传送带问题分析析
运动与力的关系专题之传送带问题(典型例题分析+专项训练)附详细解析

牛顿第二定律的运用之传送带问题一、传送带水平放,传送带以一定的速度匀速转动,物体轻放在传送带一端,此时物体可能经历两个过程——匀加速运动和匀速运动。
【例题1】在民航和火车站可以看到用于对行李进行安全检查的水平传送带,当旅客把行李放到传送带上时,传送带对行李的摩擦力使行李开始运动,最后行李随传送带一起前进,设传送带匀速前进的速度为0.6m/s,质量为4.0kg的皮箱在传送带上相对滑动时,所受摩擦力为24N,那么,这个皮箱无初速地放在传送带上后,求:(1)经过多长时间才与皮带保持相对静止?(2)传送带上留下一条多长的摩擦痕迹?【答案】分析:(1)行李在传送带上先做匀加速直线运动,当速度达到传送带的速度,和传送带一起做匀速直线运动(2)传送带上对应于行李最初放置的一点通过的位移与行李做匀加速运动直至与传送带共同运动时间内通过的位移之差即是擦痕的长度解答:解:(1)设皮箱在传送带上相对运动时间为t,皮箱放上传送带后做初速度为零的匀加速直线运动,由牛顿运动定律:皮箱加速度:a==m/s2=6m/s2由v=at 得t==s=0.1s(2)到相对静止时,传送带带的位移为s1=vt=0.06m皮箱的位移s2==0.03m摩擦痕迹长L=s1--s2=0.03m(10分)所以,(1)经0.1s行李与传送带相对静止(2)摩擦痕迹长0.0.03m二、传送带斜放,与水平方向的夹角为θ,将物体轻放在传送带的最低端,只要物体与传送带之间的滑动摩擦系数μ≥tanθ,那么物体就能被向上传送。
此时物体可能经历两个过程——匀加速运动和匀速运动。
【例题2】如图2—4所示,传送带与地面成夹角θ=37°,以10m/s的速度顺时针转动,在传送带下端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.9,已知传送带从A→B的长度L=50m,则物体从A到B需要的时间为多少?解:物体放上传送带后,开始一段时间t1内做初速度为0的匀加速直线运动,对小物体受力分析如下图所示:可知,物体所受合力F合=f-Gsinθ又因为f=μN=μmgcosθ所以根据牛顿第二定律可得:此时物体的加速度a===m/s2=1.2m/s2当物体速度增加到10m/s时产生的位移x===41.67m因为x<50m所以=8.33s所以物体速度增加到10m/s后,由于mgsinθ<μmgcosθ,所以物体将以速度v做匀速直线运动故匀速运动的位移为50m-x,所用时间所以物体运动的总时间t=t1+t2=8.33+0.83s=9.16s答:物体从A到B所需要的时间为9.16s.三、传送带斜放,与水平方向的夹角为θ,将物体轻放在传送带的顶端,物体被向下传送。
“传送带”模型问题专题分析

“传送带”模型问题专题分析一.模型特点:1.水平传送带情景一物块可能运动情况:(1)可能一直加速(2)可能先加速后匀速情景二(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景三(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。
其中v0>v返回时速度为v,当v0<v返回时速度为v02倾斜传送带。
情景一(1)可能一直加速(2)可能先加速后匀速情景二(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速二.思路方法:(1)水平传送带问题:求解关键在于对物体所受摩擦力进行正确的分析判断。
