热敏电阻和模拟温度传感器感测解决方案
(完整版)基于热敏电阻的数字温度计

基于热敏电阻的数字温度计专业班级:机械1108组内成员:罗良李登宇李海先指导老师:**日期: 2014年6月12日1概述随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。
随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。
目前温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法:1)利用物体热胀冷缩原理制成的温度计2)利用热电效应技术制成的温度检测元件3)利用热阻效应技术制成的温度计4)利用热辐射原理制成的高温计5)利用声学原理进行温度测量本系统的温度测量采用的就是热阻效应。
温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。
将输出的微弱电压信号放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。
2设计方案2.1设计目的利用51单片机及热敏电阻设计一个温度采集系统,通过学过的单片机和数字电路及面向对象编程等课程的知识设计。
要求的功能是能通过串口将采集的数据在显示窗口显示,采集的温度达一定的精度2.2设计要求使用热敏电阻类的温度传感器件利用其温感效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来。
3系统的设计及实现3.1系统模块3.1.1 AT89C51AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
温度传感器概述、应用及原理(热敏电阻器、电阻温度探测器、热电偶、固态热传感器)

温度传感器概述、应用及原理(热敏电阻器、电阻温度探测器、热电偶、固态热传感器)热敏电阻器用来测量温度的传感器种类很多,热敏电阻器就是其中之一。
许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。
在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。
表1是一个典型的NTC热敏电阻器性能参数。
这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。
其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。
以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为14.050KΩ。
图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。
虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。
如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下:这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。
热敏电阻一般有一个误差范围,用来规定样品之间的一致性。
根据使用的材料不同,误差值通常在1%至10%之间。
有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合。
例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。
图2是利用热敏电阻测量温度的典型电路。
电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref也将是5V。
热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。
基于Pt100_热电阻的简易温度测量系统毕业设计论文1 精品

基于PT100热电阻的简易温度测量仪摘要:本文首先简要介绍了铂电阻PT100的特性以及测温的方法,在此基础上阐述了基于PT100的温度测量系统设计。
在本设计中,是以铂电阻PT100作为温度传感器,采用恒流测温的方法,通过单片机进行控制,用放大器、A/D转换器进行温度信号的采集。
通过对电路的设计,减小了测量电路及PT100自身的误差,使温控精度在0℃~100℃范围内达到±0.1℃。
本文采用STC89C52RC单片机,TLC2543 A/D转换器,AD620放大器,铂电阻PT100及液晶系统,编写了相应的软件程序,使其实现温度及温度曲线的实时显示。
该系统的特点是:使用简便;测量精确、稳定、可靠;测量范围大;使用对象广。
关键词:PT100 单片机温度测量 AD620 TL431AbstractThis article briefly describes the characteristics of PT100 platinum resistance and temperature measurement method, on the basis it describes the design of temperature measurement system based on PT100. In this design, it is use a PT100 platinum resistance as temperature sensor, in order to acquisition the temperature signal, it use of constant-current temperature measurement method and use single-chip control, Amplifier, A / D converter. It can still improve the perform used two-wire temperature circuit and reduce the measurement eror. The temperature precision is reached ±0.1℃ between 0℃~100℃.The system contains SCM(STC89C52), analog to digital convert department (TLC2543), AD620 amplifier, PT100 platinum, LCD12864, write the corresponding software program to achieve real-time temperature display. The system is simple , accurate , stable and wide range. Keywords:PT100 MCU Temperature Measures AD620 TL431目录前言 (4)第一章方案设计与论证 (6)1.1 传感器的选择 (6)1.2 方案论证 (7)1.3 系统的工作原理 (8)1.4 系统框图 (9)第二章硬件设计 (9)2.1 PT100传感器特性和测温原理 (9)2.2 硬件框图以及简要原理概述 (11)2.3 恒流源模块测温模块设计方案 (11)2.4 信号放大模块 (12)2.5 A/D转换模块 (15)2.6 单片机控制电路 (18)2.7 显示模块 (19)第三章软件设计 (19)3.1系统总流程的设计 (19)3.2 主函数的设计 (20)3.3 温度转换流程图的设计 (21)3.4 显示流程图 (21)3.5 按键流程的设计 (22)第四章数据处理与性能分析 (23)4.1采集的数据及数据处理 (23)4.2 性能测试分析 (23)第五章结论与心得 (24)1 结论 (24)2 心得 (24)附录1 原理图 (25)附录2 元器件清单 (26)附录3 程序清单 (27)前言随着科技的发展和“信息时代”的到来,作为获取信息的手段——传感器技术得到了显著的进步,其应用领域越来越广泛,对其要求越来越高,需求越来越迫切。
温度传感器工作原理

