电源设计中的电容选用规则_
滤波电容的选型与计算(详解)

电源滤波电容的选择与计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。
电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。
电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。
电容和电感的很多特性是恰恰相反的。
一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。
因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。
低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。
当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。
因此在使用中会因电解液的频繁极化而产生较大的热量。
而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。
电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。
一般前面那个越大越好,两个电容值相差大概100倍左右。
电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。
大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率.采用电容滤波设计需要考虑参数:ESRESL耐压值谐振频率那么如何选取电源滤波电容呢?电源滤波电容如何选取,掌握其精髓与方法,其实也不难1) 理论上理想的电容其阻抗随频率的增加而减少(1/jwc),但由于电容两端引脚的电感效应,这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的FSR参数,这表示频率大于FSR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰的抑制就大打折扣,所以需要一个较小的电容并联对地.原因在于小电容,SFR值大,对高频信号提供了一个对地通路,所以在电源滤波电路中我们常常这样理解:大电容滤低频,小电容滤高频,根本的原因在于SFR(自谐振频率)值不同,想想为什么?如果从这个角度想,也就可以理解为什么电源滤波中电容对地脚为什么要尽可能靠近地了.2)那么在实际的设计中,我们常常会有疑问,我怎么知道电容的SFR是多少? 就算我知道SFR 值,我如何选取不同SFR值的电容值呢? 是选取一个电容还是两个电容?电容的SFR值和电容值有关,和电容的引脚电感有关,所以相同容值的0402,0603,或直插式电容的SFR值也不会相同,当然获取SFR值的途径有两个:1)器件Datasheet,如22pf0402电容的SFR值在2G左右,2)通过网络分析仪直接量测其自谐振频率,想想如何测量S21?知道了电容的SFR值后,用软件仿真,如RFsim99,选一个或两个电路在于你所供电电路的工作频带是否有足够的噪声抑制比.仿真完后,那就是实际电路试验,如调试手机接收灵敏度时,LNA的电源滤波是关键,好的电源滤波往往可以改善几个dB.电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好.但由于引线和PCB布线原因,实际上电容是电感和电容的并联电路,(还有电容本身的电阻,有时也不可忽略)这就引入了谐振频率的概念:ω=1/(LC)1/2在谐振频率以下电容呈容性,谐振频率以上电容呈感性.因而一般大电容滤低频波,小电容滤高频波.这也能解释为什么同样容值的STM封装的电容滤波频率比DIP封装更高.至于到底用多大的电容,这是一个参考电容谐振频率不过仅仅是参考而已,老工程师说主要靠经验.更可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.文章来源:/s/blog_545edca401000ax6.html我看了这篇文章,也做个粗略的总结吧:1.电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。
电源安规设计规范

超音波焊接外壳的内部到外部安全距离测量方法:如右图,中间 突出部分比较宽在超音波焊接时不会融化,正确的电气间隙和爬 电距离尺寸为红色虚线所示,设计时应注意。
R/I 输出线在施加10N作用力下与任何带危险 电压的零部件间距离必须满足Cl:6.0mm/Cr:6.0mm Min.,如距离不足可使用 热缩套管或固定线材的方式增加绝缘距离.
B/I Fuse 前L-N间或Fuse引脚间,fuse前与fuse后,按照设 备输入电压设计适当的安全距离。一般设计要求为: Cl:3.0mm/Cr:3.0mm Min.
B/I 一次侧线路与保护接地导体间,按照设备输入电 压设计适当的安全距离。一般设计要求为: Cl:3.0mm/Cr:4.0mm Min.
