2013年大连市初中毕业升学考试数学试测3

合集下载

2013年初中毕业生中考数学试卷及答案

2013年初中毕业生中考数学试卷及答案

2013年初中毕业生中考数学试卷本试卷共5页,分二部分,共25小题,满分150分。

考试用时120分钟。

注意事项:1、答卷前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;同时填写考场试室号、座位号,再用2B铅笔把对应这两号码的标号涂黑。

2、选择题答案用2B铅笔填涂;将答题卡上选择题答题区中对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;答案不能答在试卷上。

3、非选择题答案必须用黑色字迹的钢笔或签字笔写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔、圆珠笔和涂改液。

不按以上要求作答的答案无效。

4、考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。

第一部分选择题(共30分)一、选择题:1、比0大的数是()A -1 B12C 0D 12、图1所示的几何体的主视图是()(A)(B) (C) (D)正面3、在6×6方格中,将图2—①中的图形N平移后位置如图2—②所示,则图形N的平移方法中,正确的是()A 向下移动1格B 向上移动1格C 向上移动2格D 向下移动2格4、计算:()23m n的结果是( )A 6m nB 62m nC 52m nD 32m n5、为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是( ),图3中的a 的值是( ) A 全面调查,26 B 全面调查,24 C 抽样调查,26 D 全面调查,246、已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( )A 1032x y y x +=⎧⎨=+⎩B 1032x y y x +=⎧⎨=-⎩C 1032x y x y +=⎧⎨=+⎩D 1032x y x y +=⎧⎨=-⎩7、实数a 在数轴上的位置如图4所示,则 2.5a -=( )图42.5aA 2.5a -B 2.5a -C 2.5a +D 2.5a -- 8、若代数式1xx -有意义,则实数x 的取值范围是( ) A 1x ≠ B 0x ≥ C 0x > D 01x x ≥≠且9、若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( ) A 没有实数根 B 有两个相等的实数根 C 有两个不相等的实数根 D 无法判断10、如图5,四边形ABCD 是梯形,AD ∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( )A 23B 22 C114 D 554图5ADBC第二部分 非选择题(共120分)二.填空题(本大题共6小题,每小题3分,满分18分)11.点P 在线段AB 的垂直平分线上,P A =7,则PB =______________ .12.广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为___________ .13.分解因式:=+xy x 2_______________.14.一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ . 15.如图6,ABC Rt ∆的斜边AB =16, ABC Rt ∆绕点O 顺时针旋转后得到C B A Rt '''∆,则C B A Rt '''∆的斜边B A ''上的中线D C '的长度为_____________ .16.如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________.三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分9分) 解方程:09102=+-x x .18.(本小题满分9分)如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB =5,AO =4,求BD 的长.CODAB图819.(本小题满分10分)先化简,再求值:yx y y x x ---22,其中.321,321-=+=y xC'图6ACB O A'B'A O 图7yx( 6, 0 )P已知四边形ABCD 是平行四边形(如图9),把△ABD 沿对角线BD 翻折180°得到△A ˊBD.(1) 利用尺规作出△A ˊBD .(要求保留作图痕迹,不写作法);(2)设D A ˊ 与BC 交于点E ,求证:△BA ˊE ≌△DCE .21.(本小题满分12分)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m ,规定:当m ≥10时为A 级,当5≤m <10时为B 级,当0≤m <5时为C 级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 12 10 7 11 3 6 8 14 15 12 (1) 求样本数据中为A 级的频率;(2) 试估计1000个18~35岁的青年人中“日均发微博条数”为A 级的人数; (3) 从样本数据为C 级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.22.(本小题满分12分)如图10, 在东西方向的海岸线MN 上有A 、B 两艘船,均收到已触礁搁浅的船P 的求救信号,已知船P 在船A 的北偏东58°方向,船P 在船B 的北偏西35°方向,AP 的距离为30海里.(1) 求船P 到海岸线MN 的距离(精确到0.1海里);(2) 若船A 、船B 分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P 处.AD图9BCPB A图10北东N M如图11,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(2,2),反比例函数ky x=(x >0,k ≠0)的图像经过线段BC 的中点D .(1)求k 的值;(2)若点P(x,y)在该反比例函数的图像上运动(不与点D 重合),过点P 作PR ⊥y 轴于点R,作PQ ⊥BC 所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的解析式并写出x 的取值范围。

2013大连市中考卷及答案

2013大连市中考卷及答案

大连市2013年初中毕业升学考试物理与化学注意事项:1.请在答题卡上作答,在试卷上作答无效。

2.物理试卷共五大题,1~32小题,满分90分。

化学试卷共四大题,33~58小题,满分70分。

物理与化学合计共58小题,合计满分160分。

考试时间150分钟。

第一卷物理一、选择题(本题共14小题,每小题2分,共28分)注意:第1~11题中,每题只有一个选项正确。

1.乐队演奏时,听众能分辨出二胡声和小提琴声,主要是因为这两种声音的A.响度不同B.音色不同C.音调不同D.频率不同2.下列运动的物体,其运动状态不变的是A.转变的汽车B.加速起飞的飞机C.匀速直线下落的雨滴D.减速进站的火车3.下列各现象,能用光的直线传播解释的是A.水中的“白云”B.经放大镜放大的“字”C.沙漠中的“海市蜃楼”D.树的影子中圆形的“光斑”4.下列做法中,使电阻丝的电阻变大的是A.把电阻丝拉长B.把电阻丝对折C.把电阻丝剪掉一段D.把电阻丝绕成螺丝管5.电动机的工作原理是A.电磁感应现象B.电流的热效应C.通电导体周围存在磁场D.通电导体的磁场中受力6.下列各种摩擦中,应该设法减少的是A.机器运转时,各部件之间的摩擦B.翻书时,手指与纸之间的摩擦C.走路时,鞋底与地面之间的摩擦D.拧瓶盖时,手与瓶盖之间的摩擦7.五月的大连,人们在槐树下闻到了槐花的香味儿。

这个现象说明了21世纪教育网A.气体分子很小B.气体分子是运动的C.气体分子的运动是有规则的D.气体分子之间有引力8.由电功率的公式P=I2R可知,导体中的电流一定时,导体的电功率P与导体电阻R的关系图象是9.如图1所示,竖直墙面上有一个吸盘式挂衣钩。

则与挂衣钩的重力相互平衡的力是A.大气对挂衣钩的压力B.挂衣钩对墙面的压力C.墙面对挂衣钩的静摩擦力D.挂衣钩对墙面的静摩擦力10.在保温杯中装适量0℃的水,从冰箱的冷冻室里取出一小块冻了很长时间的冰,放到保温杯中,设保温杯是绝热的。

