2019-2020学年辽宁省大连市普兰店区九年级上学期期末考试数学试卷

合集下载

大连市2020版九年级上学期数学期末考试试卷(II)卷

大连市2020版九年级上学期数学期末考试试卷(II)卷

大连市 2020 版九年级上学期数学期末考试试卷(II)卷姓名:________班级:________成绩:________一、 选择题(共 30 分) (共 10 题;共 30 分)1. (3 分) (2020 七下·金寨月考) 已知不等①、②、③的解集在数轴上的表示如图所示,则它们的公共部分的解集是( )A. B. C. D . 无解2. (3 分) (2019 九上·江北期末) 若 A.,则下列式子一定成立的是( )B. C. D. 3.(3 分)(2019 九上·潮南期末) 将抛物线 A. B.C.向左平移 2 个单位后得到新的抛物线的表达式为D. 4. (3 分) (2019 九上·潮南期末) 如图,四边形 ABCD 为 小是( )的内接四边形,∠BCD=120°,则∠BOD 的大A. B.第 1 页 共 13 页C. D. 5. (3 分) (2019 九上·潮南期末) 边长为 2 的正方形内接于 A.1 B.2,则的半径是C.D. 6. (3 分) (2019 九上·潮南期末) 方程 A.的左边配成完全平方后所得方程为B.C. D.7. (3 分) (2019 九上·潮南期末) A,B 是上的两点,, 的长是 ,则的度数是A . 30B.C.D.8. (3 分) (2019 九上·潮南期末) 某种植基地 2017 年蔬菜产量为 80 吨,预计 2019 年蔬菜产量达到 100 吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为 ,则可列方程为A.B.C.D.9. (3 分) (2019 九上·潮南期末) 如图,将线段 的延长线上,则的大小为绕点 逆时针旋转,得到.若点 在第 2 页 共 13 页A.B.C.D.10. (3 分) (2019 九上·潮南期末) 如图,抛物线的一个交点坐标为,其部分图象如图所示,下列结论:①②方程的两个根是,大而增大.其中正确的个数是的对称轴为直线,与 轴③④当时, 随 增A . 1个 B . 2个 C . 3个 D . 4个二、 填空题(共 24 分) (共 6 题;共 24 分)11. (4 分) (2018 九上·淮安月考) 已知一等腰三角形的底边长和腰长分别是方程 x2﹣3x=4(x﹣3)的两个 实数根,则该等腰三角形的周长是________.12. (4 分) (2019 七上·双台子月考) 已知是数轴上的三个点,且 在 的右侧.点表示的数分别是 1,3,如图所示.若,则点 表示的数是________.13. (4 分) (2019·鄂尔多斯模拟) 下列说法正确的是________.(填写正确说法的序号)①在角的内部,到角的两边距离相等的点在角的平分线上;②一元二次方程 x2﹣3x=5 无实数根;③的平方根为±4;④了解北京市居民”一带一路”期间的出行方式,采用抽样调查方式;⑤圆心角为 90°的扇形面积是 π,则扇形半径为 2.第 3 页 共 13 页14. (4 分) (2019 七下·呼和浩特期末) 以下四个命题:①的立方根是 ②要调查一批灯泡的使用寿命适宜用抽样调查③两条直线被第三条直线所截同旁内角互补④已知与其内部一点 ,过 点作,作,则.其中假命题的序号为________.15. (4 分) (2017 九上·澄海期末) 抛物线 y=x2+2x+1 的顶点坐标是________.16. (4 分) (2019 九上·潮南期末) 已知正方形中,点 在边 上,,(如图所示)把线段 绕点 旋转,使点 落在直线 上的点 处,则 、 两点的距离为________.三、 解答题(共 18 分) (共 3 题;共 18 分)17. (6 分) (2019 七下·姜堰期中) 已知关于 , 的二元一次方程组 反数,求 k 的值.