绕组温升要求(IEC60950-1&GB4943-2011) :
绝缘等级
Class A Class E Class B Class F Class H
最高温升限制ΔT(K)
75 90 95 115 140
最高温度限制(℃)
100 115 120 140 165
异常状况下最高温度限制 (℃)
150 165
危险能量
• 设计要点:输出端子设计成不能被测试指桥接的形式,或将输出 能量限制在持续1minute最大输出小于240VA。
SELV电路
• 设计要点: • 1.在正常工作时,SELV电路电压不应超过安全电压或60Vdc)。 • 2.在单一故障条件下,经过后,电压不应超过安全电压或60Vdc),
而且其极限值不应超过71Vpeak或120Vdc。
175 190 210
注:⑴上表中温带是以室温25℃为基础,对热带是以35℃为基准;
⑵如果以热电耦偶合式量测,则最大温升限值需减10℃。
开关电源中X电容和Y电容设计规则

开关电源中X电容和Y电容设计规则开关电源的X电容设计准则:参考AD1118X电容放置原则:1.共模扼流圈前:105/275VA CMKP/X22.共模扼流圈后:474/275VA CMKP/X2参考MWSP200-12X电容放置原则:1.共模扼流圈前:1uF/275VA CMKP/X22.共模扼流圈后:0.33uF/275VA CMKP/X2参考MWS145-12X电容放置原则:1.共模扼流圈前:0.22uF/MKP-X2-250VA C/275VA CGS-L2.共模扼流圈后:0.1uF/MKP-X2-250VA C/275VA CGS-L一般两级X电容,前一级用0.47uF第二级用0.1uF;单级则用0.47uF.目前还没有比较方便的计算方法。
电容容量的大小和电源的功率无直接关系)开关电源的Y电容设计准则:大地=PGNDorCHGND参考AD1118Y电容放置原则:1.市电输入L/N线对大地:2颗472/250VY22.市电经过一级共模扼流圈后的两线对大地:2颗472/250V3.整流桥输出的低压端(变压器初级低压端)对大地:1颗222/250V4.6组低压直流输出88V1对大地:各1颗103/1KVY15.6组低压输出辅助电源AGND变压器次级低压端)对大地:共用1颗103/1KVY16.变压器初级低压端对变压器次级低压端:共用1颗103/1kVY1参考AD1043设计:1.市电输入L/N线对大地:2颗222/250VY22.市电经过1级共模扼流圈后的两线对大地:2颗472/250VY2参考康殊电子的设计:1.市电输入L/N线对大地:2颗102/250VY22.市电经过2级共模扼流圈后的两线对大地:2颗102/250VY23.整流桥输出的低压端(变压器初级低压端无线数传模块)对大地:1颗332/250VY24.12V低压直流输出对大地:1颗223/1KVDISCY15.变压器初级低压端对变压器次级低压端:222/250VY1参考MWS-145-12设计:1.市电经过1级共模扼流圈后的两线对大地:2颗222/2kVY12.整流桥输出的低压端(变压器初级低压端)对大地:1颗222/2kVY13.12V低压直流输出GND对大地:1颗103/1KVY1参考MWS-200-12设计:1.市电输入L/N线对大地:2颗472/250VY2未上)2.市电经过1级共模扼流圈后的两线对大地:2颗472/250VY22.整流桥输出的低压端(变压器初级低压端)对大地:1颗222/250VY23.PFC输出高压端对变压器初级地:1颗103/2kVY14.12V低压直流输出对大地:1颗103/1KVY15.12V低压直流输出GND对大地:1颗203/1KVY1根据上述说明,Y电容设计规则如下:可适当选择)1.市电输入L/N线对大地:2颗222/250VY22.市电经过一级共模扼流圈后的两线对大地:2颗222/250VY23.整流桥输出的低压端(变压器初级低压端)对大地:1颗222/250VY24.变压器初级低压端对变压器次级低压端:共用1颗103/1kVY15.低压侧直流输出对大地:1颗103/1KV6.低压输出侧GND对大地:1颗103/1KV。