2012-2013年大连沙河口甘井子西岗三区九年级期末数学测试题

2012-2013年大连沙河口甘井子西岗三区九年级期末数学测试题

甘井子区2012---2013学年度第一学期期末学习质量抽测九年级数学一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)1的相反数是()ABC.D.—2.下列图形中,不是中心对称图形是()A.正三角形B.正方形C.圆D.菱形3.如图1,AB是⊙O的直径,点C在⊙O上,若∠A=40°,∠B的度数为()4.如图2,在平面直角坐标系中,以原点为位似中心,将△ABO扩大到原来的2倍,得到△A’B’O.若点A的坐标是(1,2),则点A’的坐标是()A.(2,4)B.(-1,-2)C.(-2,-4)D.(-2,-1)5.如图3,已知⊙O的半径为5,弦AB=8,则圆心O到AB的距离是()A.1 B.2 C.3 D.46.一个不透明的袋子中有3个白球、4个黄球和5个红球,这些球出颜色不同外其它完全相同.从袋子中随机摸出一个球,则它是黄球的概率为( )A.14B.13C.512D.127.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A.100(1+x)=121 B.100(1-x)=121C.100(1+x)2=121 D.100(1-x)2=1218.如图4,线段AB的两端的坐标分别是(2,3)、(2,1),函数y=—(x-4)2+k的图像与线段AB有公共点,当该函数图像与y轴的交点最高时,则k的值是()A.-9 B.—11C.5 D.7二、填空题(本题共8小题,每小题3分,共24分)9.= .10.如果关于x的方程x2+kx+9=0有两个相等的实数根,那么k的值为.图2xy图411.从10个外观完全相同的产品中,任意抽取1个产品进行检测,抽到不合格产品的概率是0.2,则这10个产品中不合格的产品有 个.12.如图5,△ABC 中,D 、E 分别是AB 、AC 的中点,△ADE 的面积为1,则△ABC 的面积为 .DECBA13.如图6,四边形ABCD 是⊙O∠AOC= °.14.如图7,E 、F 分别是正方形交点O 按顺时针方向旋转得到△15.16.已知二次函数y=x +bx+c ,当x ≤1时,y ≥0,当1≤x ≤3时,y ≤0,请写出一个满足题意的c 的值是 .三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.)-11-4⎛⎫⎪⎝⎭18.如图8,在⊙O 中,弦AB 、CD 交于点E ,且 AB=CD.求证:AE=DE .图8DA图5A19.如图9,测得BC=180m ,CE=50m ,CD=60m 。

2013年大连市中考二模数学试卷

2013年大连市中考二模数学试卷

2013年大连市中考二模数学试卷一、选择题(共8小题;共40分)1. 下列各数中,最小的数是A. B. C. D.2. 的意义是A. B.C. D.3. 已知两圆的半径分别为,,圆心距为,则这两圆的关系是A. 外切B. 相交C. 内含D. 内切4. 如图几何体的正视图是A. B.C. D.5. 把直线的图象关于轴对称,得到的直线是A. B. C. D.6. 下列事件中属于不可能事件的是A. 个同学中,至少有两名同学出生月份相同B. 天气预报对明天的天气预测不准C. 某班级共有学生人,男学生有人D. 小明的肤色和爸爸相同7. 关于的一元二次方程有实数根,则实数满足A. B.C. 且D. 且8. 如图,将一个高为,底面周长为的圆锥侧面展开得到一个扇形.保持扇形半径不变将其补全成一个圆,这个圆的面积为A. B. C. D.二、填空题(共8小题;共40分)9. 计算:.10. 若分式有意义,则的取值范围是.11. 化简:.12. 校本课上,同学们制作了不同主题的明信片,各个主题明信片个数如下表:主题奇趣动植物中国自然风名胜古迹文化传统名人明星个数个从所有的明信片(每张明信片大小、形状相同)中抽出一张,主题是“奇趣动植物”或“名人明星”的概率是.13. 如图,抛物线的图象与轴交于,两点,则的值为.14. 如图,在菱形中,,分别在,上,且.连接并取的中点,连接,.若,则.15. 初三一班同学体育测试后,老师将全班同学成绩绘制成如图所示的条形统计图.每个等级成绩的人数的众数是.16. 如图,正方形的面积为,是等边三角形,点在正方形内,为对角线上一动点,使最小,则这个最小值为.三、解答题(共10小题;共130分)17. 计算:(1).18. 解不等式组:并求此不等式组时的整数解.19. 已知,如图,在平行四边形中,,是对角线上的两点,且.求证:.20. 某公司想了解一款品牌运动服的销售情况来决定下一步的生产数量.该公司随机统计了某天各个摊位销售这款不同颜色的运动服的销售数量,并绘制成统计表和扇形统计图(如图).颜色红白蓝绿黑五彩销售量件(1)统计的这一天,根据统计图(白色:,红色:),红色运动服销售了件;五彩色运动服销售量约占总销量的(精确到),每种颜色平均销售件.(2)小明和小红恰好在这一天分别在店里购买了这款运动服一件,颜色不同.已知他们购买的是红、黄、蓝、绿四种颜色中的两种.那么他们购买的运动服恰好是红色和蓝色的概率是多少?(画树形图或列表格解题)(3)根据此次调查,在下一批生产的件这款运动服中,应该生产“五彩”颜色运动服多少件?21. 在弹性限度内,弹簧伸长的长度与拉力成正比.如图小明手中拿着由三根相同的弹簧组成的弹簧拉力器.已知拉力器的长度与拉力是一次函数关系,与的部分对应值如下表.单位单位(1)求与之间的函数关系,并直接写出的取值范围.(2)已知小明的最大拉力为.求小明能使单根弹簧伸长的最大长度.22. 某品牌瓶装饮料每箱价格元,某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了元.问该品牌饮料一箱有多少瓶?23. 如图,为的切线,为切点,过作的垂线,垂足为点,交于点,延长与交于点,与的延长线交于点.(1)求证:为的切线;(2)若,求.24. 已知:把和按如图摆放(点与点重合),点,,在同一条直线上.,,,,.如图,从图的位置出发,以的速度沿向匀速移动,在移动的同时,点从的顶点出发,以的速度沿向点匀速移动.当的顶点移动到边上时,停止移动,点也随之停止移动,与相交于点,连接,设移动时间为.解答下列问题:(1)当时,点在线段的垂直平分线上.(2)当为何值时,?(3)连接,设四边形的面积为,求与之间的函数关系式,并写出的取值范围.25. 如图,在菱形和菱形中,点,,在同一条直线上,是线段的中点,连接,.若.(1)请直接写出线段与的位置关系及的值.(2)若将图中的菱形绕点顺时针旋转,使菱形的对角线恰好与菱形的边在同一条直线上,原问题中的其他条件不变,如图.那么你在()中得到的结论是否发生变化?若没变化,直接写出结论,若有变化,写出变化的结果.(3)在图中,若,将菱形绕点顺时针旋转任意角度,原问题中的其他条件不变,请直接写出的值(用含的式子表示).26. 如图,抛物线的顶点为,与轴交于点,直线的解析式为.(1)求,的值;(2)过作轴交抛物线于点,直线交轴于点,且,求抛物线的解析式;(3)在()条件下,抛物线上是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由.答案第一部分1. D2. D3. D4. A5. A6. C7. C8. A第二部分9.10.11.12.13.14.15.16.第三部分17. 原式.18. 由不等式得:由不等式得:即不等数组解集为:因为,所以不等式组的整数解为.19. 因为平行四边形中,,,所以.所以在与中,所以,所以.20. (1);;【解析】总销售量(件),红色运动服销售量(件);五彩色运动服销售量约占总销量的百分比;每种颜色平均销售量(件).(2)画树状图:共有种等可能的结果数,其中购买的运动服恰好是红色和蓝色的占种,.一红一蓝(3),应生产“五彩”颜色运动服件.21. (1)设与之间的函数关系式为,由题意,得解得:;(2)令,,拉力器伸长的长度为:,单根弹簧伸长的长度:,答:可以使一根弹簧伸长.22. 设该品牌饮料一箱有瓶,由题意,得解这个方程,得经检验,,都是原方程的根,但不符合题意,舍去.答:该品牌饮料一箱有瓶.23. (1)连接,为的切线,,,,于,,,在和中,,,为的切线.(2)连接,为直径,,由()知,,,,由得,,.设,则,,由,得,,.可设,,则,,,.24. (1)【解析】,,,,,,依题意,得.,,,.当点在线段的垂直平分线上时,,,解得,即当时,点在线段的垂直平分线上;(2),,.过点作,垂足为(如图).在中,,,,..故.解之得.(3)过点作,垂足为(如图),在中,,,.,四边形即.故的取值范围是:.25. (1);【解析】延长交于,,,是线段的中点,,在和中,,,,,,,,,,,,,;(2)()中的结论没有变化;;【解析】延长交于点,连接,(如图所示).是线段的中点,,由题意可知,故,在和中,,,,四边形是菱形,,,,在同一条直线上,,,(菱形),,在和中,,,,.即,,,,,;(3)【解析】延长至,使,连接,,,是线段的中点,,在和中,,,,,,,,又,,,,,,在和中,,,,又,,,,,,,.26. (1)因为直线的解析式为,所以,所以交轴于点,所以,所以,所以.过作轴于,所以,所以,设抛物线的顶点横坐标为,则,所以.所以,代入,所以,所以(舍),,所以,所以.(2)作抛物线的对称轴交轴于点,(如图),因为,所以,由抛物线的对称性,可得为等边三角形.因为轴,所以为等边三角形,所以为中点,因为,,所以.抛物线对称轴为直线,所以,所以,所以,所以,所以.(3)存在.过作于交抛物线于点,此时.因为为等边三角形,所以为的中垂线,所以,在和中,所以.因为,,所以.设代入,,解得,解得.。

