数列运算的一些小技巧

合集下载

数列问题小技巧

数列问题小技巧

数列问题:1. 全奇必是奇:数列给出的项如果全是奇数,答案必是奇数;全偶必是偶:数列给出的项如果全是偶数,答案必是偶数。

2. 奇偶奇偶间隔走:数列给出的项如果是奇数和偶数间隔,答案必须符合此规律。

3. 从怪原则:选项中有0、1等多数为正确选项。

4. 题目中全部都是整数,选项中出现分数或小数多为正确答案;同理题干全部都是小数或分数,选项中出现整数多为正确答案。

5. 看出整体有单调性,如果题目为单调递增,选项中只有一个是大于题干中最后一个数字的,那么一般是正确答案。

6. 分数数列中,分母多为质数,分数多需要分子,分母拆分找规律。

数学运算:1. 分析选项整体性,三奇一偶选其偶,三偶一奇选其奇。

2. 选项有升降,最大最小不必看,答案多为中间项;答案排序处在中间的两个中的一个往往是正确的选项。

3. 选项中如果有明显的整百整千的数字,先代入验证,多为正解。

4. 看到题目中存在比例关系,在选项中选择满足该比例中数字整除特性的选项为正解。

5. 一个复杂的数学计算问题,答案中尾数不同,直接应用尾数法解题即可。

6. 极值问题中,问最小在选项中多为第二小的,问最大在选项中多为第二大的(先代入验证)。

选词填空:1. 注意找语境中与所填写词语相呼应的词、短语或句子。

2. 重点落在语境与所选词语的逻辑关系上,而不是选项的词语上。

3. 选项中近义词辨析方向是从范围不同角度辨析的,选择范围大的。

4. 从语意轻重角度辨析的,选项要么选最重的,要么选最轻的。

5. 成语辨析题选择晦涩难懂的成语。

片段阅读:1. 选项要选积极向上的。

2. 选项是文中原话不选。

3. 选项如违反客观常识不选。

4. 选项如违反国家大政方针不选。

5. 启示、告诉、道理材料的片段阅读,不选文字内容层面的选项。

6. 启示、告诉、道理材料的片段阅读,选择激励人的选项或在精神上有触动的选项。

7. 提问方式是选标题的,选择短小精悍的选项。

8. 提问方式是“错误的”“不正确的”,要通读材料在选择选项,不能断章取义。

[数算]数列运算的一些小技巧

[数算]数列运算的一些小技巧

等差,等比这种最简单地不用多说,深一点就是在等差,等比上再加、减一个数列,如,规律为*深一点模式,各数之间地差有规律,如、、、、.它们之间地差为、、、,成等差数列.这些规律还有差之间成等比之类.,各数之间地和有规律,如、、、、、,前两个数相加等于后一个数.、看各数地大小组合规律,做出合理地分组.如,和,和,和这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作个数,而应该看作个组.而组和组之间地差距不是很大,用乘法就能从一个组过渡到另一个组.所以* , * , * , *<>,这就是规律.、如根据大小不能分组地,,看首尾关系,如,,,,,,这组数; ==.首尾关系经常被忽略,但又是很简单地规律.,数地大小排列看似无序地,可以看它们之间地差与和有没有顺序关系.、各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了.如、、、、,感觉它们之间地差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们地规律就是^、^、^、^、^.这组数比较巧地是都是地倍数,容易导入歧途.)看大小不能看出来地,就要看数地特征了.如、、、、、,它们地十位数就是递增关系,如、、、,这些数相邻两个数首尾相接,且、、、、地差为,如论坛上答:,,,,(),===,∵===∴下一个数为=.)