进一步分析物体的运动情况,物体的速度与传送带速度相等的时刻摩擦力发生突变。
(2)倾斜传送带问题:求解关键在于认真分析物体与传送带的相对运动情况。
进一步分析物体所受摩擦力的情况及运动情况。
当物体速度与传送带速度相等时,物体所受摩擦力可能发生突变。
例1.如图所示,水平传送带以5m/s的恒定速度运动,传送带长l=2.5m,今在其左端A处将一工件轻轻放在上面,工件被带动,传送到右端B处,已知工件与传送带间的动摩擦因数μ=0.5,试求:工件经多少时间由传送带左端A 运动到右端B?(g取10m/s2)答案:1s2.(多选)(2017·锦州模拟)如图所示,水平传送带A、B两端相距s=3.5m,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A端的瞬时速度vA=4m/s,到达B端的瞬时速度设为vB。
下列说法中正确的是()A.若传送带不动,vB=3m/sB.若传送带逆时针匀速转动,vB一定等于3m/sC.若传送带顺时针匀速转动,vB一定等于3m/sD.若传送带顺时针匀速转动,vB有可能等于3m/s【解析】选A、B、D总结:(一)受力分析:传送带模型中要注意摩擦力的突变(发生在v物与v带相同的时刻),对于倾斜传送带模型要分析mgsinθ与f的大小与方向。
功能关系-传送带

跟踪训练1 质量为m的物体在水平传送带上由静止 释放,传送带由电动机带动,始终保持以速度v匀速 运动,物体与传送带间的动摩擦因数为μ,物体过一 会能保持与传送带相对静止.对于物体从静止释放 到相对静止这一过程,下列说法正确的是( ) A、电动机做功为1/2 mv2 B、该过程中产生的热量为1/2 mv2 C、传送带克服摩擦力做功为 mv2 D、电动机增加的功率为μmgv
2、倾斜传送带上的能量转化情况分析 例3如图所示,电动机带着绷紧的传送带始终以v0=2 m/s 的速度运动,传送带与水平面的夹角θ=30°,现把一质 量m=10kg的工件轻轻地放在皮带的底端,经过一段时间, 工件被送到h=2m的平台上,工件与皮带பைடு நூலகம்间的动摩擦因 数μ= 23 ,不记其他损耗。求电动机由于传送工件多消耗 的电能。(取g=10 m/s2)
跟踪训练2 如图所示,倾角为37o的传送带以4m/s的速度 沿图示方向匀速运动。已知传送带的上、下两端间的距离 L=7m。现将一质量m=0.4kg的小木块放到传送带的顶端, 使它从静止开始沿传送带下滑,已知木块与传送带间的动 摩擦因数为 μ=0.25,取 g=10m/s2 。求木块滑到底的过程 中,摩擦力对木块做的功以及产生的热各是多少?
1、水平传送带上的能量转化情况分析 例1如图所示,水平传送带以速度v匀速运动,一质量 为m的小木块由静止轻放到传送带上,若小木块与传 送带之间的动摩擦因数为μ,当小木块与传送带相对 静止时,系统转化的内能是多少? 摩擦力对物块做的功是多少? 摩擦力对传送带做的功是多少? 摩擦产生的热量是多少?
例2(14分)(2011年杭州模拟)如图所示,一质量为m的滑 块从高为h的光滑圆弧形槽的顶端A处无初速度地滑下, 槽的底端B与水平传送带相接,传送带的运行速度恒为v0, 两轮轴心间距为l,滑块滑到传送带上后做匀加速运动, 滑到传送带右端C时,恰好加速到 与传送带的速度相同,求: (1)滑块到达底端B时的速度 大小vB; (2)滑块与传送带间的动摩擦因数μ; (3)此过程中,由于克服摩擦力做功而产生的热量Q.