辽宁省大连市甘井子区2013年中考一模数学试卷(含答案)

辽宁省大连市甘井子区2013年中考一模数学试卷(含答案)

辽宁省大连市甘井子区2013年中考一模数学试卷(含答案)甘井子区2013年九年级适应性练习数学一.选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)1.2的绝对值是A.2- B.2 C.22-D.222.在平面直角坐标系中,点P(1,-3)所在的象限为A.第一象限B.第二象限C.第三象限D.第四象限3.如图1是两个长方体堆成的物体,则这一物体的俯视图是A. B.C. D.4. 如图2,直线a⊥直线c,直线b⊥直线c,若∠1=70°,则∠2的度数是图1图2A.70°B.90°C.110°D.80°5.下列运算正确的是A.x4·x3=x12B.(x3)2=x9C.x4÷x3=x(x≠0)D.x3+x4=x76.某种绿豆在相同条件下的发芽试验,结果如下表所示:A.0.96 B.0.95 C.0.94 D.0.907.某校足球队的18名队员的年龄情况如下表:则这些队员年龄的众数和中位数分别是3A .15,15B .15,15.5C .15,16D .16,158.如图3,抛物线y =x 2点,沿直线y =x 平移抛物线,使得平移后的抛物线顶点恰好为A 点,则平移后抛物线的解析式是A .2(1)1=+-y x B .2(1)1=++y x C .2(1)1=-+y x D .2(1)1=--y x二、填空题(本题共8小题,每小题3分,共24方程xx 4=+的解是 . 点= .年龄(单位:岁) 14 15 16 17 18 人数36441图35图4 图5 图611. 一个不透明的袋子中有3个白球、2个黄球和5个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,则它是黄球的概率为 . 12. 已知关于x 的方程260xmx +-=的一个根为2,则m的值 .13. 不等式组235324x x +>⎧⎨-<⎩的解集是 . 14. 如图5,直线b x k y +=1与双曲线x k y 2=相交于A(m ,2),B (-2,-1)两点.当0>x 时,不等式x k b x k 21>+的解集为 .15. 如图6,在⊙O 中,弦AB ∥CD ,若∠BOD =80°,则∠ABC 的度数是 .16. 如图7,直线434+-=x y 交y 轴于点A交x 轴于点B ,点C 为OA 中点,则点C 关于直线AB 对称点C ′的坐标是 .三.解答题(本题共4小题,其中17、18、196题各9分,20题12分,共39分) 17. 计算:25)21()25)(25(2-+-+-18. 先化简,再求值∶2214(1)144--÷-++x x xx , 其中x=13+.19.如图8,点E、F在AC上,AB∥CD,AB =CD,AE=CF,求证:∠B=∠D.D图87820.某中学艺术节期间,向全校学生征集书画作品.王老师从全校14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图(如图9-1、9-2).图9-1图9-2(1)王老师所调查的4个班征集到作品共 件,其中B 班征集到作品 件,请把图9-2补充完整;1)9(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全校共征集到作品多少件?(3)如果全校参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参见学校总结表彰座谈会,用树状图或列表法求出恰好抽中一男一女的概率.四.解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.在一个矩形材料中剪出中阴影所示的四边形(如图10)DFBE、CD的长度(计算结果精确到0.1,参考数据:3≈1.73).22. 底面积为3:2的A、B两个长方体蓄水池,现将A池中18立方米的水全部注入B池,用时3小时.B池中水面高度y(米)与注水时间x(时)之间的函数图象如图11所示,结合图象回答下列问题:(1)注水速度为立方米/时,B水池水面上升了米;(2)从注水开始计时,多长时间两个水池的蓄水量相同;10(3)在所给坐标系中画出A池水面高度y(米)与注水时间x图象,面高度相差1米?时图1123.如图12,AB是⊙O的直径,CA是⊙O的切线,在⊙O上取点D,连接CD,使得AC=DC,延长CD交直线AB于点E.(1)求证:CD是⊙O的切线;(2)作AF ⊥CD 于点F ,交⊙O 于点G ,若⊙O 的半径是6cm ,ED =8cm ,求GF 的长.图12五.解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图13,在△MNQ 中,MN =11,NQ =53,55cos N ,矩形ABCD ,BC =4,CD =3,点ACD EF与M重合,AD与MN重合.矩形ABCD 沿着MQ方向平移,且平移速度为每秒5个单位,当点A与Q重合时停止运动.(1)MQ的长度是;(2)运动秒,BC与MN重合;(3)设矩形ABCD与△MNQ重叠部分的面积为S,运动时间为t,求出S与t之间的函数关系式.(AM图13 备用图25. 如图14-1,在△ABC和△ADE中,AC=AB,AE=AD,∠BAC=∠DAE=m,CE、DB交于点F,连接AF.(1)如图14-2,当m=90°时,猜想BD、CE的关系,并证明你的结论;(2)在(1)的条件下,猜想线段AF、BF、CF数量关系,并证明你的结论;(3)直接写出AF、BF、CF数量关系(用含m的三角函数表示).图14-1 图14-226. 如图15,顶点为D的抛物线6y经过=xa)5(2--点A(13,-5),直线CD交y轴于点C(0,4),2交x轴于点B.(1)求抛物线和直线CD解析式;(2)在直线CD右侧的抛物线上取点E,使得∠EDB=∠C BO,则求点E坐标;(3)点P为射线CD上一点,在(2)条件下,作射线PE,以P为旋转中心逆时针旋转PE,使得旋转后的射线交x坐标轴于点R,且∠EPR=∠C BO.是否存在点R,使得PE=PR,如果存在,请直接写出点R图152013年初三阶段质量检测答案与评分标准数学说明:各位老师辛苦了!本次试卷是模仿2012年大连中考试卷风格命制的,不全部代表今年的考试方向和趋势,其难度低于2012年中考试卷,也一定低于2013年中考试卷。

