相3 异机步床电控制动线机路电的气基控本环制节
2、自动往返控制
SQ 2
SQ 1
(a) 往 返 运 动 图
FR
SB 1
SB 3
KM 1
SQ 1
KM 2 KM 1 SQ 2
SQ 2 SB 2
KM 1 KM 2
KM 2
SQ 1
2021/9/15
(b )
自动往返控制电路
按下正向起动按钮SB1,电动机 正向起动运行,带动工作台向前运 动。当运行到SQ2位置时,挡块压下 SQ2,接触器KMl断电释放,KM2通电 吸合,电动机反向起动运行,使工 作台后退。工作台退到SQl位置时, 挡块压下SQl,KM2断电释放,KM1通 电吸合,电动机又正向起动运行, 工作台又向前进,如此一直循环下 去,直到需要停止时按下SB3,KMl 和KM2线圈同时断电释放,电动机脱 离电源停止转动。
第2章三相异步电动机控制线路模板ppt课件

在多处位置设置控制按钮,均能对同一电机实行控制。控制回 路需要设置多套起、停按钮,分别安装在设备的多个操作位置
特 点:
起动按钮的常开触点并联;停止按钮的常闭触点串联。
操作
无论操作哪个启动按钮都可以实现电动机的起动; 操作任意一个停止按钮可以打断自锁电路,使电动机停止运行。
SB1乙
SB1甲
SB2甲
KM
2、工作台前进至终点自动停车; 3、工作台在终点时,启动电机只能反转; 4、工作台后退至原位自动停车; 5、工作台在前进或后退途中均可停车,再 启动后既可进也可退。
实现方法:在生产机械行程的终点和原位安装行程开关
运动过程
按下SB2 工作台正向运行 至终点位置撞开SQ2 电机停车
(反向运行同样分析)
SB2乙
K M
甲地
乙地
SB1甲、SB2甲实现就地控制; SB1乙、SB2乙实现远方控制。
(a)
(b)
多点控制电路
2.2.5 自动循环控制
正程:电动机正转; 逆程:电动机反转。
控制要求:
工作台 B
后退 前进
SQ4 SQ1
床身
工作台 A
SQ2 SQ3
机床工作示意图
1、工作台在原位时,启动电机只能正转;
(1)工作台在原位时: 启动后只能前进,不能后退。 (2)A前进到终点时: 立即后退,退回到原位自动停。
(3)A在途中时: 可停车;再启动时,既可前进也可后退。 (4)A在途中时,若暂时停电,复电时,A不会自行运动。 (5)A在途中若受阻,在一定时间内电机应自行断电而停车。
基本电路的结构特点: 1. 自锁——接触器常开触点与按钮常开触点相并联。 2. 互锁——两个接触器的常闭触点串联在对方线圈的电路
特 点:
起动按钮的常开触点并联;停止按钮的常闭触点串联。
操作
无论操作哪个启动按钮都可以实现电动机的起动; 操作任意一个停止按钮可以打断自锁电路,使电动机停止运行。
SB1乙
SB1甲
SB2甲
KM
2、工作台前进至终点自动停车; 3、工作台在终点时,启动电机只能反转; 4、工作台后退至原位自动停车; 5、工作台在前进或后退途中均可停车,再 启动后既可进也可退。
实现方法:在生产机械行程的终点和原位安装行程开关
运动过程
按下SB2 工作台正向运行 至终点位置撞开SQ2 电机停车
(反向运行同样分析)
SB2乙
K M
甲地
乙地
SB1甲、SB2甲实现就地控制; SB1乙、SB2乙实现远方控制。
(a)
(b)
多点控制电路
2.2.5 自动循环控制
正程:电动机正转; 逆程:电动机反转。
控制要求:
工作台 B
后退 前进
SQ4 SQ1
床身
工作台 A
SQ2 SQ3
机床工作示意图
1、工作台在原位时,启动电机只能正转;
(1)工作台在原位时: 启动后只能前进,不能后退。 (2)A前进到终点时: 立即后退,退回到原位自动停。
(3)A在途中时: 可停车;再启动时,既可前进也可后退。 (4)A在途中时,若暂时停电,复电时,A不会自行运动。 (5)A在途中若受阻,在一定时间内电机应自行断电而停车。
基本电路的结构特点: 1. 自锁——接触器常开触点与按钮常开触点相并联。 2. 互锁——两个接触器的常闭触点串联在对方线圈的电路
三相异步电动机的机械特性PPT课件

第24页/共75页
作业:10-1、102
第25页/共75页
第 十 章 异步电动机的电力拖动