传送带问题归类分析

传送带问题归类分析一、传送带问题中力与运动情况分析1、水平传送带上的力与运动情况分析例1 水平传送带被广泛地应用于车站、码头,工厂、车间。
如图所示为水平传送带装置示意图,绷紧的传送带AB 始终保持v 0=2 m/s 的恒定速率运行,一质量为m 的工件无初速度地放在A 处,传送带对工件的滑动摩擦力使工件开始做匀加速直线运动,设工件与传送带间的动摩擦因数为μ=0.2 ,AB 的之间距离为L =10m ,g 取10m/s 2 .求工件从A 处运动到B 处所用的时间.解答 设工件做加速运动的加速度为a ,加速的时间为t 1 ,加速运动的位移为l ,根据牛顿第二定律,有:μmg=ma 代入数据可得:a =2 m/s 2工件加速运动的时间t 1=av 0 代入数据可得: t 1=1s 此过程工件发生的位移l =12at 12 代入数据可得:l =1m 由于l <L ,所以工件没有滑离传送带设工件随传送带匀速运动的时间为t 2 ,则t 2=vl L - 代入数据可得:t 2=4.5s 所以工件从A 处运动到B 处的总时间t =t 1+t 2=5.5 s例2: 如图甲所示为车站使用的水平传送带的模型,传送带长L =8m ,以速度v =4m/s 沿顺时针方向匀速转动,现有一个质量为m =10kg 的旅行包以速度v 0=10m/s 的初速度水平地滑上水平传送带.已知旅行包与皮带间的动摩擦因数为μ=0.6 ,则旅行包从传送带的A 端到B 端所需要的时间是多少?(g =10m/s 2 ,且可将旅行包视为质点.)解答 设旅行包在传送带上做匀减速运动的时间为t 1 ,即经过t 1时间,旅行包的速度达到v =4m/s ,由牛顿第二定律,有:μmg=ma 代入数据可得:a =6 m/s 2t 1=av v -0 代入数据可得:t =1s 此时旅行包通过的位移为s 1 ,由匀减速运动的规律,有 s 1=g v v μ2220-=7 m 代入数据可得:s 1=7 m <L可知在匀减速运动阶段,旅行包没有滑离传送带,此后旅行包与传送带一起做匀速运动,设做匀速运动的图 甲 图 乙时间为t 2 ,则t 2=vs L 1- 代入数据可得:t =0.25 s 故:旅行包在传送带上运动的时间为t =t 1+t 2=1.25 s例3(2006年全国理综I 第24题)一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。
传送带问题的分析

传送带具有高效、稳定、连续的 传输能力,适用于各种不同形状 、大小和重量的物品,广泛应用 于物流、包装、生产线等领域。
传送带的类型
1 2
3
按照驱动方式
主动式传送带和被动式传送带。主动式传送带由电机驱动, 而被动式传送带则通过摩擦力或重力实现物品的传输。
按照传输方向
单向传送带和往复传送带。单向传送带只能沿着一个方向传 输物品,而往复传送带则可以实现两个方向的反向传输。
动化程度。
物流配送
在物流配送中,传送带可以用于分 拣、包装、装载等环节,提高物流 配送的效率和准确性。
智能物流系统
传送带与传感器、计算机等技术结 合,可以实现智能物流系统的构建 ,提高物流系统的智能化水平。
科学实验中的应用与意义
01
02
03
物理实验
传送带在物理实验中可以 用于研究力学、运动学等 基本物理规律,如动量守 恒、能量守恒等。
按照传输物品的放置方式
平面传送带和立体传送带。平面传送带传输物品时物品与传 送带平行,而立体传送带则可以实现物品在空间中的三维传 输。
传送带的应用场景
物流运输
传送带广泛应用于物流 领域,用于仓库、机场 、港口等地的货物分拣
、装卸和运输。
生产线自动化
在制造业中,传送带是 实现生产线自动化不可 或缺的设备之一,用于 连接各个工艺流程,实 现生产线的连续作业。
包装机械
在包装机械中,传送带 用于将物品输送到包装 机中进行包装,提高包 装效率和自动化程度。
02
传送带问题的常见类型
水平传送带问题
总结词
水平传送带问题主要涉及物体在水平传送带上的运动,需要 考虑物体的初速度、传送带的速度和摩擦力等因素。
传送带问题

传送带问题一.水平传送带上的力与运动情况分析1.水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查。