大连市2013年初中毕业升学考试试题特点分析及教学建议

大连市2013年初中毕业升学考试试题特点分析及教学建议
关键词 : 初 中; 升 学 考试 ; 试题特点 ; 教 学 建议 中图 分 类 号 : G6 3 2 . 3 文献标识码 : A 文章编号: 1 0 0 8 — 3 8 8 X( 2 0 1 3 ) 0 4 — 0 0 4 2 — 0 3
2 0 1 3年大连 市初 中毕业 升学 考试 ( 以下 简称 中 考) 命题 依据《 大 连市 2 0 1 3年 初 中毕业 升 学考 试 和 中等学 校招生 工作 意见 》 大招 委字 [ - 2 0 1 3 ] 1号精 神 : 有 利于 义务 教 育 阶段 学 校 全 面 贯 彻 国家 的教 育 方
3 3 。
考查 学生理 解 、 运用 知识 分 析 和解 决 问题 等最 基 本
的学 习能力 。 二、 试 题特 点
l _ 结构合 理 , 关注考查覆 盖 面
各科试题在 内容选择上尽可能贴近学生生活, 从 学 生实 际生活 经验 中提取素 材 , 关 注考查 覆盖 面 。 例如 , 化学试 卷重 视基础 知识 和基本 技能 的考查 , 课
4 . 关 注热点 ,人
运行轨 道打 开太 阳能帆板 和宇航 员王亚 平进行 空 中
作者简介 : 刘世斌 ( 1 9 6 5 一) , 男, 辽宁大连人 , 中学高级教师 , 化学特级教师 。
刘 世 斌
( 大连教 育学院 初 中教师教育 中心 ,辽宁 大连 1 1 6 0 2 1 )
摘 要: 初 中毕业升学考试命题 以课程标准为依据 , 符合学生 的实际并贴 近学生的生活 , 引导 学生重视学 习过程 的积累 。减
少机械性记忆内容 的考查 , 注重考查学生理解 、 运用 知识分析和解决 问题等最基本 的学 习能力。 日常教学 中, 要加 强对《 课程 标 准》 《 考试说 明》 等相关文件的学 习, 加强课堂中教 与学方式的变革 , 深入研 究学生的学习过程 , 关注高层级 的认知 目标 , 进一 步培 养学生的审题能力 , 提高教师的教学反思能力。

大连市2013年二模数学试题word版

大连市2013年初中升学考试试测(二)数学一、 选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确) 1.85-的相反数是( )A . 58-B . 85-C . 85D . 582.图1是由五个完全相同的正方体组成的几何体,这个几何体的主视图是( )3.下列运算正确的是( )A . x 2+ x 2=2x 4B .x 4·x 2 =x 6C .3x 2÷x=2xD .(x 2)3=x 54.一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的概率是( ) A .61 B . 21 C . 31D .325.在平面直角坐标系中,把点(2,3)向下平移4个单位长度,得到对应点的坐标是( ) A . (2,7) B . (6,3) C . (-2,3) D . (2,-1)6.在Rt △ABC 中,∠C =90º,若BC=2AC ,则∠A 的正切值是( ) A .55 B . 21 C . 552 D . 27.在一次体检中,抽得某班8位同学的身高(单位:cm )分别为:166,158,171,165,175,165,162,169.则这8位同学身高的中位数和众数分别是( )A . 170,165B . 166.5,165C . 165.5,165D . 165,165.58.如图2,抛物线y=-x 2-4x +c (c <0)与x 轴交于点A 和点B(n ,0),点A 在点B 的左侧,则AB 的长是( )A .4-2n B . 4+2n C . 8-2n D . 8+2n二、填空题(本题共8小题,每小题3分,共24分)9.因式分解:x 2-5x =10.今年我市投入10 000 000 000元用于绿化、造林,将10 000 000 000用科学记数法表示为 11.不等式-2x+4<x -8的解集是12.一个正多边形的每一个内角都是140º,则这个正多边形的边数是13.在一个不透明的袋子中,装有3个完全相同的小球,把它们分别标号为1,2,3.在看不到球的条件下,随机摸出一个小球后放回,再随机摸出一个小球.则两次摸出的小球的标号相同的概率是 14.如图3,直线y 1=k 1x+b 1和直线y 2=k 2x+b 2相交于点A (-2,3),当y 1≤y 2时,自变量x 的取值范围是15.在平面直角坐标系中,有两点A (2,-8)、B (10,0).以原点O 为位似中心,相似比为21,把线段AB 缩小.则点A 的对应点A’的坐标为16.如图4,将矩形纸片ABCD 折叠,使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE .若AD =8,EF =3,则AE 的长为三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.计算:3027)13)(13()41(-++--18.解方程:11212=---x x x19.如图5,等腰梯形ABCD 中,AD ∥BC ,点E 、F 在边BC 上,且BE=CF ,AF 与DE 相交于点G . 求证:GE=GF图3图4G DA20.某区为了解八年级女生“立定跳远”试测情况,随机抽取了部分女生的测试成绩进行统计,根据评分标准,将她们的成绩分成“优秀”“良好”“及格”和“不及格”四个等级,并绘制出统计图的一部分(如图6)(1)在被调查的女生中,等级为“优秀”的有 人,“及格”等级对应的扇形圆心角的度数是 °(2)在这次调查中,一共抽取了多少名女生的测试成绩?(3)该区八年级共有2200名女生,试估计该区达到“优秀”等级的女生人数共有多少。

2013年北京、上海、大连、河南、福州市中考数学试题及答案

2013年北京市高级中等学校招生考试数学试卷满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的。

1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划。

将3 960用科学计数法表示应为( )A. 39.6³102B. 3.96³103C. 3.96³104D. 3.96³104 2. 43-的倒数是( ) A. 34 B. 43 C. 43- D. 34-3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为( ) A.51 B. 52 C. 53 D. 544. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于( )A. 40°B. 50°C. 70°D. 80°5. 如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上。