电源设计之整流桥和滤波电容的选择

1、整流桥的导通时间与选通特性50Hz交流电压经过全波整流后变成脉动直流电压u1,再通过输入滤波电容得到直流高压U1。
在理想情况下,整流桥的导通角本应为180°(导通范围是从0°~180°),但由于滤波电容器C的作用,仅在接近交流峰值电压处的很短时间内,才有输入电流流经过整流桥对C充电。
50Hz交流电的半周期为10ms,整流桥的导通时间tC≈3ms,其导通角仅为54°(导通范围是36°~90°)。
因此,整流桥实际通过的是窄脉冲电流。
桥式整流滤波电路的原理如图1(a)所示,整流滤波电压及整流电流的波形分别如图l(b)和(c)所示。
总结几点:(1)整流桥的上述特性可等效成对应于输入电压频率的占空比大约为30%。
(2)整流二极管的一次导通过程,可视为一个“选通脉冲”,其脉冲重复频率就等于交流电网的频率(50Hz)。
(3)为降低开关电源中500kHz以下的传导噪声,有时用两只普通硅整流管(例如1N4007)与两只快恢复二极管(如FR106)组成整流桥,FRl06的反向恢复时间trr≈250ns。
2、整流桥的参数选择隔离式开关电源一般采用由整流管构成的整流桥,亦可直接选用成品整流桥,完成桥式整流。
全波桥式整流器简称硅整流桥,它是将四只硅整流管接成桥路形式,再用塑料封装而成的半导体器件。
它具有体积小、使用方便、各整流管的参数一致性好等优点,可广泛用于开关电源的整流电路。
硅整流桥有4个引出端,其中交流输入端、直流输出端各两个。
硅整流桥的最大整流电流平均值分0.5~40A等多种规格,最高反向工作电压有50~1000V等多种规格。
小功率硅整流桥可直接焊在印刷板上,大、中功率硅整流桥则要用螺钉固定,并且需安装合适的散热器。
整流桥的主要参数有反向峰值电压URM(V),正向压降UF(V),平均整流电流Id(A),正向峰值浪涌电流IFSM(A),最大反向漏电流IR(μA)。
电容

电容电容是最常用的电子元器件之一,即便是在一块最普通的电路板上,电容也随处可见,但同时,电容也是最容易被忽视的器件。
在设计中,设计者们往往知道要放置电容,但对电容容量以及选型却随心所欲。
1.电容的作用(1)电荷缓冲池在高速电路设计中,电源的负载是动态的,即高速运行器件的电流和功耗是不断变化的。
为了保证器件工作的稳定,希望器件的工作电压不随电流和功耗的剧烈变化而同程度的变化,即希望器件电压尽量稳定。
在这种情况下,需要为器件提供一个缓冲池,以便当外界环境剧烈变化时,器件的工作电压能保持相对的稳定。
电容的本质是储存电荷和释放电荷,当外界环境变化时,电容的电荷能被迅速积累或释放。
根据公式/U Q C∆=∆(U∆表示电容两端电压的变化量,Q∆表示电容两端电荷的变化量,C为电容的容值),当外界环境的变化驱使器件的工作电压增加或者减少时,电容能够通过积累或者释放电荷已吸收这种变化,即将器件工作电压的变化转变为电容电荷的变化,从而保持器件工作电压的稳定。
该电容称之为退耦电容,容值一般表较大,10uF~100uF。
如果电容是理想的电容,选用越大的电容当然越好了,因为越大电容越大,瞬时提供电量的能力越强,由此引起的电源轨道塌陷的值越低,电压值越稳定。
但是,实际的电容并不是理想器件,因为材料、封装等方面的影响,具备有电感(ESL)、电阻(ESR)等附加特性;(2)高频噪声的重要泄放通道对于高速运行的电路而言,无时无刻不存在状态的转变。
例如,信号的状态不断的在1和0之间切换,这种高速的转变,将在电路上产生大量的噪声等干扰。
在电源传输路径上,需要将这些干扰排放到相对稳定的地平面上。
根据公式Z=1/(jωC),当频率较高时,电容表现为低阻抗,因此可将电容作为高频噪声的重要泄放通道,即起到滤波的作用。
(3)实现交流耦合当两个器件通过高速信号互连时,信号两端的器件可能对直流分量有着不同的要求。
对于这种情况,需要将信号所携带的发送端的直流分量在到达接收端之前,予以滤除。
三相电源pfc电路中相线与母线中点电压的滤波电容_概述及解释说明