如图所示为一水平传送带装置示意图,绷紧的传送带AB始终保持v=1m/s的恒定速率运行。
一质量为m=4kg的行李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动。
设行李与传送带间的动摩擦因数μ=0.1,AB间的距离L=2m,g取10 m/ s2。
(1)求行李刚开始运动时所受的滑动摩擦力大小与加速度大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处。
求行李从A处传送到B处的最短时间和传送带对应的最小运行速率。
2.如图5所示为车站使用的水平传送带的模型,它的水平传送带的长度为L=8m,传送带的皮带轮的半径为r=0.2m,传送带的上部距地面的高度为h=0.45m,现有一个旅行包(视为质点)以v0=10m/s的初速度水平地滑上水平传送带.已知旅行包与皮带之间的动摩擦因数为μ=0.6,g=10 m/ s2。
试讨论下列问题:(1)若传送带静止,旅行包滑到B端时,人若没有及时取下,旅行包将从B端滑落,则包的落地点距B端的水平距离为多少?(2)设皮带轮顺时针匀速转动,并设水平传送带长度仍为L=8m,旅行包滑上传送带的初速度恒为v0=10m/s。
当皮带的角速度ω值在什么范围内,旅行包落地点距B端的水平距离始终为(1)中所求的距离?若皮带的角速度ω=40rad/s,旅行包落地点距B端的水平距离又是多少?3.一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为。
初始时,传送带与煤块都是静止的。
现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度做匀速运动,经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。
求此黑色痕迹的长度.二.倾斜传送带上的力与运动情况分析4.如图所示,传送带与水平方向夹37°角,AB 长为L =16m 的传送带以恒定速度v =10m/s 运动,在传送带上端A 处无初速释放质量为m =0.5kg 的物块,物块与带面间的动摩擦因数μ=0.5,求: (1)当传送带顺时针转动时,物块从A 到B 所经历的时间为多少? (2)当传送带逆时针转动时,物块从A 到B 所经历的时间为多少? (sin37°=0.6,cos37°=0.8,取g =10 m/s 2).5.如图所示,皮带轮带动传送带沿逆时针方向以速度v 0=2 m / s 匀速运动,两皮带轮之间的距离L=3.2 m ,皮带绷紧与水平方向的夹角θ=37°。
传送带问题分析

传送带专题分析知识升华一、分析物体在传送带上如何运动的方法1、分析物体在传送带上如何运动和其它情况下分析物体如何运动方法完全一样,但是传送带上的物体受力情况和运动情况也有它自己的特点。
具体方法是:(1)分析物体的受力情况在传送带上的物体主要是分析它是否受到摩擦力、它受到的摩擦力的大小和方向如何、是静摩擦力还是滑动摩擦力。
在受力分析时,正确的理解物体相对于传送带的运动方向,也就是弄清楚站在传送带上看物体向哪个方向运动是至关重要的!因为是否存在物体与传送带的相对运动、相对运动的方向决定着物体是否受到摩擦力和摩擦力的方向。
(2)明确物体运动的初速度分析传送带上物体的初速度时,不但要分析物体对地的初速度的大小和方向,同时要重视分析物体相对于传送带的初速度的大小和方向,这样才能明确物体受到摩擦力的方向和它对地的运动情况。
(3)弄清速度方向和物体所受合力方向之间的关系物体对地的初速度和合外力的方向相同时,做加速运动,相反时做减速运动;同理,物体相对于传送带的初速度与合外力方向相同时,相对做加速运动,方向相反时做减速运动。
2、常见的几种初始情况和运动情况分析(1)物体对地初速度为零,传送带匀速运动,(也就是将物体由静止放在运动的传送带上)物体的受力情况和运动情况如图1所示:其中V是传送带的速度,V10是物体相对于传送带的初速度,f 是物体受到的滑动摩擦力,V20是物体对地运动初速度。
(以下的说明中个字母的意义与此相同)物体必定在滑动摩擦力的作用下相对于地做初速度为零的匀加速直线运动。
其加速度由牛顿第二定律,求得;在一段时间内物体的速度小于传送带的速度,物体则相对于传送带向后做减速运动,如果传送带的长度足够长的话,最终物体与传送带相对静止,以传送带的速度V共同匀速运动。