再复杂一点,如、、、、、,这组数地规律是*,即相邻个数之间才能看出规律,这算最简单地一种,更复杂数列也用把前面介绍方法深化后来找出规律.)分数之间地规律,就是数字规律地进一步演化,分子一样,就从分母上找规律;或者第一个数地分母和第二个数地分子有衔接关系.而且第一个数如果不是分数,往往要看成分数,如就要看成.数字推理题经常不能在正常时间内完成,考试时也要抱着先易后难地态度(废话,嘿嘿).应用题个人觉得难度和小学奥数程度差不多(本人青年志愿者时曾在某小学辅导奥数),各位感觉自己有困难地网友可以看看这方面地书,还是有很多有趣、快捷地解题方法做参考.国家公务员考试中数学计算题分值是最高地,一分一题,而且题量较大,所以很值得重视(国家公务员题,满分分,各题有分值差别,但如浙江省公务员一共题,满分分,没有分值地差别)分享一点个人地经验给大家,我地笔试成绩一直都是非常好地,不管是行测还是申论,每次都是岗位第一.其实很多人不是真地不会做,地人都是时间不够用,要是给足够地时间,估计很多人能够做出大部分地题.公务员考试这种选人地方式第一就是考解决问题地能力,第二就是考思维,第三考决策力(包括轻重缓急地决策).非常多地人输就输在时间上,我是特别注重效率地.第一,复习过程中绝对地高效率,各种资料习题都要涉及多遍;第二,答题高效率,包括读题速度和答题速度都高效.我复习过程中,阅读和背诵地能力非常强,读一份一万字地资料,一般人可能要二十分钟,我只需要两分钟左右,读地次数多,记住自然快很多.包括做题也一样,读题和读材料地速度也很快,一般一份试卷,读题地时间一般人可能要花掉二十几分钟,我统计过,我最多不超过分钟,这样就比别人多出几分钟,这在考试中是非常不得了地.有个帖子专门介绍速读地,叫做“得速读者得行测”,我就是看了这个才接触了速读,也因为速读,才获得了笔试地好成绩.其实,不只是行测,速读对申论地帮助更大,特别是那些密密麻麻地资料,看见都让人晕倒.学了速读之后,感觉有再多地书都不怕了.而且,速读对思维和材料组织地能力都大有提高,个人总结,拥有这个技能,基本上成功一半,剩下地就是靠自己学多少地问题了.平时要多训练自己一眼看多个字地习惯,慢慢地加快速度,尽可能地培养自己这样地习惯.有条件地朋友可以到这里用这个软件训练速读,大概个小时就能练出比较厉害地快速阅读地能力,这是给我帮助非常大地一个网站,极力地推荐给大家(给做了超链接,按住键盘左下角键,然后鼠标左键点击本行文字).大家好好学习吧!最后,祝大家早日上岸.补充:中间数等于两边数地乘积,这种规律往往出现在带分数地数列中,且容易忽略如、、、、、、)数地平方或立方加减一个常数,常数往往是,这种题要求对数地平方数和立方数比较熟悉如看到、、、,就应该想到是、、、地平方加如看到、、、,就要想到是、、、地立方减对平方数,个人觉得熟悉就够了,对于立方数,熟悉就够了,而且涉及到平方、立方地数列往往数地跨度比较大,而且间距递增,且递增速度较快)^-=因为最近碰到论坛上朋友发这种类型地题比较多,所以单独列出来如数列,,,,,如数列,; ,; ,;,; , -如数列,,,,-这种数列后面经常会出现一个负数,所以看到前面都是正数,后面突然出现一个负数,就考虑这个规律看看)奇偶数分开解题,有时候一个数列奇数项是一个规律,偶数项是另一个规律,互相成干扰项如数列,,,,,奇数位、、分别是、、地平方偶数位、、是、、地立方先补充到这儿......) 后数是前面各数之各,这种数列地特征是从第三个数开始,呈倍关系如数列:、、、、、由于后面地数呈倍关系,所以容易造成误解!数字推理地题目就是给你一个数列,但其中缺少一项,要求你仔细观察这个数列各数字之间地关系,找出其中地规律,然后在四个选项中选择一个最合理地一个作为答案.。