10.2 三相异步电动机的各种运转状态
1. 能耗制动
3~
(1) 制动原理
制动前
S1
S1 合上,S2 断开, M 为电动状态。
S2 Rb +
U
I1
-
制动时
Φ
S1 断开,S2 合上。 F
定子: U →I1 →Φ 转子: n →E2 → I2
本章教学目的:
1、掌握异步电动机机械特性的三种表达式 2、掌握异步电动机固有机械特性与人为机械 特性及曲线画法 3、掌握异步电动机的各种运转状态计算 4、掌握调速及制动电阻计算
第1页/共75页
重点和难点:
重点:1、运转状态及其制动电阻计算 2、调速电阻计算
难点:1、运转状态分析及其制动电阻 计算
2、调速电阻推导公式
M 将可能反向起动。
第31页/共75页
第 十 章 异步电动机的电力拖动
② 制动效果 取决于 Rb 的大小。
③ 制动时的功率
Pe = m1I2'2 R2'+s Rb>' 0 Pm = (1-s ) P<e 0
PCu2 = m1(R2'+Rb' ) I2'2 = Pe-Pm
= Pe+|Pm|
2
b
c
转子 电阻 消耗 掉
机
的s
(s
r22 sm2
sm
2r1
r2 s
,
)2 0
r22 在s任2
何
s
s s 值 时 都 m
sm s
2 r1sm sm
有: r2
s,
作业:10-1、102
第25页/共75页
第 十 章 异步电动机的电力拖动
10.2 三相异步电动机的各种运转状态
1. 能耗制动
3~
(1) 制动原理
制动前
S1
S1 合上,S2 断开, M 为电动状态。
S2 Rb +
U
I1
-
制动时
Φ
S1 断开,S2 合上。 F
定子: U →I1 →Φ 转子: n →E2 → I2
本章教学目的:
1、掌握异步电动机机械特性的三种表达式 2、掌握异步电动机固有机械特性与人为机械 特性及曲线画法 3、掌握异步电动机的各种运转状态计算 4、掌握调速及制动电阻计算
第1页/共75页
重点和难点:
重点:1、运转状态及其制动电阻计算 2、调速电阻计算
难点:1、运转状态分析及其制动电阻 计算
2、调速电阻推导公式
M 将可能反向起动。
第31页/共75页
第 十 章 异步电动机的电力拖动
② 制动效果 取决于 Rb 的大小。
③ 制动时的功率
Pe = m1I2'2 R2'+s Rb>' 0 Pm = (1-s ) P<e 0
PCu2 = m1(R2'+Rb' ) I2'2 = Pe-Pm
= Pe+|Pm|
2
b
c
转子 电阻 消耗 掉
机
的s
(s
r22 sm2
sm
2r1
r2 s
,
)2 0
r22 在s任2
何
s
s s 值 时 都 m
sm s
2 r1sm sm
有: r2
s,
三相异步电动机课件ppt课件

三、异步电机的三种运行状态 根据转差率的大小和正负,异步电机有三种运行状态
状态
电动机
实现
定子绕组接对 称电源
转速 转差率
0 < n < n1 0 s 1
电磁转矩
驱动
能量关系
电能转变为机 械能
电磁制动
外力使电机沿磁 场反方向旋转
n<0
s 1
制动 电能和机械能变
成内能
发电机
外力使电机快速 旋转
n > n1
第4章 三相异步电动机
按转子结构分: 鼠笼型异步电动机 绕线型异步电动机
继续
继续
第4章 三相异步电动机
右图是一台三相鼠笼型异步电 动机的外形图。
下面是它主要部件的拆分图。
第4章 三相异步电动机
鼠笼型转子 铁心和绕组 结构示意图
三相绕线型 转子结构图
返回
第4章 三相异步电动机
第4章 三相异步电动机
4.3.3 一相绕组的基波感应电动势
一、一相绕组的基波电动势 一绕组有2a条支路,一条支路由若干个线圈组路串联组成。
一相绕组的基波电动势为一条支路的基波电动势
E p1 = 4.44 fNkw1 1
对单层绕组: N = pqNc 2a
对双层绕组: N = 2 pqNc 2a
第4章 三相异步电动机
二、短距绕组、分布绕组对电动势波形的影响
s0
制动 机械能转变为电
能
第4章 三相异步电动机
4.1.3 型号和额定值
一、型号 例:
第4章 三相异步电动机
第4章 三相异步电动机
额定电流I N ( A )
在额定运行状态下流
入定子绕组的线电流.