(2)物体对地初速度不为零其大小是V20,且与V的方向相同,传送带以速度V匀速运动,(也就是物体冲到运动的传送带上)①若V20的方向与V 的方向相同且V20小于V,则物体的受力情况如图1所示完全相同,物体相对于地做初速度是V20的匀加速运动,直至与传送带达到共同速度匀速运动。
传送带问题分析

传送带问题分析(总10页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除传送带问题分析【专题分析】传送带问题是高中阶段比较常见也是比较复杂的的题目形式。
受力方面,要分析物体与传送带之间是否存在摩擦力,是存在静摩擦力还是滑动摩擦力。
运动方面,要分析物体与传送带之间是相对运动,还是相对静止,是相对传送带向前运动,还是相对传送带向后运动。
能量方面,要判断物体与传送带之间的热量生成。
因此传送带问题需要用到多种物理规律进行求解,如运动学公式的选用、牛顿第二定律、动能定理、摩擦生热、能量转化守恒定律等。
物体在传送带上运动,有可能涉及多个物理过程,比如可能在传送带上一直加速,也可能先加速后匀速;可能在传送带上一直减速,也可能先减速后匀速,甚至还可能改变运动方向。
因此认真研究运动过程和受力情况是解决传送带问题的关键。
【题型讲解】题型一传送带“静”与“动”的区别例题1:如图 3-1-1所示,水平传送带静止不动,质量为1kg的小物体,以4m/s的初速度滑上传送带的左端,最终以2m/s的速度从传送带的右端。
如果令传送带逆时针方向匀速开动,小物体仍然以4m/s的初速度滑上传送带的左端,则小物体离开传送带时的速度A.小于2m/s B.等于2m/sC.大于2m/s D.不能达到传送带右端解析:本题主要考查对物体的受力分析。
当传送带不动时,物体受到向左的滑动摩擦力,在传送带上向右做减速运动,最终离开传送带。
当传送带逆时针开动时,物体仍然相对传送带向右运动,所以受到的摩擦力仍然向左,这样与传送带静止时比较,受力情况完全相同,所以运动情况也应该一致,最后离开传送带时速度仍然是2m/s,答案为B例题2:在例题1中,如果各种情况都不变,当传送带不动时,合外力对物体做功为W1,物体与传送带间产生的热量为Q1;当传送带转动时,合外力对物体做功为W2,物体与传送带间产生的热量为Q2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传送带问题解析传送带是应用比较广泛的一种传送装置,以其为素材的物理题大都具有情景模糊、条件隐蔽、过程复杂的特点。
2003年高考最后一题的传送带问题,让很多考生痛失22分,也使传送带问题成为人民关注的热点。
但不管传送带如何运动,只要我们分析清楚物体所受的摩擦力的大小、方向的变化情况,就不难分析物体的状态变化情况。
因为不同的放置,传送带上物体的受力情况不同,导致运动情况也不同,传送带问题是以真实物理现象为依据的问题,它既能训练学生的科学思维,又能联系科学、生产和生活实际,因而,这种类型问题具有生命力,当然也就是高考要重点考察的问题。
解决此类问题的关键是对传送带和物体进行动态分析和终态推断,灵活巧妙地从能量的观点和力的观点来揭示其本质、特征、过程力学中的传送带问题,一般可分为三大类:(一)水平放置运行的传送带,(二)倾斜放置运行的传送带;(三)平斜交接放置运行的传送带,下面分别举例加以说明,从中领悟此类问题的精华部分和解题关键所在.(一)水平放置运行的传送带处理水平放置的传送带问题,首先是要对放在传送带上的物体进行受力分析,分清物体所受摩擦力是阻力还是动力;其二是对物体进行运动状态分析,即由静态→动态→终态分析和判断,对其全过程做出合理分析、推论,进而采用有关物理规律求解.这类问题可分为①运动学型;②动力学型;③动量守恒型;④图象型.现在,来分析一下水平传送带(1)受力和运动分析时注意:①受力分析中的摩擦力突变(大小、方向)——发生在V物与V传相同的时刻;②运动分析中的速度变化——相对皮带运动方向和相对地面速度变化 V物和V带③在斜面上注意比较mgsin θ与摩擦力f的大小,④传送带长度——临界之前是否滑出⑤共速以后一定与传送带保持相对静止作匀速运动吗?(2)传送带问题中的功能分析①功能关系:WF=△EK+△EP+Q②对WF、Q的正确理解(a)传送带做的功:WF=F·S带功率P=F×V带(F由传送带受力平衡求得)(b)产生的内能:Q=f·S相对(c)如物体无初速,放在水平传送带上,则在整个加速过程中物体获得的动能EK,因为摩擦而产生的热量Q有如下关系:EK=Q=1/2mV2一、 传送带水平放置设传送带的速度为V 带,物体与传送带之间的动摩擦因数为μ,两定滑轮之间的距离为L ,物体置于传送带一端的初速度为V 0。