高中数学数列求和题解题方法技巧

高中数学数列求和题解题方法技巧

高中数学数列求和题解题方法技巧数列求和的七种解法1.公式法:顾名思义就是通过等差、等比数列或者其他常见的数列的求和公式进行求解。

2.倒序相加:如果一个数列{an},与首末两端等“距离”的两项和相等或者等于同一个常数,则求该数列的前n项和即可用倒序相加法。

例如等差数列的求和公式,就可以用该方法进行证明。

3.错位相减:形如An=Bn∙Cn,其中{Bn}为等差数列,首项为b1,公差为d;{Cn}为等比数列,首项为c1,公比为q。

对数列{An}进行求和,首先列出Sn,记为①式;再把①式中所有项同乘等比数列{Cn}的公比q,即得q∙Sn,记为②式;然后①②两式错开一位作差,从而得到{An}的前n项和。

这种数列求和方式叫做错位相减。

4.裂项相消:把数列的每一项都拆成正负两项,使其正负抵消,只剩下首尾几项,再进行求和,这种数列求和方式叫做裂项相消。

5.分组求和:有一类数列,既不是等差,又不是等比,但若把这个数列适当的拆开,就会分成若个等差,等比或者其他常见数列(即可用倒序相加,错位相减或裂项相消求和的数列),然后分别求和,之后再进行合并即可算出原数列的前n项和。

6.周期数列:一般地,若数列{an}满足:存在一个最小的正整数T,使得an+T=an对于一切正整数n都成立,则数列{an}称为周期数列,其中T叫做数列{an}的周期,接下来根据数列的周期性进行求和。

7.数学归纳法:是一种重要的数学方法,其对求数列通项,求和的归纳猜想证明起到了关键作用。

高中数学解题方法实用技巧1解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

数列求和的基本方法和技巧学生用

数列求和的基本方法和技巧学生用

数列求和的基本方法和技巧数列求和 通项分式法 错位相减法 反序相加法 分组法 分组法 合并法一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、 等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn[例] 求和1+x 2+x 4+x 6+…x 2n+4(x≠0)注:(1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x 是否为0进行讨论.(2)要弄清数列共有多少项,末项不一定是第n 项.对应高考考题:设数列1,(1+2),…,(1+2+1222-⋯+n ),……的前顶和为ns,则ns的值。

二、错位相减法求和错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容。

需要我们的学生认真掌握好这种方法。

这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。

[例] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S (1≠x )………………………①注意、1 要考虑 当公比x 为值1时为特殊情况 2 错位相减时要注意末项 此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘。

对应高考考题:设正项等比数列{}n a 的首项211=a ,前n 项和为n S ,且0)12(21020103010=++-S S S 。

数列求和中常见放缩方法和技巧含答案

数列求和中常见放缩方法和技巧含答案

数列求和中常见放缩方法和技巧一、放缩法常见公式: (1)()()111112-<<+n n n n n(2)()12122112--=-+<+=<++n n n n n n n n n (3)()()211++<+<n n n n n (4)122+>n n(二项式定理)(5)1+>x e x,1ln -<x x (常见不等式)常见不等式: 1、均值不等式; 2、三角不等式; 3、糖水不等式; 4、柯西不等式; 5、绝对值不等式;若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。

例4. 已知n ∈N*,求n 2n131211<…++++。

2==<=,则()()()11122123221n n n++<+-+-++--1<<例5. 已知*N n ∈且)1n (n 3221a n +++⨯+⨯= ,求证:2)1(2)1(2+<<+n a n n n 对所有正整数n 都成立。

证明:因为n n n n =>+2)1(,所以2)1n (n n 21a n +=+++> , 又2)1()1(+<+n n n n , 所以2)1n (21n 225232)1n (n 232221a 2n +=++++=++++++< ,综合知结论成立。

例6、求证:2222111171234n ++++< 证明:21111(1)1n n n n n<=--- 222221111*********1()().1232231424n n n n ∴++++<++-++-=+-<- 此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。

nn n 1211)1ln(113121+++<+<++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例6. 已知函数1212)(+-=x x x f ,证明:对于*N n ∈且3≥n 都有1)(+>n n n f 。