三相电源pfc电路中相线与母线中点电压的滤波电容概述及解释说明1. 引言1.1 概述本文将讨论三相电源PFC电路中的一个重要问题,即相线与母线中点电压的滤波电容。
在三相电源和PFC(功率因数校正)电路中,相线与母线中点电压的稳定性对于保证系统的正常运行至关重要。
通过合理选择和设计滤波电容,可以有效地降低相线与母线中点电压的幅值波动,并提高整个系统的能效和稳定性。
1.2 文章结构本文分为五个主要部分,每个部分涵盖了该主题的不同方面。
首先,在引言部分我们提供了本文所讨论问题的背景,并概述了文章结构。
接下来的第二部分将介绍三相电源和PFC电路的基本概念和原理,以便读者具备相关知识背景。
第三部分将重点探讨相线与母线中点电压在系统中扮演的重要角色,并阐明影响这些电压变化的因素。
第四部分将详细解释滤波电容在三相PFC电路中的作用原理、选择和设计方法,并深入分析滤波电容对相线与母线中点电压的影响。
最后一部分是结论,总结了文章主要观点和研究结果,并展望了滤波电容在三相PFC电路中的应用前景。
1.3 目的本文的目的是增进对于相线与母线中点电压滤波电容在三相PFC电路中的作用机理和影响分析的理解。
通过科学而全面地阐述这些问题,旨在为工程师、技术人员和研究者提供宝贵的参考资料,以便更好地设计和优化三相PFC电路,提高系统性能和效率。
2. 三相电源和PFC电路概述:2.1 三相电源介绍:三相电源是一种非常常见的供电方式,广泛应用于工业和商业领域。
与单相电源不同,三相电源由三个交流电压相位组成,每个相位之间的间隔为120度。
这种构造使得三相电源具有稳定可靠、功率传输效率高等特点。
使用三相电源可以提供更高的功率输出,并且可以减少能耗损失。
在工业设备中,大型机器设备和马达通常使用三相电源作为其主要供电来源。
此外,也有一些家用设备和商业建筑物采用了三相供电系统。
2.2 PFC(功率因数校正)电路介绍:PFC(Power Factor Correction)是一种技术,旨在通过改善负载对公共交流电网络的功率因数来提高能量利用效率。
电容的分类

电容按功能分一般可分为耦合电容,滤波电容,谐振电容和旁路电容等,如何在电路设计过程中选择电容的大小和耐压值呢?一、首先我们了解一下电容的基础知识:1、电容的分类和作用电容(Electric capacity),由两个金属极,中间夹有绝缘材料(介质)构成。
由于绝缘材料的不同,所构成的电容器的种类也有所不同:按结构可分为:固定电容,可变电容,微调电容。
按介质材料可分为:气体介质电容,液体介质电容,无机固体介质电容,有机固体介质电容电解电容。
按极性分为:有极性电容和无极性电容。
我们最常见到的就是电解电容。
电容在电路中具有隔断直流电,通过交流电的作用。
2、电容的符号电容的符号同样分为国内标表示法和国际电子符号表示法,但电容符号在国内和国际表示都差不多,唯一的区别就是在有极性电容上,国内的是一个空筐下面一根横线,而国际的就是普通电容加一个“+”符号代表正极。
在电路图示中,电容一般用C符号标识。
3、电容的单位电阻的基本单位是:F (法),此外还有μF(微法)、nF(纳法)、pF(皮法),由于电容F 的容量非常大,所以我们看到的一般都是μF、nF、pF,而不是F。
他们之间的具体换算如下:1F=1000000μF1μF=1000nF=1000000pF4、电容的耐压单位:V(伏特)每一个电容都有它的耐压值,这是电容的重要参数之一。
普通无极性电容的标称耐压值有:63V、100V、160V、250V、400V、600V、1000V等,有极性电容的耐压值相对要比无极性电容的耐压要低,一般的标称耐压值有:4V、6.3V、10V、16V、25V、35V、50V、63V、80V、100V、220V、400V等。
5、电容的种类电容的种类有很多,可以从原理上分为:无极性可变电容、无极性固定电容、有极性电容等,从材料上可以分为:CBB电容(聚乙烯),涤纶电容、瓷片电容、云母电容、独石电容、电解电容、钽电容等。
二、电容特性和选择规则。
电源滤波电容的选择

详细解析电源滤波电容的选取与计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。