温度传感器工作原理温度传感器是一种用于测量环境温度的设备,它可以将温度转化为电信号,以便于数字化处理和显示。
温度传感器的工作原理是基于物质的热学性质,通过测量物质在不同温度下的特定物理性质的变化来实现温度的测量。
常见的温度传感器有热敏电阻、热电偶、红外线传感器等。
下面将分别介绍这些温度传感器的工作原理。
1. 热敏电阻。
热敏电阻是一种电阻值随温度变化而变化的电阻元件。
它的工作原理是基于热敏材料的电阻随温度的变化而变化。
当温度升高时,热敏电阻的电阻值会减小;当温度降低时,电阻值会增加。
这种特性使得热敏电阻可以用来测量温度。
通常情况下,热敏电阻会被安装在一个稳定的电路中,通过测量电阻值的变化来确定环境温度。
2. 热电偶。
热电偶是由两种不同金属或合金材料组成的导线,它的工作原理是基于两种不同材料在温度变化下产生的电动势。
当两种不同材料的接触点处于不同温度时,会产生一个电动势,这个电动势的大小与两种材料的温度差有关。
通过测量这个电动势的大小,可以确定两种材料接触点的温度差,从而得到环境的温度。
3. 红外线传感器。
红外线传感器是一种利用红外线辐射来测量物体表面温度的传感器。
它的工作原理是基于物体表面温度与其红外辐射的关系。
物体的表面温度越高,其红外辐射的能量越大。
红外线传感器通过测量物体表面的红外辐射能量来确定物体的温度。
这种传感器通常被应用于需要远距离、非接触式测温的场合。
综上所述,温度传感器的工作原理是基于物质的热学性质来实现温度的测量。
不同类型的温度传感器通过不同的原理来实现温度的测量,但它们的共同目标是将温度转化为电信号,以便于数字化处理和显示。
温度传感器在工业控制、医疗设备、家用电器等领域都有着广泛的应用,它们的工作原理的深入理解对于提高温度测量的准确性和稳定性具有重要意义。
温度传感器设计及测试技术研究

温度传感器设计及测试技术研究一、引言随着智能制造、物联网等概念的兴起,传感器作为其中的重要组成部分,产生的数据也变得愈加重要。
成为主流的温度传感器,通常采用电压信号或阻值信号来表示温度。
因此,设计一种高精度的温度传感器,并研究其测试技术,对于监测环境温度、控制温度差异、提高产品研制的精度等方面具有重要意义,也是从事传感器相关工作领域的技术人员必须掌握的关键技能之一。
二、温度传感器的工作原理及分类1.工作原理温度传感器通过将温度变化转化为电信号,来检测和控制被测量对象的温度变化。
常用的温度传感器有热敏电阻、热电偶、半导体温度传感器、红外线温度传感器等。
其中,热敏电阻和热电偶是最为常用、最为成熟的温度传感器,其巨大优势在于,它们可以将温度转化为电信号,并在读取时直接使用模拟输入。
2.分类温度传感器主要根据工作方式和安装方式进行分类。
根据工作方式可分为接触式和非接触式,常用的热敏电阻、热电偶、非接触式红外线温度传感器属于接触式,半导体温度传感器属于非接触式;根据安装方式可分为贴片式、插入式、浸润式等,常见的有芯片式温度传感器(芯片式传感器一般用来检测端内部温度)、贴片式热敏电阻、壳体式热电偶、导管式温度传感器等。
对于不同的应用场景,选择适合的传感器,可以更好地保障其工作性能及生命周期。
三、温度传感器设计技术1.传感器元器件的选择传感器的核心元器件选择直接关系到传感器的输出精度和稳定性。
根据所需的测量精度和工作温度范围,选择适合的元器件,对测量精度的提高和温度稳定性的提高都有着非常重要的意义。
以热电偶为例,采用不同的材料,将会对热电偶的伏特值产生不同的影响。
因此,设计者需要综合考虑热电偶两种材料之间的理化性质及其本身特性的优劣,选择出适合的热电偶材料,才能达到更高的精度和稳定性要求。
2.信号的处理由于传感器的信号常常会受到外界电磁干扰、温度漂移干扰等干扰因素的影响,因此传感器信号的处理显得尤为重要。
采用硬件和软件两种方法对传感器信号进行处理,除了充分发挥单片机的计算性能外,还需要引入滤波、放大、增益、采样等技术手段,以提高传感器信号的稳定性和精确度,并保证其输出的准确性。
模拟温度传感器工作原理