数列求和掌握小学生数列求和的技巧

数列求和掌握小学生数列求和的技巧

数列求和掌握小学生数列求和的技巧数列是由一系列按照一定规律排列的数所组成的序列。

数列求和是常见的数学问题,对于小学生来说,掌握数列求和的技巧可以帮助他们更好地理解数学知识。

本文将介绍几种应用于小学生数列求和的方法,并帮助他们加深对数列求和的理解。

一、等差数列求和等差数列是一种常见的数列形式,它的特点是相邻两项之间的差值是一个固定的常数。

为了求解等差数列的和,我们可以使用以下公式:Sn = (a1 + an) × n / 2其中,Sn表示等差数列的前n项和,a1表示第一项的值,an表示第n项的值,n表示项数。

例如,求解1,4,7,10,13……的前10项和,我们可以进行如下步骤:1. 确定a1=1,an=?,n=10;2. 通过计算,我们可以得到an = a1 + (n-1)×d = 1 + (10-1)×3 = 28;3. 将a1,an,n带入公式Sn = (a1 + an) × n / 2,即可得到Sn = (1 +28) × 10 / 2 = 145。

二、等比数列求和等比数列是一种常见的数列形式,它的特点是相邻两项之间的比值是一个固定的常数。

为了求解等比数列的和,我们可以使用以下公式:S = a(q^n-1)/ (q - 1)其中,S表示等比数列的前n项和,a表示第一项的值,q表示公比,n表示项数。

例如,求解2,6,18,54……的前5项和,我们可以进行如下步骤:1. 确定a=2,q=?,n=5;2. 通过计算,我们可以得到q = a2 / a1 = 6 / 2 = 3;3. 将a,q,n带入公式S = a(q^n-1)/ (q - 1),即可得到S = 2(3^5-1)/ (3 - 1) = 242。

三、奇数数列求和奇数数列是一种特殊的数列形式,它的特点是每一项都是连续的奇数。

为了求解奇数数列的和,我们可以使用以下公式:Sn = n^2其中,Sn表示奇数数列的前n项和,n表示项数。

高考数学构造法求数列通项的八种技巧(三)(解析版)

高考数学构造法求数列通项的八种技巧(三)(解析版)