1、V 0=0,(如图1)V 0物体刚置于传送带上时由于受摩擦力作用,将做a =μg 的加速运动。
假定物体从开始置于传送带上一直加速到离开传送带,则其离开传送带时的速度为V =gL μ2,显然有:V 带<gL μ2 时,物体在传送带上将先加速,后匀速。
V 带 ≥gL μ2时,物体在传送带上将一直加速。
2、 V 0≠ 0,且V 0与V 带同向,(如图2)(1)V 0<V 带时同上理可知,物体刚运动到带上时,将做a =μg 的加速运动,假定物体一直加速到离开传送带,则其离开传送带时的速度为V = gL V μ220+,显然有:V 0<V 带<gL V μ220+ 时,物体在传送带上将先加速后匀速。
V 带 ≥gL V μ220+ 时,物体在传送带上将一直加速。
(2)V 0>V 带时因V 0>V 带,物体刚运动到传送带时,将做加速度大小为a = μg 的减速运动,假定物体一直减速到离开传送带,则其离开传送带时的速度为V =gL V μ220- ,显然:V 带 ≤gL V μ220-时,物体在传送带上将一直减速。
V 0 >V 带>gL V μ220- 3、 V 0≠ 0,且V 0与V 带此种情形下,物体刚运动到传送带上时将做加速度大小为 的减速运动,假定物体一直减速到离开传送带,则其离开传送带时的速度为V =gL V μ220- ,显然:V ≥ 0,即V 0≥gL μ2时,物体将一直做减速运动直到从传送带的另一端离开传送带。
V <0,即V 0< gL μ2时,物体将不会从传送带的另一端离开而从进入端离开,其可能的运动情形有:a 、先沿V 0方向减速,再反向加速直至从放入端离开传送带b 、先沿V 0方向减速,再沿V 0反向加速,最后匀速直至从放入端离开传送带。
专题聚焦一、水平传送带问题的变化类型 1:如图,一物块沿斜面由H 高处由静止滑下,斜面与水平传送带相连处为光滑圆弧,物体滑离传送带后做平抛运动,当传送带静止时,物体恰落在水平地面上的A 点,则下列说法正确的是(BC )。
A .当传送带逆时针转动时,物体落点一定在A 点的左侧B .当传送带逆时针转动时,物体落点一定落在A 点C .当传送带顺时针转动时,物体落点可能落在A 点D .当传送带顺时针转动时,物体落点一定在A 点的右侧2: 如图,水平传送带两个转动轴轴心相距20m ,正在以v =4.0m/s 的速度匀速传动,某物块儿(可视为质点)与传送带之间的动摩擦因数为0.1,将该物块儿从传送带左端无初速地轻放在传送带上,则(1)经过多长时间物块儿将到达传送带的右端(g=10m/s2)?(2)若水平传送带两个转动轴心相距为2.0m,其它条件不变,则将该物体从传送带左端无初速地轻放在传送带上,则经过多长时间物体将到达传送带的右端(g=10m/s2)?(3)时间缩短。
为使物体传到另一端所用的时间最短,传送带的最小速度是多少?3:一水平传送带两轮之间距离为20m,以2m/s的速度做匀速运动。
已知某小物体与传送带间的动摩擦因数为0.1,将该小物体沿传送带同样的方向以4m/s的初速度滑出,设传送带速率不受影响,则物体从左端运动到右端所需时间是多少?4:如图所示,一水平的浅色长传送带上放置以质量为m的煤块(可视为质点)煤块与传送带之间的动摩擦因数为,初始时,传送带与煤块都是静止的,现让传送带以恒定的加速度a开始运动,当其速度达到v 后,便以次速度作匀速运动,经过一段时间,煤块在传送带上留下了一段黑色的痕迹后,煤块相对于传送带不再滑动,关于上述过程,以下判断正确的是(重力加速度为g)()A:与a之间一定满足关系≥a/gB:黑色痕迹的长度为(a-g)v2/(2a2)C:煤块从开始运动到相对于传送带静止经历的时间未v/(g)D: 煤块与传送带由于摩擦而产生的热量位m v2/24:如图所示,皮带传动装置的两轮间距L=8m,轮半径r=0.2m,皮带呈水平方向,离地面高度H=0.8m,一物体以初速度v0=10m/s从平台上冲上皮带,物体与皮带间动摩擦因数μ=0.6,(g=10m/s2)求:(1)皮带静止时,物体平抛的水平位移多大?(2)若皮带逆时针转动,轮子角速度为72r a d/s,物体平抛的水平位移多大?(3)若皮带顺时针转动,轮子角速度为72r a d/s,物体平抛的水平位移大?5:如图示,距地面高度h=5m 的平台边缘水平放置一两轮间距为d=6m 的传送带,一小物块从平台边缘以v 0=5m/s 的初速度滑上传送带。