电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。
电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。
电容和电感的很多特性是恰恰相反的。
一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。
因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。
低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。
当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。
因此在使用中会因电解液的频繁极化而产生较大的热量。
而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。
电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。
一般前面那个越大越好,两个电容值相差大概100倍左右。
电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。
大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f = 1/(2pi* LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电源往往是我们在电路设计过程中最容易忽略的环节。
作为一款优秀的设计,电源设计应当是很重要的,它很大程度影响了整个系统的性能和成本。
电源设计中的使用,往往又是电源设计中最容易被忽略的地方。
一、电源设计中电容的工作原理 在电源设计应用中,电容主要用于滤波、退耦和旁路。
滤波是将信号中特定波段频率滤除的操作,是抑制和防止干扰的一项重要措施。
根据观察某一随机过程的结果,对另一与之有关的随机过程进行估计的概率理论与方法。
滤波一词起源于通信理论,它是从含有干扰的接收信号中提取有用信号的一种技术。
“接收信号”相当于被观测的随机过程,“有用信号”相当于被估计的随机过程。
滤波主要指滤除外来噪声,而退耦和旁路(一种,以旁路的形式达到退耦效果,以后用“退耦”代替)是减小局部电路对外的噪声干扰。
很多人容易把两者搞混。
下面我们看一个电路结构,如图1所示。
图中电源为A和B供电。
经C1后再经过扼流圈L分开两路分别供给A和B。
当A在某一瞬间需要一个很大的电流时,如果没有C2和C3,那么会因为线路的原因A端的会变低,而B端电压同样受A端电压影响而降低,于是局部电路A的电流变化引起了局部电路B的电源电压,从而对B电路的信号产生影响。
同样,B的电流变化也会对A形成干扰。
这就是“共路耦合干扰”。
增加了C2后,局部电路再需要一个瞬间的大电流的时候,电容C2可以为A暂时提供电流,即使共路部分电感存在,A端电压不会下降太多。
对B的影响也会减小很多。
于是通过电流旁路起到了退耦的作用。
一般滤波主要使用大容量电容,对速度要求不是很快,但对电容值要求较大。
如果图1中的局部电路A是指一个芯片的话,而且电容尽可能靠近芯片的电源引脚。
而如果“局部电路A”是指一个功能模块的话,可以电源设计中的技术纵横电容选用规则2014年02期4546使用瓷片电容,如果容量不够也可以使用钽电容或铝电解电容(前提是功能模块中各芯片都有了退耦电容——瓷片电容)。
滤波电容的容量往往都可以从电源芯片的数据手册里找到计算公式。
如果滤波电路同时使用电解电容、钽电容和瓷片电容的话(图2),把电解电容放的离最近,这样能保护钽电容。
瓷片电容放在钽电容后面。
这样可以获得最好的滤波效果。
退耦电容需要满足两个要求,一个是容量需求,另一个是ESR需求。
也就是说一个0.1μF的电容退耦效果也许不如两个0.01μF电容效果好。