若测得BE=20m ,EC=10m ,CD=20m ,则河的宽度AB 等于( )A. 60mB. 40mC. 30mD. 20m 6. 下列图形中,是中心对称图形但不是轴对称图形的是( )7. 某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5 6 7 8 人数1015205则这50名学生这一周在校的平均体育锻炼时间是( )A. 6.2小时B. 6.4小时C. 6.5小时D. 7小时8. 如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2,设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )二、填空题(本题共16分,每小题4分)9. 分解因式:a ab ab 442+-=_________________10. 请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线的解析式__________10 11. 如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=5,AD=12,则四边形ABOM 的周长为__________12. 如图,在平面直角坐标系x O y 中,已知直线l :1--=x t ,双曲线xy 1=。

辽宁省大连市2013年中考数学一模试卷

辽宁省大连市2013年中考数学一模试卷一、选择题(每小题3分,共24分.在每小题给出的四个选项中,只有一个选项正确)1.(3分)(2013•大连一模)5的相反数是()A.B.5C.﹣5 D.考点:相反数.分析:两数互为相反数,它们的和为0,由此可得出答案.解答:解:设5的相反数为x.则5+x=0,x=﹣5.故选C.点评:本题考查的是相反数的概念.两数互为相反数,它们的和为0.2.(3分)(2013•大连一模)如图是由四个完全相同的正方体组成的几何体,这个几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.专题:应用题.分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.解答:解:从左边看是竖着叠放的2个正方形,故选C.点评:本题主要考查了几何体的三种视图和学生的空间想象能力,难度适中.3.(3分)(2013•大连一模)下列计算正确的是()A.(b2)3=b5B.b2•b3=b6C.b2+b3=2b5D.b3+b3=2b3考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.专题:计算题.分析:A、利用幂的乘方运算法则计算得到结果,即可作出判断;B、利用同底数幂的乘法法则计算得到结果,即可作出判断;C、本选项不能合并,错误;D、合并同类项得到结果,即可作出判断.解答:解:A、(b2)3=b6,本选项错误;B、b2•b3=b5,本选项错误;C、本选项不能合并,错误;D、b3+b3=2b3,本选项正确,故选D点评:此题考查了幂的乘方与积的乘方,合并同类项,去括号与添括号,以及同底数幂的乘法,熟练掌握运算法则是解本题的关键.4.(3分)(2013•大连一模)袋中有3个黄球,2个红球和4个白球,这些球除颜色不同外其余均相同,在看不到球的条件下,随机从袋中摸出1个球,则摸出黄球的概率是()A.B.C.D.考点:概率公式.分析:让黄球的个数除以球的总个数即为所求的概率.解答:解:∵袋中有3个黄球,2个红球和4个白球,∴从布袋中随机摸出一个球是黄球的概率为:=.故选:A.点评:此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.(3分)(2013•大连一模)学校甲、乙两只篮球队成员身高的方差分别为:S甲2=8.6,S乙2=1.5,那么系列说法中正确的是()A.甲队成员身高更整齐B.甲队成员平均身高更大C.乙队成员身高更整齐D.乙队成员平均身高更大考点:方差.分析:根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵S甲2=8.6,S乙2=1.5,∴S甲2>S乙2,∴乙队成员身高更整齐;故选C.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.(3分)(2013•大连一模)已知⊙O1的半径r为3cm,⊙O2的半径R为4cm,两圆的圆心距O1O2为1cm,则这两圆的位置关系是()A.相交B.内含C.内切D.外切考点:圆与圆的位置关系.分析:根据圆心距与半径之间的数量关系可知⊙O1与⊙O2的位置关系是内切.解答:解:∵⊙O1的半径r为3cm,⊙O2的半径R为4cm,两圆的圆心距O1O2为1cm,4﹣3=1,∴⊙O1与⊙O2的位置关系是内切.故选C.点评:本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P,外离:P>R+r;外切:P=R+r;相交:R﹣r<P<R+r;内切:P=R ﹣r;内含:P<R﹣r.7.(3分)(2013•大连一模)如图,要想证明平行四边形ABCD是菱形,下列条件中不能添加的是()A.A C、BD互相垂直平分B.A C⊥BDC.A B=AD D.A C=BD考点:菱形的判定.分析:根据菱形的判定(①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形)判断即可.解答:解:A、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,正确,故本选项错误;B、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,正确,故本选项错误;C、四边形ABCD是平行四边形,AB=AD,∴平行四边形ABCD是菱形,正确,故本选项错误;D、根据四边形ABCD是平行四边形和AC=BD,得出四边形ABCD是矩形,不能推出四边形是菱形,错误,故本选项正确;故选D.点评:本题考查了菱形的判定定理的应用,注意:菱形的判定定理有①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形.8.(3分)(2013•大连一模)如图,一条抛物线与x轴相交于A、B两点(点A在点B的左侧),其顶点P在线段MN上移动.若点M、N的坐标分别为(﹣1,﹣2)、(1,﹣2),点B的横坐标的最大值为3,则点A的横坐标的最小值为()A.﹣3 B.﹣1 C.1D.3考点:二次函数综合题.专题:压轴题.分析:根据顶点P在线段MN上移动,又知点M、N的坐标分别为(﹣1,﹣2)、(1,﹣2),分别求出对称轴过点M和N时的情况,即可判断出A点坐标的最小值.解答:解:根据题意知,点B的横坐标的最大值为3,即可知当对称轴过N点时,点B的横坐标最大,此时的A点坐标为(﹣1,0),当可知当对称轴过M点时,点A的横坐标最小,此时的B点坐标为(1,0),此时A点的坐标最小为(﹣3,0),故点A的横坐标的最小值为﹣3,故选A.点评:本题主要考查二次函数的综合题的知识点,解答本题的关键是熟练掌握二次函数的图象对称轴的特点,此题难度一般.二、填空题(本题共8小题,每小题3分,共24分)9.(3分)(2013•大连一模)16的平方根是±4.考点:平方根.专题:计算题;压轴题.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±4)2=16,∴16的平方根是±4.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.(3分)(2013•大连一模)分解因式:x2﹣9x=x(x﹣9).考点:因式分解的意义.分析:首先确定多项式中的两项中的公因式为x,然后提取公因式即可.解答:解:原式=x•x﹣9•x=x(x﹣9),故答案为:x(x﹣9).点评:本题考查了提公因式法因式分解的知识,解题的关键是首先确定多项式各项的公因式,然后提取出来.11.(3分)(2013•大连一模)当x=9时,x2﹣2x+5=68.考点:代数式求值.专题:计算题.分析:将x的值代入原式计算即可求出值.解答:解:将x=9代入得:原式=81﹣18+5=68.故答案为:68点评:此题考查了代数式求值,比较简单,是一道基本题型.12.(3分)(2013•大连一模)学校要从小明等13名同学出选出6名学生参加数学竞赛.经过选拔赛后,小明想提前知道自己能否被选上,他除了要知道自己的成绩以外,还要知道这13名同学成绩的中位数.考点:统计量的选择.分析:13人成绩的中位数是第7名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.解答:解:由于总共有13个人,且他们的分数互不相同,第7名的成绩是中位数,要判断是否进入前6名,故小明应知道自已的成绩和中位数.故答案为:中位数.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.13.(3分)(2013•大连一模)如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD=25度.考点:平行线的性质;三角形内角和定理.专题:计算题.分析:要求∠BCD的度数,只需根据平行线的性质求得∠B的度数.显然根据三角形的内角和定理就可求解.解答:解:∵在Rt△ABC中,∠BAC=65°,∴∠ABC=90°﹣∠BAC=90°﹣65°=25°.∵AB∥CD,∠BCD=∠ABC=25°.