的解互为相18. (6 分) (2019 九上·潮南期末) 设二次函数的图象的顶点坐标为,且过点,求这个函数的关系式.19. (6 分) (2019 九上·潮南期末) 在边长为 1 个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系是格点三角形(顶点在网格线的交点上)(1) 先作关于原点 成中心对称的△,再把△向上平移 4 个单位长度得到△;(2) △与是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.四、 解答题(共 21 分) (共 3 题;共 21 分)20. (7.0 分) (2017·溧水模拟) 综合题:求下列事件概率第 4 页 共 13 页(1) 小杨和小姜住在同一个小区,该小区到苏果超市有 A、B、C 三条路线. ①求小杨随机选择一条路线,恰好是 A 路线的概率; ②求小杨和小姜两人分别随机选择一条路线去苏果超市,恰好两人选择同一条路线的概率. (2) 有 4 位顾客在超市中选购 4 种品牌的方便面.如果每位顾客从 4 种品牌中随机的选购一种,那么 4 位顾 客选购同一品牌的概率是________,至少有 2 位顾客选择的不是同一品牌的概率是________(直接填字母序号)A.B.( ) 3C.1﹣( ) 3D.1﹣( )3. 21. (7.0 分) (2017·营口) 如图,有四张背面完全相同的纸牌 A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1) 从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2) 小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用 A、B、C、D 表示).22. (7.0 分) (2012·杭州) 有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为 5 和 7.(1) 请写出其中一个三角形的第三边的长;(2) 设组中最多有 n 个三角形,求 n 的值;(3) 当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.五、 解答题(共 27 分) (共 3 题;共 27 分)23. (9 分) 已知 y+2 与 x 成正比例,且 x=3 时 y=1.(1) 写出 y 与 x 之间的函数关系式;(2) 求当 x=﹣1 时,y 的值;(3) 求当 y=0 时,x 的值.24. (9.0 分) (2019 九上·潮南期末) 已知内接于以 为直径的,过点 作的切线交 的延长线于点 ,且.第 5 页 共 13 页(1) 求 (2) 在切线的度数; 上截取,连接 ,判断直线 与的位置关系,并证明.25. (9 分) (2019 九上·潮南期末) 如图,已知抛物线 (点 在点 的右侧),与 轴交于点 .的图象与 轴交于 , 两点(1) 求直线 的解析式;(2) 点 是直线 下方抛物线上的一点,当的面积最大时,在抛物线的对称轴上找一点 ,使得的周长最小,请求出点 的坐标和点 的坐标;(3) 在(2)的条件下,是否存在这样的点,使得为等腰三角形?如果有,请直接写出点的坐标;如果没有,请说明理由.第 6 页 共 13 页参考答案一、 选择题(共 30 分) (共 10 题;共 30 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、二、 填空题(共 24 分) (共 6 题;共 24 分)11-1、 12-1、 13-1、 14-1、 15-1、 16-1、三、 解答题(共 18 分) (共 3 题;共 18 分)第 7 页 共 13 页17-1、 18-1、19-1、 19-2、四、 解答题(共 21 分) (共 3 题;共 21 分)20-1、 20-2、 21-1、第 8 页 共 13 页21-2、22-1、22-2、 22-3、五、 解答题(共 27 分) (共 3 题;共 27 分)23-1、 23-2、23-3、第 9 页 共 13 页24-1、24-2、第 10 页 共 13 页25-1、25-2、25-3、。