而且,0.01uF电容在较高频段有更低的阻抗,在这些频段内如果一个0.01μF电容能达到容量需求,那么它将比0.1μF电容拥有更好的退耦效果。
很多管脚较多的高速芯片设计指导手册会给出电源设计对退耦电容的要求,比如一款500多脚的BGA封装要求3.3V电源至少有30个瓷片电容,还要有几个大电容,总容量要200μF以上… 二、各类电源中电容器的正确选用 电容器作为基本元件在电子线路中起着重要作用,在传统的应用中,电容器主要用作旁路耦合、电源滤波、隔直以及小信号中的振荡、延时等。
随着电子线路,特别是电路的发展对不同应用场合的电容器提出了不同的特殊要求。
电容器的结构上说起。
最简单的电容器是由两端的极板和中间的绝缘电介质(包括空气)构成的。
通电后,极板带电,形成电压(电势差),但是由于中间的绝缘物质,所以整个电容器是不导电的。
不过,这样的情况是在没有超过电容器的临界电压(击穿电压)的前提条件下的。
我们知道,任何物质都是相对绝缘的,当物质两端的电压加大到一定程度后,物质是都可以导电的,我们称这个电压叫击穿电压。
电容也不例外,电容被击穿后,就不是绝缘体了。
不过这样的电压在一般电路中是见不到的,所以都是在击穿电压以下工作的,可以被当做绝缘体看。
但是,在交流电路中,因为电流的方向是随时间成一定的函数关系变化的。
而电容器充放电的过程是有时间的,这个时候,在极板间形成变化的电场,而这个电场也是随时间变化的函数。
1.滤波电容器 交流电(工频或高频)经整流后需用电容器滤波使输出电压平滑,要求电容器容量大,一般多采用铝电解电容器。
铝电解电容器应用时主要问题是温度与寿命关系,基本遵循50℃法则。
因此在很多要求高温和高可靠性场合下,应选用长寿命(如5000h以上,甚至105℃,5000h)电解电容器。
一般体积小的电解电容器,其寿命相对较短。
用于DC/DC 开关输入滤波电容器,因开关变换器是以脉冲形式向电源汲取电能,故滤波电容器中流过较大的高频电流,当电解电容器等效串联(ESR)较大时,将产生较大损耗,导致电解电容器发热。
而低ESR电解电容器则可明显减小纹波(特别是高频纹波)电流产生的发热。
用于开关稳压电源输出整流的电解电容器,要求其阻抗频率特性在300kHz 甚至500kHz时仍不呈现上升趋势。
而普通电解电容器在100kHz后就开始呈现上升趋势,用于开关电源输出整流滤波效果相对较差。
笔者在实验中发现,普通CDⅡ型中4700μF,16V电解电容器,用于开关电源输出滤波的纹波与尖峰并不比CD03HF 型4700μF,16V高频电解电容器的低,同时普通电解电容器温升相对较高。
当负一载为突变情况时,用普通电解电容器的瞬态响应远不如高频电解电容器。
由于铝电解电容器在高频段不能很好地发挥作用,应辅之以高频特性好的陶瓷或无感薄膜电容器,其主要优点是:高频特性好,ESR低,如MMK5型容量1μF电容器,谐振频率达2MHz以上,等效阻抗小于0.02Ω,远低于电解电容器,而且容量越小谐振频率越高(可达50MHz以上),这样将得到很好的电源的输出频率响应或动态响应。
在滤波电容器中下面着重讲解在开关电源中怎样选用滤波电容。
2.开关电源怎样选用滤波电容 滤波电容在开关电源中起着非常重要的作用,如何正确选择滤波电容,尤其是输出滤波电容的选择则是每个工程技术人员十分关心的问题。
50Hz工频电路中使用的普通电解电容器,其脉动电压频率仅为100Hz,充放电时间是毫秒数量级。
为获得更小的脉动系数,所需的电容量高达数十万微法,因此普通低频铝电解电容器的目标是以提高电容量为主,电容器的电容量、损耗角正切值以及漏电流是鉴别其优劣的主要参数。
而开关电源中的输出滤波电解电容器,其锯齿波电压频率高达数万赫兹,甚至是数十兆赫兹。
这时电容量并不是其主要指标,衡量高频铝电解电容优劣的标准是“阻抗-频率”特性。
要求在开关电源的工作频率内要有较低的等效阻抗,同时对于半导体器件工作时产生的高频尖峰信号具有良好的滤波作用。
许多电子设计者都知道滤波电容在电源中起的作用,但在开关电源输出端用的滤波电容上,与工频电路中选用的滤波电容并不一样,其上的脉动电压频率仅有100Hz,充放电时间是毫秒数量级,为获得较小的脉动系数,需要的电容量高达数十万微法,因而一般低频用普通铝电解电容器制造,目标是以提高电容量为主,电容器的电容量、损耗角正切值以及漏电流是鉴别其优劣的主要参数。