点评:本题考查了平行线性质的应用,锻炼了学生对所学知识的应用能力.14.(3分)(2013•大连一模)如果关于x的方程x2﹣3x+k=0(k为常数)有两个不相等的实数根,那么k应满足的条件为k<.考点:根的判别式.专题:计算题.分析:根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式的意义得到△>0,即(﹣3)2﹣4×1×k>0,然后解不等式即可.解答:解:∵关于x的方程x2﹣3x+k=0(k为常数)有两个不相等的实数根,∴△>0,即(﹣3)2﹣4×1×k>0,解得k<,∴k的取值范围为k<.故答案为k<.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.15.(3分)(2013•大连一模)在如图所示的平面直角坐标系中,将△OAB绕点O逆时针旋转90度后与△OCD重合.已知线段OB扫过的面积为4π,则OB长4.考点:旋转的性质;扇形面积的计算.分析:根据旋转的性质得出∠DOB=90°,再利用扇形的面积公式求出OB的长即可.解答:解:∵将△OAB绕点O逆时针旋转90度后与△OCD重合,线段OB扫过的面积为4π,∴∠DOB=90°,S扇形DOB==4π,解得:OB=4,故答案为:4.点评:此题主要考查了旋转的性质以及扇形的面积公式,根据扇形面积公式求出是解题关键.16.(3分)(2013•大连一模)如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN 交AC于D,连接BD,若cos∠BDC=,则BC的长为4.考点:解直角三角形;线段垂直平分线的性质.专题:计算题;压轴题.分析:由于cos∠BDC=,可设DC=3x,BD=5x,由于MN是线段AB的垂直平分线,故AD=DB,AD=5x,又知AC=8cm,即可据此列方程解答.解答:解:∵cos∠BDC=,可∴设DC=3x,BD=5x,又∵MN是线段AB的垂直平分线,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,BC==4.故答案为4.点评:本题考查了线段垂直平分线的性质、勾股定理、解直角三角形的相关知识,综合性较强,计算要仔细.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)(2013•大连一模)解方程:考点:解分式方程.专题:计算题.分析:方程两边都乘以最简公分母(x﹣4),化为整式方程求解即可.解答:解:方程两边同乘以x﹣4,得:(3﹣x)﹣1=x﹣4(2分)解得:x=3(6分)经检验:当x=3时,x﹣4=﹣1≠0,所以x=3是原方程的解.(8分)点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根;(3)去分母时要注意符号的变化.18.(9分)(2013•大连一模)解不等式组.考点:解一元一次不等式组.分析:本题可根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解.解答:解:由①得:去括号得,x﹣3x+6≤4,移项、合并同类项得,﹣2x≤﹣2,化系数为1得,x≥1.(12分)由②得:去分母得,1+2x>3x﹣3,移项、合并同类项得,﹣x>﹣4,化系数为1得,x<4(4分)∴原不等式组的解集为:1≤x<4.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x同时<某一个数,那么解集为x<较小的那个数.19.(9分)(2013•大连一模)如图,在平行四边形ABCD中,E、F分别在AD、BC上,∠DEC=∠BFA,G为AC、EF交点求证:EG=GF.考点:平行四边形的判定与性质.专题:证明题.分析:欲证明EG=GF,只需证明四边形AFCE是平行四边形.解答:证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠BFA=∠DAF.又∵∠DEC=∠BFA,∴∠DEC=∠DAF,∴EC∥AF,∴四边形AFCE是平行四边形,∴EF=GF.点评:本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.20.(12分)(2013•大连一模)《中学生体质健康标准》规定学生体质健康等级标准为:86分及以上为优秀;76分~85分为良好;60分~75分为及格;59分及以下为不及格.某校从九年级学生中随机抽取了10%的学生进行了体质测试,得分情况如下图.(1)在抽取的学生中不及格人数所占的百分比是4%;(2)小明按以下方法计算出抽取的学生平均得分是:(90+78+66+42)÷4=69.根据所学的统计知识判断小明的计算是否正确,若不正确,请写出正确的算式;(不必算出结果)(3)若不及格学生的总分恰好等于某一个良好等级学生的分数,请估算出该校九年级学生中优秀等级的人数.考点:扇形统计图;解一元一次不等式组;用样本估计总体;条形统计图.专题:应用题;压轴题;图表型.分析:(1)根据扇形统计图的定义,各部分占总体的百分比之和为1,由扇形图可知,不及格人数所占的百分比是1﹣52%﹣26%﹣18%=4%;(2)抽取的学生平均得分=各等级学生的平均分数×所占百分比的和;(3)可由一个良好等级学生分数和不及格学生平均分估算得出,也可用不等式的思想得出.解答:解:(1)不及格人数所占的百分比是1﹣52%﹣26%﹣18%=4%(1分);(2)不正确,(1分)正确的算法:90×18%+78×26%+66×52%+42×4%;(2分)(3)因为一个良好等级学生分数为76~85分,而不及格学生平均分为42分,由此可以知道不及格学生仅有2人,将一个良好等级的分数当成78分估算出此结果也可,(2分)抽取优秀等级学生人数是:2÷4%×18%=9人,(3分)九年级优秀人数约为:9÷10%=90人(4分)点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,本题也考查了平均数、中位数、众数的认识.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(9分)(2013•大连一模)某学校宏志班的同学们五一期间去双塔寺观赏牡丹,同时对文宣塔的高度进行了测量.如图,他们先在A处测得塔顶C的仰角为30°;再向塔的方向直行80步到达B处,又测得塔顶C的仰角为60度.请用以上数据计算塔高.(学生的身高忽略不计,1步=0.8m,结果精确到1m)考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:首先分析图形:根据题意构造直角三角形;本题涉及多个直角三角形,应利用其公共边构造等量关系,进而可求出答案.解答:解:根据题意可得:设C在地面的垂足为D;且CD=x;在△ACD中,有AD=x÷tan30°=x,在△BCD中,有BD=x÷tan60°=x,故AD﹣BD=80×0.8=64;解可得:x≈55.4.故塔高CD约55.4米.点评:本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.(9分)(2013•大连一模)如图①,一条笔直的公路上有A、B、C 三地,B、C 两地相距150千米,甲、乙两辆汽车分别从B、C两地同时出发,沿公路匀速相向而行,分别驶往C、B 两地.甲、乙两车到A地的距离y1、y2(千米)与行驶时间x(时)的关系如图②所示.根据图象②进行以下探究:(1)求图中②M点的坐标,并解释该点的实际意义.(2)在图②中补全甲车的函数图象,求甲车到A地的距离y1与行驶时间x的函数关系式.(3)A地设有指挥中心,指挥中心及两车都配有对讲机,两部对讲机在15千米之内(含15千米)时能够互相通话,求两车可以同时与指挥中心用对讲机通话的时间.考点:一次函数的应用.分析:(1)根据B、C间的距离和乙从C地到B地的时间求出乙车的速度,由C、A的距离和乙车的速度可求M的坐标,即乙车从C到A所花时间;(2)先求甲车的速度,再求甲车从B到C所用总时间,然后分时段讨论,列出甲车到A地的距离y1与行驶时间x的函数关系式;(3)根据两部对讲机在15千米之内(含15千米)时能够互相通话,即甲乙离A地的距离分别小于或者等于15千米,可以得到两个不等式组,解这两个不等式组,再将其综合可得x的取值范围,那么两车可以同时与指挥中心用对讲机通话的时间可求.解答:解:(1)乙车的速度150÷2=75(千米/时),90÷75=1.2,∴M点的坐标是:(1.2,0)所以点M表示乙车1.2小时到达A地.(2)甲车的函数图象如图所示.甲车的速度60÷1=60(千米/时),甲车从B到C所用时间为:150÷60=2.5(小时)当0≤x≤1时,y1=60﹣60x当1<x≤2.5时,y1=60x﹣60(3)由题意得,解之得,≤x≤由题意得,,解之得,1≤x≤∴1≤x≤∴两车同时与指挥中心通话的时间为:﹣1=(小时)点评:本题主要考查一次函数在实际中的应用,其中涉及分段函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.23.(10分)(2013•大连一模)如图,在△ABC中,∠B=30°,以边AB的中点O为圆心,BO长为半径作⊙O,恰好过顶点C.在半圆AB上取点D,连接CD.(1)∠ACB的度数为90°,理由是直径所对的圆周角是直角.(2)在半圆AB上取中点D,连接CD.若AC=6,补全图形并求CD的长.考点:圆周角定理;解直角三角形.分析:(1)根据直径所对的圆周角是直角即可求出∠ACB的度数;(2)分两种情况讨论:①C、D两点在直径AB异侧;②C、D两点在直径AB同侧.