辽宁省2019-2020学年九年级上学期期末数学试题A卷

辽宁省2019-2020学年九年级上学期期末数学试题A卷

辽宁省2019-2020学年九年级上学期期末数学试题A卷姓名:________ 班级:________ 成绩:________一、单选题1 . 在平面直角坐标系中,直线(为常数)与抛物线交于,两点,且点在轴左侧,点坐标为,连结、,有以下说法:①;②当时,的值随的增大而增大;③当时,;④面积的最小值为.其中正确的是()A.①B.②C.③D.④2 . 将一元二次方程配方后,原方程可化为()A.B.C.D.3 . 下列成语中表示不确定事件的是()A.水中捞月B.守株待兔C.刻舟求剑D.竹篮打水4 . 如图,已知点A在反比例函数y=(x>0)的图象上,作Rt△ABC,边BC在x轴上,点D为斜边AC的中点,连结DB并延长交y轴于点E,若△BCE的面积为4,则k的值是()A.2B.4C.6D.85 . 下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.6 . 杨树乡共有耕地公顷,该乡人均耕地面积与总人口之间的函数图象大致为()A.B.C.D.7 . 下列属于正n边形的特征的有()①各边相等;②各个内角相等;③各条对角线都相等;④从一个顶点可以引(n-2)条对角线;⑤从一个顶点引出的对角线将正n边形分成面积相等的(n-2)个三角形.A.2个B.3个C.4个D.5个8 . 如图,△AOB中,∠B=25°,将△AOB绕点O顺时针旋转60°,得到△A′OB′,边A′B′与边OB交于点C(A′不在OB上),则∠A′CO的度数为()A.85°B.75°C.95°D.105°9 . 如图,是直径,是的切线,连接交于点,连接,,则的度数是().A.B.C.D.10 . 抛物线y=2x2+1向右平移1个单位,再向下平移1个单位,所得到的抛物线是()A.y=2(x﹣1)2+3B.y=2(x+1)2﹣3C.y=2(x﹣1)2﹣1D.y=3(x﹣1)2+1二、填空题11 . 某体育公园的圆形喷水池的水柱如图①所示,如果曲线APB表示落点B离点O最远的一条水流(如图②),其上的水珠的高度y(米)关于水平距离x(米)的函数解析式为y=-x2+4x+,那么圆形水池的半径至少为_______米时,才能使喷出的水流不落在水池外.12 . 如图,在平行四边形ABCD中,∠B=120°,AB与CD之间的距离是,AB=28,在AB上取一点E(AE <BE),使得∠DEC=120°,则AE=_____.13 . 已知反比例函数的图象如图所示,则实数m的取值范围是___________.14 . 点P(a+2,b-1)关于原点的对称点Q的坐标是(-3,2),则ab=______15 . 一个不透明的盒子中装有15个黑球和若干个白球,它们除颜色不同外,其余均相同,从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验300次,其中有200次摸到白球,由此估计盒子中的白球大约有____个.16 . 用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于_______.三、解答题17 . 如图,AB是⊙O的直径,D,E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE,DE,DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数.18 . 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件.若设每件衬衫降价x元,解答下列问题:(1)当每件衬衫降价5元,则每件利润元,平均每天可售出件.(2)若平均每天获利为Q元,请求出Q与x的函数关系式.(3)若商场想平均每天盈利1200元,每件衬衫应降价多少元?19 . 解方程:(1)(x+2)2=25(2)x2﹣2x﹣2=0(3)x2﹣6x﹣16=0(4)(x﹣2)2﹣(3x+8)2=020 . (8分)如图,一次函数的图象与x轴交于点B,与反比例函数的图象的交点为A(﹣2,3).(1)求反比例函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.21 . 如图,AB为⊙O的直径,点C在AB的延长线上,CD、CE分别与⊙O相切于点D、E,若AD=2,∠DAC=∠DCA,求CE.22 . 为丰富学生的校园生活,某校举行“与爱同行”朗诵比赛,赛后整理参赛同学的成绩,绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题.组别成绩x(分)频数(人数)A8.0≤x<8.5aB8.5≤x<9.08C9.0≤x<9.515D9.5≤x<103(1)图中a= ,这次比赛成绩的众数落在组;(2)请补全频数分布直方图;(3)学校决定选派本次比赛成绩最好的3人参加全市中学生朗诵比赛,并为参赛选手准备了2件白色、1件蓝色上衣和黑色、蓝色、白色的裤子各1条,小军先选,他从中随机选取一件上衣和一条裤子搭配成一套衣服,请用画树状图法或列表法求出上衣和裤子搭配成不同颜色的概率.23 . 如图,有一块矩形硬纸板,长50cm,宽30cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为600cm2?24 . 在平面直角坐标系中,设二次函数y1=mx2﹣6mx+8m(m为常数).(1)若函数y1经过点(1,3),求函数y1的表达式;(2)若m<0,当x<时,此二次函数y随x的增大而增大,求a的取值范围;(3)已知一次函数y2=x﹣2,当y1•y2>0时,求x的取值范围.。