在开关稳压电源中作为输出滤波用的电解电容器,其上锯齿波电压的频率高达数十千赫,甚至数十兆赫,它的要求和低频应用时不同,电容量并不是主要指标,衡量它好坏的则是它的阻抗一频率特性,要求它在开关稳压电源的工作频段内要有低的等的阻抗,同时,对于电源内部,由于半导体器件开始工作所产生高达数百千赫的尖峰噪声,亦能有良好的滤波作用,一般低频用普通电解电容器在10kHz左右,其阻抗便开始呈现感性,无法满足开关电源使用要求。
普通的低频电解电容器在万赫兹左右便开始呈现感性,无法满足开关电源的使用要求。
而开关电源专用的高频铝电解电容器有四个端子,正极铝片的两端分别引出作为电容器的正极,负极铝片的两端也分别引出作为负极。
电流从四端电容的一个正端流入,经过电容内部,再从另一个正端流向负载;从负载返回的电流也从电容的一个负端流入,再从另一个负端流向电源负端。
开关稳压电源专用的高频铝电解电容器,它有四端个子,正极铝片的两端分别引出作为电容器的正极,负极铝片的两端也分别引出作为负极。
稳压电源的电流从四端电容的一个正端流入,经过电容内部,再从另一个正端流向负载;从负载返回的电流也从电容的一个负端流入,再从另一个负端流向电源负端。
因为四端电容具有良好的高频特性,它为减小输出电压的脉动分量以及抑制开关尖峰噪声提供了极为有利的手段。
开关稳压电源具有多功能综合保护:稳压器除了最基本的稳定电压功能以外,还应具有过压保护(超过输出电压的+10%)、欠压保护(低于输出电压的-10%)、缺相保护、短路过载保护最基本的保护功能。
尖脉冲抑制(可选):电网有时会出现幅值很高,脉宽很窄的尖脉冲,它会击穿耐压较低图二2014年02期4748的电子元件。
稳压电源的抗浪涌组件能够对这样的尖脉冲起到很好的抑制作用。
高频铝电解电容器还有多芯的形式,它将铝箔分成较短的若干小段,用多引出片并联连接以减小容抗中的电阻成份,同时,采用低电阻率的材料并用螺杆作为引出端子,以增强电容器承受大电流的能力。
叠片电容也称为无感电容,一般电解电容器的芯子都卷成圆柱形,等效串联电感较大;叠片电容的结构和书本相仿,因流过电流产生的磁通方向相反而被抵消,因而降低了电感的数值,具有更为优良的高频特性,这种电容一般做成方形,便于固定,还可以适当减小占机体积。
3.吸收与换相电容器 随着栅控半导体器件的额定功率越做越大,开关速度越来越快,额定电压越来越高,对缓冲电路的电容器仅仅要求足够的耐压、容量及优异的高频特性是不够的。
在大功率电力电子电路中,由于的开关速度已小于1μs,要求吸收电路电容器上的电压变化速率dv/dt>V/μs 已是很正常的,有的要求 V/μs甚至V/μs。
对于普通电容器,特别是普通金属化电容器的dv/dt<100V/μs,特殊金属化电容器的dv/dt≤200V/μs,专用双金属化电容器小容量(小于10nF)的dv/dt≤1500V/μs,较大容量(小于0.1μF)的则为600V/μs,在这种巨大且重复率很高的峰值电流冲击下是很难承受的,会出现损坏电力电子电路的现象。
目前吸收电路专用电容器,即金属箔电极可承受较大的峰值电流和有效值电流冲击,如:较小容量(10nF 以下)的可承受100000V/μs~455000V/μs 的电压变化率、3700A 峰值电流和达9A 有效值电流(如CDV30FH822J03);较大容量(大于10nF,小于0.47μF)或较大尺寸的可承受大于3400V/μs以及1000A峰值电流的冲击。
由此可见,尽管同是无感电容、金属化和金属箔电容,应用在吸收电路中将有不同的表现,外形相近但规格不同在这里是绝对不能互换的。
电容器的尺寸将影响电容器的dv/dt及峰值电流的耐量,一般而言,长度越大dv/dt和峰值电流则相对较小。
吸收电路中电容器的工作特点是高峰值电流占空比小,有效值电流不十分高,与这种电路相似的还有晶闸管的换相电容器,尽管这种电容器要求的dv/dt较吸收电容器小,但峰值电流与有效值电流均较大,采用普通电容器在电流方面不能满足要求。