已知平台光滑,物块与传送带间的动摩擦因数μ=0.2,设传送带的转动速度为v',且规定顺时针转动v'为正,逆时针转动v'为负。
试分析画出小物块离开传送带右边缘落地的水平距离S 与v'的变化关系图线。
9:将一粉笔头轻放在以2m/s 的恒定速度运动的传送带上,传送带上留下一条长度为4m 的划线(粉笔头只要相对于传送带运动就能划线);若使该传送带改做匀减速运动,加速度为1.5m/s 2,并且在传送带开始做匀减速运动的同时,将另一粉笔头轻放在传送带上,该粉笔头在传送带上能留下一条多长的划线?二、传送带斜置设传送带两定滑轮间的距离为L,带与水平面的夹角为θ ,物与带之间的动摩擦因数为μ,物体置与带的一端,初速度为V 0,传送带的速度为V 带。
1、V 0=0,(如图4)物体刚放到带的下端时,因V 0=0,则其受力如图所示,显然只有f - mgsin θ>0,即μ>tgθ时,物体才会被传送带带动从而向上做加速mV 0 θmL V 带 V 0图4运动,且a=μgcos θ-gsin θ,假定物体一直加速度运动到上端,则物体在离开传送带时的速度为V= L gsim g )cos 2θθμ-(,显然: V 带<L gsim g )cos 2θθμ-(时,物体在传送带上将先加速后匀速直至从上端离开。
V 带≥L gsim g )cos 2θθμ-(时,物体在传送带上将一直加速直至从上端离开。
2、 V 0≠ 0,且V 0与V 带同向,(如图5)①V 0<V 带时,a 、μ>tg θ,物体刚运动到带上时,因V 0<V 带,则其将做a=μgcos θ-gsin θ的加速运动,假定物体一直做加速运动,则物体离开传送带时的速度为V=L g g )cos sin 2V 20θμθ-(+ ,显然: L g g V V )sin cos 2V 200θθμ-<(+<带 时,物体在传送带上将先加速后匀速直至离开传送带上端。
L gsim g V )cos 2V 20θθμ-≥(+带 时,物体将在传送带上一直加速直至离开传送带上端。
b 、μ>tg θ 物体刚运动到带上时,因V 0<V 带,物体将做加速度大小为a =gsin θ-μgcos θ的减速运动。
假定物体一直做减速运动到直至离开传送带,则物体离开传送带上端时速度为V =L g g )cos sin 2V 20θμθ-(+ ,显然:V ≥0,即V 0≥L g g )cos sin 2θμθ-(时,物体在传送带上将一直减速运动直至从装置的上端离开V <0,即V 0<L g g )cos sin 2θμθ-(时,物体在传送带上将先向上做大小为a =gsin θ-μgcos θ的减速运动,后向下做加速度最小为a =gsin θ-μgcos θ的加速运动直至离开装置的下端。
② V 0>V 带时a 、μ>tg θ,物体刚运动到带上时,因V 0>V 带,故物体将做加速度大小为a =gsin θ+μgcos θ的减速运动,假定物体一直做减速运动,则物体离开传送带时速度为V =L g g )cos sin 2V 20θμθ+(+,显然: V 带 ≤L g g )cos sin 2V 20θμθ+-(时,物体将一直减速直至离开传送带上端。
V 0>V 带>L g g )cos sin 2V 20θμθ+-(时,物体将先做减速运动后做匀速运动直至离开传送带上端。
b 、μ<tg θ ,物体刚运动到带上时,因V 0>V 带,故物体将做加速度大小为a =gsin θ+μgcos θ的减速运动。
假定物体一直做减速运动,则物体离开传送带上端时速度为V =L g g )cos sin 2V 20θμθ+-(,显然:V 带 ≤L g g )cos sin 2V 20θμθ+-(时,物体将一直减速直至离开传送带上端。