辽宁省2019-2020学年九年级上学期期末数学试题C卷

辽宁省2019-2020学年九年级上学期期末数学试题C卷

辽宁省2019-2020学年九年级上学期期末数学试题C卷姓名:________ 班级:________ 成绩:________一、单选题1 . 如图,能使△ACD∽△BCA相似的条件是()A.B.C.D.2 . 绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4m B.5m C.6m D.8m3 . 点,,均在二次函数的图象上,则,,的大小关系是()A.B.C.D.4 . 如图,在中,分别是边上的点,,若,则下列结论中正确的是()A.B.C.D.5 . 如图,已知△ABC和△DEF均为等腰直角三角形,AB=2,DE=1,E、B、F、C在同一条直线上,开始时点B与点F重合,让△DEF沿直线BC向右移动,最后点C与点E重合,设两三角形重合面积为y,点F移动的距离为x,则y关于x的大致图象是()A.B.C.D.6 . 用min{a,b}表示a,b两数中的最小数,若函数,则y的图象为()A.B.C.D.7 . 已知线段 a=2,b=8,则 a,b 的比例中项线段为()A.16B.±4C.4D.﹣48 . 在一个有 10 万人的小镇,随机调查了 1000 人,其中有 120 人周六早上观看中央电视台的“朝闻天下”节目,那么在该镇随便问一个人,他在周六早上观看中央电视台的“朝闻天下”节目的概率大约是()A.B.C.D.9 . 如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB.则cos∠AOB的值等于()A.B.C.B.10 . 以下命题:①直径相等的圆是等圆;②长度相等弧是等弧;③相等的弦所对的弧也相等;④圆的对称轴是直径;⑤相等的圆周角所对的弧相等;其中正确的个数是()A.4B.3C.2D.1二、填空题11 . 将抛物线向右平移1个单位长度,再向下平移3个单位长度,平移后抛物线的解析式是.12 . 如图,AB是的一条弦,P是上一动点(不与点A,B重合),C,D分别是AB,BP的中点.若,,则CD长的最大值为________________.13 . 在一个不透明的盒子中装有a个除颜色外完全相同的球,其中只有6个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在20%左右,则a的值约为_____.14 . 若半径为6cm的圆中,一段弧长为3πcm,则这段弧所对的圆心角度数为_______.15 . 已知点A(2,5),B(4,5)是抛物线上的两点,则这条抛物线的对称轴为直线__________.16 . 如图,在△ABC中,DE∥BC,BC=6,梯形DBCE面积是△ADE面积的3倍,则DE=________.三、解答题17 . (探索发现)如图①,将沿中位线折叠,使点的对称点落在边上,再将纸片分别沿等腰和等腰的底边上的高线,折叠,折叠后的三个三角形拼合形成一个新的图形.小刚在探索这个问题时发现四边形是矩形.小刚是这样想的:(1)请参考小刚的思路写出证明过程;(2)连接,当时,直接写出线段、、的数量关系:______;(理解运用)(3)如图②,在四边形中,,,,,,点为边的中点,把四边形折叠成如图②所示的正方形,顶点、落在点处,顶点、落在线段上的点处,求的长.18 . 计算:.19 . 二次函数的图象过,,,点在函数图象上,点,是二次函数图象上的一对对称点,一次函数图象过点,,求:一次函数和二次函数的解析式;写出使一次函数值大于二次函数值的的取值范围.20 . 小娜家购买了4个灯笼(外观完全一样),灯笼上分别写有“欢”“度”“春”“节”.(1)小娜从四个灯笼中任取一个,取到“春”的概率是多少;(2)小娜从四个灯笼中先后取出两个灯笼,请用列表法或画树状图法求小娜恰好取到“春”“节”两个灯笼的概率.21 . 如图,在中,点在上,点在上,,,与交于点,试判断的形状,并说明理由.22 . 某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价为25元/件时,每天的销售量是150件;销售单价每上涨1元,每天的销售量就减少10件.(1)求商场销售这种文具每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大?(3)现商场规定该文具每天销售量不少于120件,为使该文具每天的销售利润最大,该文具定价多少元时,每天利润最大?23 . 如图,已知二次函数(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BA.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移个单位,使平移后得到的二次函数图象的顶点与△ABC的外心重合,求的取值;(3)点P是坐标平面内的一点,使得△ACB与△MCP,且CM的对应边为AC,请写出所有点P的坐标(直接写出结果,不必写解答过程).24 . 如图,某电视台大楼顶部安置了一电视发射铁塔CD,现有一位测试员分别在楼下相距16m的A,B两处测得D点和C点的仰角分别是45°和60°,已知A,B,E在一条直线上,C,D,E也在一条直线上,且BE=30m.求电视发射铁塔的高度.(结果保留整数,参考数据:≈1.41,≈1.73)。