解答:解:(1)∵AB是⊙O的直径,⊙O过点C,∴∠ACB=90°(直径所对的圆周角是直角).(2)分两种情况讨论:①C、D两点在直径AB异侧,连接BD,过B作BE⊥CD于E.在△ABC中,∵∠ACB=90°,∠ABC=30°,AC=6,∴AB=2AC=12,BC=AC=6.∵在半圆AB上取中点D,∴∠BCD=45°,∴△BCE是等腰直角三角形,∴BE=CE=BC=3.在△BDE中,∵∠BED=90°,∠D=∠A=60°,∴DE=BE=3,∴CD=CE+DE=3+3;②C、D两点在直径AB同侧,连接BD,过B作BE⊥CD于E.在△ABC中,∵∠ACB=90°,∠ABC=30°,AC=6,∴AB=2AC=12,BC=AC=6.∵在半圆AB上取中点D,∴∠BCD=45°,∴△BCE是等腰直角三角形,∴BE=CE=BC=3.在△BDE中,∵∠BED=90°,∠BDE=∠A=60°,∴DE=BE=3,∴CD=CE﹣DE=3﹣3.故答案为:90,直径所对的圆周角是直角.点评:本题考查了圆周角定理,解直角三角形,作辅助线构造直角三角形及分类讨论是解题的关键.五.解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(11分)(2013•大连一模)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=﹣x+b交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.考点:一次函数综合题.专题:压轴题;分类讨论.分析:(1)要表示出△ODE的面积,要分两种情况讨论,①如果点E在OA边上,只需求出这个三角形的底边OE长(E点横坐标)和高(D点纵坐标),代入三角形面积公式即可;②如果点E在AB边上,这时△ODE的面积可用长方形OABC的面积减去△OCD、△OAE、△BDE的面积;(2)重叠部分是一个平行四边形,由于这个平行四边形上下边上的高不变,因此决定重叠部分面积是否变化的因素就是看这个平行四边形落在OA边上的线段长度是否变化.解答:解:(1)∵四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),∴B(3,1),若直线经过点A(3,0)时,则b=若直线经过点B(3,1)时,则b=若直线经过点C(0,1)时,则b=1①若直线与折线OAB的交点在OA上时,即1<b≤,如图1,此时E(2b,0)∴S=OE•CO=×2b×1=b;②若直线与折线OAB的交点在BA上时,即<b<,如图2此时E(3,),D(2b﹣2,1),∴S=S矩﹣(S△OCD+S△OAE+S△DBE)=3﹣[(2b﹣2)×1+×(5﹣2b)•(﹣b)+×3(b﹣)]=b﹣b2,∴S=;(2)如图3,设O1A1与CB相交于点M,OA与C1B1相交于点N,则矩形O1A1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积.由题意知,DM∥NE,DN∥ME,∴四边形DNEM为平行四边形根据轴对称知,∠MED=∠NED又∵∠MDE=∠NED,∴∠MED=∠MDE,∴MD=ME,∴平行四边形DNEM为菱形.过点D作DH⊥OA,垂足为H,设菱形DNEM的边长为a,由题意知,D(2b﹣2,1),E(2b,0),∴DH=1,HE=2b﹣(2b﹣2)=2,∴HN=HE﹣NE=2﹣a,则在Rt△DHN中,由勾股定理知:a2=(2﹣a)2+12,∴a=,∴S四边形DNEM=NE•DH=.∴矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为.点评:本题是一个动态图形中的面积是否变化的问题,看一个图形的面积是否变化,关键是看决定这个面积的几个量是否变化,本题题型新颖,是个不可多得的好题,有利于培养学生的思维能力,但难度较大,具有明显的区分度.25.(12分)(2013•大连一模)在△ABC中,P是BA延长线上一点,AE是∠CAP的平分线,CE⊥AE于E,BD⊥EA延长线于D.(1)若四边形BCED是正方形(如图①),AB、AC分别于CD、BE相交于点M、N,求证:△ADM≌△AEN.(2)如图②,若AD=kAE,BE、CD相交于F.试探究EF、BF之间的数量关系,并说明理由.(用含k的式子表示)考点:相似形综合题.分析:(1)先根据对顶角相等得出∠DAB=∠PAE,再由AE平分∠PAC,∠DAB=∠EAC,根据四边形BCED是正方形,可知BD=CE,∠BDA=∠CEA=90°,由ASA定理得出△DAB≌△EAC(ASA),故可得出AD=AE,再由BE、CD是正方形BCDE的对角线可知∠MDA=∠NEA,由此即可得出结论;(2)由(1)得∠DAB=∠EAC,再由相似三角形的判定定理得出△ABD∽△ACE,由AD=kAE可知==k,根据BD∥CE,可得出∠FDB=∠FCE,∠FBD=∠FEC,故△DFB∽△CFE,根据相似三角形的性质可知==k,由此即可得出结论.解答:(1)证明:∵∠DAB=∠PAE,AE平分∠PAC,∴∠DAB=∠EAC,又∵四边形BCED是正方形,∴BD=CE,∠BDA=∠CEA=90°,∴∠ABD=∠ACE,在△DAB与△EAC中,,∴△DAB≌△EAC(ASA),∴AD=AE,∵BE、CD是正方形BCDE的对角线,∴∠MDA=∠NEA,在△ADM与△AEN中,,∴△ADM≌△AEN(SAS);(2)猜想:BF=kEF(或EF=BF).证明:由(1)得∠DAB=∠EAC,∵∠BDA=∠CEA=90°,∴△ABD∽△ACE,∵AD=kAE,∴==k,∵BD∥CE,∴∠FDB=∠FCE,∠FBD=∠FEC,∴△DFB∽△CFE,∴==k,∴EF=kEF(或EF=BF).点评:本题考查的是相似形综合题,涉及到全等三角形及相似三角形的判定与性质,难度适中.26.(12分)(2013•大连一模)已知,如图,在平面直角坐标系中,点A坐标为(﹣2,0),点B坐标为(0,2 ),点E为线段AB上的动点(点E不与点A,B重合),以E为顶点作∠OET=45°,射线ET交线段OB于点F,C为y轴正半轴上一点,且OC=AB,抛物线y=x2+mx+n的图象经过A,C两点.(1)求此抛物线的函数表达式;(2)求证:∠BEF=∠AOE;(3)当△EOF为等腰三角形时,求此时点E的坐标;温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.考点:二次函数综合题.专题:代数几何综合题;压轴题.分析:(1)根据点A、B的坐标求出OA、OB,再利用勾股定理列式求出AB,然后求出点C的坐标,再把点A、C的坐标代入抛物线解析式,利用待定系数法求二次函数解析式解答;(2)先求出∠BAO=∠ABO=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠BEO=∠BAO+∠AOE=45°+∠AOE,再根据∠BEO=∠OEF+∠BEF=45°+∠BEF,从而得证;(3)分①当OE=OF时,根据等边对等角可得∠OFE=∠OEF=45°,然后根据三角形的内角和定理求出∠EOF=90°,从而得到点E与点A重合,不符合题意;②当FE=FO 时,根据等边对等角可得∠EOF=∠OEF=45°,再根据三角形的内角和定理求出∠EFO=90°,然后根据同旁内角互补,两直线平行求出EF∥AO,再根据两直线平行,同位角相等求出∠BEF=∠BAO=45°,然后求出EF=BF=OF=OB,再写出点E的坐标即可;③当EO=EF时,过点E作EH⊥y轴于点H,利用“角角边”证明△AOE和△BEF 全等,根据全等三角形对应边相等可得BE=AO=2,然后求出△BEH是等腰直角三角形,根据等腰直角三角形的性质求出BH=EH=BE,再求出OH,然后写出点E的坐标即可.解答:解:(1)∵A (﹣2,0)B (0,2),∴OA=OB=2,∴AB===2,∵OC=AB,∴OC=2,∴C(0,2),又∵抛物线y=﹣x2+mx+n的图象经过A、C两点,∴,解得,,所以,抛物线的表达式为y=﹣x2﹣x+2;(2)∵OA=OB,∠AOB=90°,∴∠BAO=∠ABO=45°,又∵∠BEO=∠BAO+∠AOE=45°+∠AOE,∠BEO=∠OEF+∠BEF=45°+∠BEF,∴∠BEF=∠AOE;(3)当△EOF为等腰三角形时,分三种情况讨论:①当OE=OF时,∠OFE=∠OEF=45°,在△EOF中,∠EOF=180°﹣∠OEF﹣∠OFE=180°﹣45°﹣45°=90°,又∵∠AOB=90°,则此时点E与点A重合,不符合题意,此种情况不成立;②如图2,当FE=FO时,∠EOF=∠OEF=45°,在△EOF中,∠EFO=180°﹣∠OEF﹣∠EOF=180°﹣45°﹣45°=90°,∴∠AOF+∠EFO=90°+90°=180°,∴EF∥AO,∴∠BEF=∠BAO=45°,又∵∠ABO=45°,∴∠BEF=∠ABO,∴BF=EF,∴EF=BF=OF=OB=×2=1,∴E(﹣1,1);③如图3,当EO=EF时,过点E作EH⊥y轴于点H,在△AOE和△BEF中,,∴△AOE≌△BEF(AAS),∴BE=AO=2,∵EH⊥OB,∠BAO=45°,∴△BEH是等腰直角三角形,∴BH=EH=BE=×2=,∴OH=OB﹣BH=2﹣,∴E(﹣,2﹣),综上所述,当△EOF为等腰三角形时,所求E点坐标为E(﹣1,1)或E(﹣,2﹣).点评:本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,三角形的一个外角等于与它不相邻的两个内角的和的性质,等腰三角形的性质,等腰直角三角形的判定与性质,难点在于(3)要分情况讨论.。