额定功率PN ( kW )
状态
电动机
实现
定子绕组接对 称电源
转速 转差率
0 < n < n1 0 s 1
电磁转矩
驱动
能量关系
电能转变为机 械能
电磁制动
外力使电机沿磁 场反方向旋转
n<0
s 1
制动 电能和机械能变
成内能
发电机
外力使电机快速 旋转
n > n1
第4章 三相异步电动机
按转子结构分: 鼠笼型异步电动机 绕线型异步电动机
继续
继续
第4章 三相异步电动机
右图是一台三相鼠笼型异步电 动机的外形图。
下面是它主要部件的拆分图。
第4章 三相异步电动机
鼠笼型转子 铁心和绕组 结构示意图
三相绕线型 转子结构图
返回
第4章 三相异步电动机
第4章 三相异步电动机
4.3.3 一相绕组的基波感应电动势
一、一相绕组的基波电动势 一绕组有2a条支路,一条支路由若干个线圈组路串联组成。
一相绕组的基波电动势为一条支路的基波电动势
E p1 = 4.44 fNkw1 1
对单层绕组: N = pqNc 2a
对双层绕组: N = 2 pqNc 2a
第4章 三相异步电动机
二、短距绕组、分布绕组对电动势波形的影响
s0
制动 机械能转变为电
能
第4章 三相异步电动机
4.1.3 型号和额定值
一、型号 例:
第4章 三相异步电动机
第4章 三相异步电动机
额定电流I N ( A )
在额定运行状态下流
入定子绕组的线电流.
额定功率PN ( kW )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
首先,合上电源 开关QS。 单向起动运转:2能耗制动停转:3
2.有变压器单相桥式整流单向起动能耗制动自动控制电路
4
能耗制动的优点: 1)制动平稳,便于实现准确停车; 2)吸收系统储存动能并转换成电能消耗在转 子电路的电阻上;
能耗制动的缺点: 制动较慢,需要一套直流电源装置,而且拖 动系统制动至转速较低时,制动转矩较小,此时 制动效果不理想。
5
能耗制动控制
能耗制动:是在电动机脱离三相交流电源后,向 定子绕组内通入直流电流,建立静止磁场。转子 以惯性旋转时,转子导体就会切割定子恒定磁场 而产生转子感应电动机及感应电流,感应电流受 到恒定磁场的作用力又产生制动的电磁转矩,达 到制动目的
1
能耗制动控制
1.无变压器单相半波整流单向起动能耗制动自动控制电路
2.有变压器单相桥式整流单向起动能耗制动自动控制电路
4
能耗制动的优点: 1)制动平稳,便于实现准确停车; 2)吸收系统储存动能并转换成电能消耗在转 子电路的电阻上;
能耗制动的缺点: 制动较慢,需要一套直流电源装置,而且拖 动系统制动至转速较低时,制动转矩较小,此时 制动效果不理想。
5
能耗制动控制
能耗制动:是在电动机脱离三相交流电源后,向 定子绕组内通入直流电流,建立静止磁场。转子 以惯性旋转时,转子导体就会切割定子恒定磁场 而产生转子感应电动机及感应电流,感应电流受 到恒定磁场的作用力又产生制动的电磁转矩,达 到制动目的
1
能耗制动控制
1.无变压器单相半波整流单向起动能耗制动自动控制电路