2019-2020学年辽宁省大连市九年级上期末数学模拟试卷及答案解析

2019-2020学年辽宁省大连市九年级上期末数学模拟试卷及答案解析
A.1B.2C.3D.4
8.若正六边形外接圆的半径为4,则它的边长为( )
A.2B. C.4D.
9.如图,已知CA、CB分别与⊙O相切于A、B两点,D是⊙O上的一点,连接AD、BD,若∠C=56°,则∠D等于( )
A.72°B.68°C.64°D.62°
10.如图,正方形网格中的每个小正方形的边长为1,将三角形ABC绕旋转中心旋转某个角度后得到三角形A′B′C′,其中点A,B,C的对应点是点A′,B′,C′,那么旋转中心是( )
3.如图,在半径为 的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是( )
A.2 B.2 C.2 D.4
4.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则tanA的值是( )
A. B. C.2D.
5.二次函数y=2(x﹣6)2+9图象的顶点坐标是( )
参考答案与试题解析
一.选择题(共10小题,满分30分,每小题3分)
1.近几年我国国产汽车行业蓬勃发展,下列汽车标识中,是中心对称图形的是( )
20.(12分)某商店购进一批成本为每件30元的商品,商店按单价不低于成本价,且不高于50元销售.经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.
(1)求该商品每天的销售量y(件)与销售单价x(元)之间的函数关系式;
(2)销售单价定为多少元时,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?
A.(﹣6,9)B.(6,9)C.(6,﹣9)D.(﹣6,﹣9)
6.若把方程x2﹣6x﹣4=0的左边配成完全平方的形式,则正确的变形是( )
A.(x﹣3)2=5B.(x﹣3)2=13C.(x﹣3)2=9D.(x+3)2=5

大连市初三数学九年级上册期末试题及答案

大连市初三数学九年级上册期末试题及答案

A.4 个
B.3 个
C.2 个
D.1 个
6.分别写有数字 0,﹣1,﹣2,1,3 的五张卡片,除数字不同外其他均相同,从中任抽一
张,那么抽到负数的概率是( )
A. 1 5
B. 2 5
C. 3 5
D. 4 5
7.已知圆锥的底面半径为 5 cm ,母线长为 13 cm ,则这个圆锥的全面积是( )
A. 65 cm2
30.若一个圆锥的侧面展开图是一个半径为 3cm,圆心角为 120°的扇形,则该圆锥的底面 半径为__________cm.
三、解答题
31.某商场以每件 42 元的价格购进一种服装,由试销知,每天的销量 t(件)与每件的销 售价 x(元)之间的函数关系为 t=204-3x. (1)试写出每天销售这种服装的毛利润 y(元)与每件售价 x(元)之间的函数关系式 (毛利润=销售价-进货价); (2)每件销售价为多少元,才能使每天的毛利润最大?最大毛利润是多少?
A. (1,3)
B. (1, 3)
C. (1,3)
D. (1, 3)
11.如图,四边形 ABCD中, BAD ACB 90 , AB AD , AC 4BC ,设 CD 的长为 x ,四边形 ABCD 的面积为 y ,则 y 与 x 之间的函数关系式是( )
A. y 2 x2 25
B. y 4 x2 25
B. 90 cm2
C.130 cm2
D.155 cm2
8.如图,已知正五边形 ABCDE 内接于 O ,连结 BD,CE 相交于点 F ,则 BFC 的度
数是( )
A. 60
B. 70
9.一元二次方程 x2=9 的根是( )
A.3
B.±3