2013年数学中考试卷及答案

2013年数学中考试卷及答案2013年中考数学试卷包括三个部分:①阅读理解,②解答题,③计算题和填空题。

各部分题量如下:①阅读理解1道;②解答题1道;③计算题1道;④计算题2道。

其中填空1道、解答题1道。

这道试卷主要考查了学生的知识迁移能力,即学生在解决实际问题的过程中发现问题、解决问题能力,同时也考察了学生语言表达能力。

答题时间为45分钟。

①阅读理解2个大题、②解答题2个小题,③计算题1个小题。

要求学生能较熟练地运用所学知识解决问题,能从自己或他人熟悉的情境中发现新问题并提出不同观点、结论,以及能进行简单地推理、判断、证明。

一、试题主要考查了数形结合和空间想象能力。

这是对学生数形结合、空间想象能力的有力考查。

例如第2、3题有一个明显的特征,就是考查了关于物体的面积的计算;第8、9、10题考查了坐标系知识;第9、10、11题和第20题考查了椭圆的面积计算;第22题考查了圆锥曲线与圆锥坐标系之间的联系;第23题考查了三角形的面积计算两种方法中的一种;第24题解答了一道关于四线段的平行四边形的图形,用三角形的基本性质求直线(圆)与直角三角形(直角)的值;第25题在解答一道关于圆锥曲线的问题中,以圆上一个坐标为圆心,画出一个圆并作线段证明了这个圆的面积;第26题考查了一个关于抛物线的图形求点坐标的问题;第26题考查了一道利用图象(点)表示三角形内角的面积;第27题以圆为背景考查了一枚圆心和圆对称方程组)的求解过程、求圆面积的方法;这就涉及了圆锥曲线的画法和圆几何图形、圆与平行四边形等数学知识和概念的考查。

同时通过这些题目也让学生充分感受到学习数学的乐趣和快乐。

这体现了中考数学命题在知识考查中体现了回归教材这一特点。

特别是在一些重要章节与重点内容中体现了数形结合、空间想象等考查特点。

例如第1、2、3、5题分别考查了点的坐标及面积。

第3、5、6题考查了圆的面积计算和坐标系中相关公式的掌握或应用等。

二、考查了学生的运算能力,也包括空间想象能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档