构造法求数列通项的八种技巧(三)【必备知识点】◆构造六:取对数构造法型如a n +1=ca n k ,a n =ca n -1k或者a n +b =c (a n -1+b )k ,b 为常数.针对出现这种数列,为方便计算,两边通常取以c 或首项为底的对数,就能找到突破口.什么情况取c 为底,什么情况取首项为底呢?我们来看两道例题.【经典例题1】数列a n 中, a 1=2,a n +1=a n 2,求数列a n 的通项公式.【解析】取以a 1=2为底的对数(不能取c 为底,因为c =1,不能作为对数的底数),得到log a n +12=log an22,log a n +12=2log a n2,设b n =log a n2,则有b n +1=2b n ,所以b n 是以b 1=log a 12=1为首项,2为公比的等比数列,所以b n =2n -1,所以log a n2=2n -1,a n =22n -1.【经典例题2】数列a n 中,a 1=1,a n +1=2a n 2,求数列a n 的通项公式.【解析】取以2为底的对数(这里知道为什么不能取a 1=1为底数的对数了吧),得到log a n +12=log 2a n22,log an +12=log 22+2log a n2,log a n +12=1+2log a n2设b n =log an2,则有b n +1=1+2b n ,这又回归到构造二的情况,接下来的步骤大家应该都记得吧,由于这道题较为简单,所以直接可看出b n +1+1=2(b n +1),所以b n +1 是以b 1+1=1为首项,2为公比的等比数列,所以b n +1=2n -1,所以b n =2n -1-1,log a n2=2n -1-1,a n =22n -1-1.【经典例题3】已知a 1=2,点a n ,a n +1 在函数f x =x 2+2x 的图像上,其中n ∈N *,求数列a n 的通项公式.【解析】将a n ,a n +1 代入函数得a n +1=a n 2+2a n ,a n +1+1=a n 2+2a n +1=a n +1 2,即a n +1+1=a n +1 2两边同时取以3为底的对数,得log a n +1+13=log a n+123⇒log a n +1+13=2log a n+13(为什么此题取以3为底的对数呢,大家思考下,新构造的数列首项为log a 1+13,a 1+1=3,所以应当取以3为底,这样计算会简单很多,当然如果你计算能力较强,也可以取其他数作为底数).所以log a n+1 3 是以1为首项,2为公比的等比数列,即log a n+1 3=1×2n -1,a n +1=32n -1,a n =32n -1-1.【经典例题4】在数列a n 中, a 1=1,当n ≥2时,有a n +1=a n 2+4a n +2,求数列a n 的通项公式.【解析】由a n +1=a n 2+4a n +2,得a n +1+2=a n 2+4a n +4,即a n +1+2=a n +2 2,两边同取以3为底的对数,得log a n +1+23=log a n+223,即log a n +1+23=2log a n+2 3,所以数列log a n+2 3是以1为首项,2为公比的等比数列,log a n+23=2n -1,a n +2=32n -1,即a n =32n -1-2.◆构造七:二阶整体构造等比简单的二阶整体等比:关于a n +1=Aa n +Ba n -1的模型,可通过构造二阶等比数列求解,大部分题型可转化为a n +1-a n =(A -1)a n -a n -1 ,利用a n +1-a n 成等比数列,以及叠加法求出a n .还有一小部分题型可转化为a n +1+a n =(A +1)a n +a n -1 ,利用a n +1+a n 成等比数列求出a n .【经典例题1】已知数列a n 满足a 1=1,a 2=3,a n +2=3a n +1-2a n n ∈N * ,求数列a n 的通项公式.【解析】由a n +1=3a n -2a n -1⇒a n +1-a n =2a n -a n -1 ,故a n +1-a n 是以a 2-a 1=2为首项,2为公比的等比数列,即a n +1-a n =a 2-a 1 2n -1=2n ,接下来就是叠加法啦,a n -a n -1=2n -1...a 2-a 1=2全部相加得:a n -a 1=2n-2,所以a n =2n -1.【经典例题2】已知数列a n 中,a 1=1,a 2=2,a n +2=23a n +1+13a n ,求数列a n 的通项公式。

数列放缩法技巧全总结

数列放缩法技巧全总结

数列放缩法技巧全总结引言数列放缩法是解决数学问题中常用的一种技巧。

通过将数列进行放缩,可以使得原问题更易于解决,或者得到更加精确的结果。

本文将介绍数列放缩法的基本概念和常用技巧,并通过一些例子来说明其应用。

基本概念在使用数列放缩法解决问题时,我们需要理解以下几个基本概念:1. 数列放缩数列放缩是指通过对数列中的每一项进行适当的操作,使得数列满足一些特定的性质。

常用的数列放缩操作包括:乘法放缩、加法放缩和取对数放缩等。

2. 性质保持数列放缩后,原数列的一些性质可能得以保持,例如单调性、有界性等。

这样可以为问题的解决提供一些有用的线索。

3. 题目转化数列放缩还可以将原问题转化为一个更容易解决的形式。

通过变换数列中的项,我们可以得到一个新的数列,从而将原问题转化为对新数列进行分析的问题。

常用技巧1. 乘法放缩乘法放缩是数列放缩中最常用的技巧之一。

通过乘以一个适当的常数,可以使得数列中的项满足某种性质,比如有界性或单调性。

以下是一些常见的乘法放缩技巧:•将数列中的项全部乘以一个常数。

这可以用来放缩数列中的每一项,使得它们满足某种条件,例如有界性。

比如,对于一个递增的数列a n,我们可以将每一项乘以2,得到一个递增且更大的数列2a n。

•对数列中的每一项都乘以一个缩放因子,使得数列中的项的比较关系得以保持。

这种放缩常用于解决含有不等式的问题。

比如,对于一个递减的数列a n,我们可以将每一项都乘以−1,得到一个递增的数列−a n。

•利用数列放缩的特性进行条件的放缩。

比如,对于一个不等式问题,我们可以将不等式两边都乘以一个常数,使得问题更易解决。

2. 加法放缩加法放缩是利用数列的加法、减法性质进行放缩的一种技巧。

通过对数列中的项进行加减操作,可以得到一个新的数列,从而顺利解决问题。

以下是一些常见的加法放缩技巧:•利用数列之间的加减关系进行放缩。

比如,对于一个递增的数列a n,我们可以构造一个新的递增数列b n=a n+1−a n,从而将问题转化为分析数列b n的性质的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列运算的一些小技巧
等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b
深一点模式,各数之间的差有规律,如1、2、5、10、17。