辽宁省大连市普兰店区九年级上学期期末考试数学试卷

辽宁省大连市普兰店区九年级上学期期末考试数学试卷

2019-2020学年辽宁省大连市普兰店区九年级上学期期末考试
数学试卷解析版
一、选择题(本题共10小题,每小题3分,共30分,在每个小题给出的四个选项中,只有一个选项正确)
1.(3分)下列图形中,既是轴对称图形又是中心对称图形的有()
A.1个B.2个C.3个D.4个
【解答】解:第1个图形,是轴对称图形,也是中心对称图形,符合题意;
第2个图形,是轴对称图形,不是中心对称图形,不合题意;
第3个图形,是轴对称图形,也是中心对称图形,符合题意;
第4个图形,是轴对称图形,也是中心对称图形,符合题意.
故选:C.
2.(3分)方程x2=2x的根是()
A.x=2B.x=0C.x1=0,x2=2D.x1=0,x2=﹣2【解答】解:方程变形得:x2﹣2x=0,
分解因式得:x(x﹣2)=0,
可得:x=0或x﹣2=0,
解得:x1=0,x2=2.
故选:C.
3.(3分)抛物线y=x2+2x+3的顶点坐标是()
A.(﹣1,﹣2)B.(﹣1,2)C.(1,2)D.(1,﹣2)
【解答】解:∵原抛物线可化为:y=x2+2x+3=(x+1)2+2,
∴其顶点坐标为(﹣1,2).
故选:B.
4.(3分)如图,点A、B、C在⊙O上,∠ABO=22°,∠ACO=42°,则∠BOC等于()
第1 页共16 页。

辽宁省大连市九年级上册数学期末考试试卷

辽宁省大连市九年级上册数学期末考试试卷

辽宁省大连市九年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九下·常熟月考) 在Rt△ABC中,∠C=90°,如果∠A=α,AB=3,那么AC等于()A . 3sinαB . 3cosαC .D .2. (2分)冬至时是一年中太阳相对于地球位置最低的时刻,只要此时能采到阳光,一年四季就均能受到阳光照射.此时竖一根a米长的竹杆,其影长为b米,某单位计划想建m米高的南北两幢宿舍楼(如图所示).当两幢楼相距多少米时,后楼的采光一年四季不受影响?().A . 米B . 米C . 米D . abm米3. (2分) (2017九上·十堰期末) 某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A . 该村人均耕地面积随总人口的增多而增多B . 该村人均耕地面积y与总人口x成正比例C . 若该村人均耕地面积为2公顷,则总人口有100人D . 当该村总人口为50人时,人均耕地面积为1公顷4. (2分)如图,四边形ABCD,M为BC边的中点.若∠B=∠AMD=∠C=45°,AB=8,CD=9,则AD的长为()A . 3B . 4C . 5D . 65. (2分) (2018九上·武汉期中) 二次函数y=2 +3的图象是一条抛物线,则下列说法错误的是()A . 抛物线开口向上B . 抛物线的对称轴是直线x=1C . 抛物线的顶点是(1,3)D . 当x>1时,y随x的增大而减小6. (2分) (2019八上·兰州期末) 在△ABC中,∠C=90°,c2=2b2 ,则两直角边a,b的关系是()A . a<bB . a>bC . a=bD . 以上三种情况都有可能7. (2分) (2018七下·历城期中) 如图,△DAC和△E BC均是等边三角形,A E、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN;④∠DAE=∠DBC.其中正确的有()A . ②④B . ①②③C . ①②④D . ①②③④8. (2分)(2020·宿州模拟) 如图,正方形OABC的边长为6,D为AB中点,OB交CD于点Q,Q是y=上一点,k的值是()A . 4B . 8C . 16D . 249. (2分) (2019九上·合肥月考) 中国贵州省内的射电望远镜()是目前世界上口径最大,精度最高的望远镜,根据有关资料显示,该望远镜的轴截面呈现抛物线状,口径为500米,最低点到口径面的距离是100米,若按如图(2)建立平面直角坐标系,则抛物线的解析式是()A .B .C .D .10. (2分) (2017九上·鞍山期末) 在平面直角坐标系中,将二次函数的图象向上平移2个单位,所得图象的表达式为()A .B .C .D .二、填空题 (共8题;共8分)11. (1分) (2020九上·无锡月考) 若3x=5y,则 =________.12. (1分) (2019九上·句容期末) 已知 = ,则 =________.13. (1分) (2016九下·萧山开学考) 在△ABC中,∠A,∠B所对的边分别为a,b,∠C=70°.若二次函数y=(a+b)x ²+(a+b)x-(a-b)的最小值为-,则∠A=________.14. (1分)(2017·潍坊模拟) 计算﹣|2 ﹣2cos30°|+()﹣1﹣(1﹣π)0的结果是________.15. (1分) (2019九上·海口期末) 如图,在平面直角坐标系中,已知点A(﹣2,4),B(﹣4,﹣2),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A'的坐标是________.16. (1分)如图,身高1.6米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去,当走到C点时,她的影子顶端正好与树的影子重合,测得BC=3米,CA=1米,则树的高度为________。

2019-2020学年辽宁省大连市普兰店区九年级上学期期末考试数学试卷及答案解析

2019-2020学年辽宁省大连市普兰店区九年级上学期期末考试数学试卷及答案解析
(1)求证:直线PC是⊙O的切线;
(2)若CD=4,BD=2,求线段BP的长.
五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)
24.(12分)如图1,直线AB与x轴、y轴分别交于点A、B,作等腰直角三角形ABC,使∠BAC=90°,将△ABC沿着射线AB平移得到△A′B′C′,当点A′与点B重合时停止运动.设平移距离为m,△A′B′C′与△ABO重合部分的面积为S,S关于m的函数图象如图2所示.
9.(3分)一个小盒子中装有形状和大小完全相同的红蓝两种颜色的小球10个,随机摸出一个红球的概率是 ,向小盒子中再添加2个同样大小的红球,随机摸出一个红球的概率变为( )
A. B. C. D.
10.(3分)抛物线y=(x﹣1)2+3关于x轴对称的抛物线的解析式是( )
A.y=﹣(x﹣1)2+3B.y=(x+1)2+3
(1)4+52 ;
(2)3 2 ;
(3)1 2 ;
(4)a+12 (a>0).
【发现】用一句话概括你发现的规律:;
【表达】用符号语言写出你发现的规律并加以证明;
【应用】若a>0,求a 的最小值.
23.(9分)如图,AB是⊙O的直径,点C是圆周上一点,连接AC、BC,以点C为端点作射线CD、CP分别交线段AB所在直线于点D、P,使∠1=∠2=∠A.
C.y=(x﹣1)2﹣3D.y=﹣(x﹣1)2﹣3
二、填空题(本题共6小题,每小题3分,共18分)
11.(3分)如果方程x2﹣3x+k=0有两个不相等的实数根,那么k的取值范围是.
12.(3分)在⊙O中,直径为10cm,弦AB的长为8cm,则圆心O到AB的距离为.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年辽宁省大连市普兰店区九年级上学期期末考试
数学试卷
一、选择题(本题共10小题,每小题3分,共30分,在每个小题给出的四个选项中,只有一个选项正确)
1.下列图形中,既是轴对称图形又是中心对称图形的有()
A.1个B.2个C.3个D.4个
【解答】解:第1个图形,是轴对称图形,也是中心对称图形,符合题意;
第2个图形,是轴对称图形,不是中心对称图形,不合题意;
第3个图形,是轴对称图形,也是中心对称图形,符合题意;
第4个图形,是轴对称图形,也是中心对称图形,符合题意.
故选:C.
2.方程x2=2x的根是()
A.x=2B.x=0C.x1=0,x2=2D.x1=0,x2=﹣2【解答】解:方程变形得:x2﹣2x=0,
分解因式得:x(x﹣2)=0,
可得:x=0或x﹣2=0,
解得:x1=0,x2=2.
故选:C.
3.抛物线y=x2+2x+3的顶点坐标是()
A.(﹣1,﹣2)B.(﹣1,2)C.(1,2)D.(1,﹣2)
【解答】解:∵原抛物线可化为:y=x2+2x+3=(x+1)2+2,
∴其顶点坐标为(﹣1,2).
故选:B.
4.如图,点A、B、C在⊙O上,∠ABO=22°,∠ACO=42°,则∠BOC等于()
第1 页共16 页。

相关文档
最新文档