它们之间的差为1、3、5、7,成等差数列。

这些规律还有差之间成等比之类。

B,各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。

3、看各数的大小组合规律,做出合理的分组。

如7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。

而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。

所以7*7-9=40 , 9*9-7=74 , 40*40-74=1526 , 74*74-40=5436</B>,这就是规律。

4、如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数; 7+14=10+11=9+12。

首尾关系经常被忽略,但又是很简单的规律。

B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。

5、各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。


6、24、60、120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。

这组数比较巧的是都是6的倍数,容易导入歧途。

6)看大小不能看出来的,就要看数的特征了。

如21、31、47、56、69、72,它们的十位数就是递增关系,如25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3,如论坛上答:256,269,286,302,(),2+5+6=132+6+9=172+8+6=163+0+2=5,∵256+13=269269+17=286286+16=302 ∴下一个数为302+5=307。

7)再复杂一点,如0、1、3、8、21、55,这组数的规律是b*3-a=c,即相邻3个数之间才能看出规律,这算最简单的一种,更复杂数列也用把前面介绍方法深化后来找出规律。

8)分数之间的规律,就是数字规律的进一步演化,分子一样,就从分母上找规律;或者第一个数的分母和第二个数的分子有衔接关系。

而且第一个数如果不是分数,往往要看成分数,如2就要看成2/1。

数字推理题经常不能在正常时间内完成,考试时也要抱着先易后难的态度(废话,嘿嘿)。

应用题个人觉得难度和小学奥数程度差不多(本人青年志愿者时曾在某小学辅导奥数),各位感觉自己有困难的网友可以看看这方面的书,还是有很多有趣、快捷的解题方法做参考。

国家公务员考试中数学计算题分值是最高的,一分一题,而且题量较大,所以很值得重视(国家公务员125题,满分100分,各题有分值差别,但如浙江省公务员一共120题,满分120分,没有分值的差别)
补充:
中间数等于两边数的乘积,这种规律往往出现在带分数的数列中,且容易忽略如1/2、1/6、1/3、2、6、3、1/2
9)数的平方或立方加减一个常数,常数往往是1,这种题要求对数的平方数和立方数比较熟悉
如看到2、5、10、17,就应该想到是1、2、3、4的平方加1
如看到0、7、26、63,就要想到是1、2、3、4的立方减1
对平方数,个人觉得熟悉1~20就够了,对于立方数,熟悉1~10就够了,而且涉及
到平方、立
方的数列往往数的跨度比较大,而且间距递增,且递增速度较快
10)A^2-B=C因为最近碰到论坛上朋友发这种类型的题比较多,所以单独列出来
如数列5,10,15,85,140,7085
如数列5,; 6,; 19,;;17 ,; 344 , -55
如数列5,15,10,215,-115
这种数列后面经常会出现一个负数,所以看到前面都是正数,后面突然出现一个负数,就
考虑这个规律看看
11)奇偶数分开解题,有时候一个数列奇数项是一个规律,偶数项是另一个规律,互相成干扰项
如数列1,8,9,64,25,216
奇数位1、9、25 分别是1、3、5的平方
偶数位8、64、216是2、4、6的立方
先补充到这儿。

12) 后数是前面各数之各,这种数列的特征是从第三个数开始,呈2倍关系
如数列:1、2、3、6、12、24
由于后面的数呈2倍关系,所以容易造成误解!
数字推理的题目就是给你一个数列,但其中缺少一项,要求你仔细观察这个数列各数字之间的关系,找出其中的规律,然后在四个选项中选择一个最合理的一个作为答案.。

相关文档
最新文档