模拟温度传感器工作原理模拟温度传感器是一种能够测量环境温度的装置,它的工作原理类似于人体感受温度的方式。
本文将以模拟温度传感器的工作原理为中心,介绍其基本原理和应用。
一、引言温度是物体分子热运动的表现,是描述物体热量状态的物理量之一。
在现代工业生产和科学研究中,准确测量温度是非常重要的。
温度传感器是用于测量和监控温度的关键装置。
二、模拟温度传感器的基本原理模拟温度传感器的基本原理是利用物质的温度敏感性质来测量温度。
其中,最常用的敏感元件是热敏电阻和热电偶。
1. 热敏电阻热敏电阻是一种电阻值随温度变化的电子元件。
它的电阻值随温度的升高而升高,随温度的降低而降低。
当热敏电阻与电路相连接时,通过测量电阻值的变化,我们可以推算出环境的温度。
2. 热电偶热电偶是由两种不同金属导线组成的电偶对。
这两种导线的接触点称为热电接头,当热电接头与环境温度不一致时,就会产生热电动势。
通过测量热电动势的大小,我们可以计算出环境的温度。
三、模拟温度传感器的工作过程模拟温度传感器的工作过程可以分为以下几个步骤:1. 敏感元件感知温度当环境温度发生变化时,热敏电阻或热电偶作为敏感元件,能够感知到温度的变化。
热敏电阻的电阻值会随温度的变化而变化,而热电偶会产生热电动势。
2. 信号转换敏感元件感知到的温度变化信号需要通过信号转换电路进行处理。
信号转换电路可以将敏感元件的电阻值或热电动势转换为符合电路输入要求的信号。
3. 信号放大为了能够更精确地测量温度,信号转换后的信号一般需要经过放大处理。
放大电路可以将转换后的信号放大到合适的范围,以提高测量的精度和灵敏度。
4. 信号处理经过放大的信号还需要进行进一步的处理,以便能够输出符合要求的温度数值。
信号处理电路可以通过运算放大器、滤波器等电路元件对信号进行处理和调整。
5. 数字转换在一些应用中,需要将模拟信号转换为数字信号。
这时,模拟温度传感器会通过模数转换器将模拟信号转换为数字信号,以方便后续的数字处理和存储。
RTD、热电偶、热敏电阻器、IC传感器温度传感器类型的优缺点比较

RTD、热电偶、热敏电阻器、IC传感器温度传感器类型的优缺点比较关键字:RTD热电偶热敏电阻器IC传感器选择温度传感产品也许看似小事一桩,但由于可用的产品多种多样,因此这项任务可能令人颇感畏惧。
在这篇文章中,笔者将介绍四种类型的温度传感器(电阻式温度检测器(RTD)、热电偶、热敏电阻器以及具有数字和模拟接口的集成电路(IC) 传感器)并讨论每种传感器的优点与缺点。
从系统级的立足点来看,温度传感器是否适合您的应用将取决于所需的温度范围、准确度、线性度、解决方案成本、功能、功耗、解决方案尺寸、安装法(表面贴装法与通孔插装法以及电路板外安装法)还有必要支持电路的易设计程度。
RTD当一边测量RTD的电阻一边改变它的温度时,响应几乎是线性的,表现得像一个电阻器。
如图1所示,该RTD的电阻曲线并非完全呈线性,而是有几度的偏差(示出了一条用作参考的直线)——但却是高度可预测并可复验的。
为了对这种轻微的非线性进行补偿,大多数设计人员都会对测得的电阻值进行数字化处理,并使用微控制器内的查找表以便应用校正因子。
这种宽温度范围(大约-250℃至+750℃)内的可复验性和稳定性使RTD在高精度应用(包括在管道和大容器内测量液体或气体的温度)中极为有用。
图1:RTD的电阻与温度用来处理RTD模拟信号的电路的复杂度基本上根据应用而变化。
放大器和模数转换器(ADC)等组件(这些组件会产生它们自己的误差)是不可或缺的。
只有当测量必要时才给传感器供电——通过该方法您也可实现低功耗运行,但这会使该电路复杂得多。
而且,使传感器通电所需的功率还会提高其内部的温度,从而影响测量准确度。
仅仅几毫安的电流,这种自加热效应就会产生温度误差(这些误差是可纠正的,但需要进一步的斟酌考量)。
另外,请谨记:线绕式铂RTD或薄膜RTD的成本可能相当高,尤其当与IC传感器的成本进行比较时。
热敏电阻器热敏电阻器是另一种类型的电阻式传感器。
有多种多样可用的热敏电阻器,从物美价廉的产品到高精度产品,不一而足。
热敏电阻和热电偶的温度特性测量

热敏电阻和热电偶的温度特性研究(FB203型多档恒流智能控温实验仪)热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,它有负温度系数和正温度系数两种,负温度系数它的电阻率随着温度的升高而急剧下降(一般是按指数规律),而正温度系数电阻率随着温度的升高而急剧升高(一般是按指数规律),金属的电阻率则是随温度的升高而缓慢地上升。
热敏电阻对于温度的反应要比金属电阻灵敏得多,热敏电阻的体积也可以做得很小,用它来制成的半导体温度计,已广泛地使用在自动控制和科学仪器中,并在物理、化学和生物学研究等方面得到了广泛的应用。
【实验目的】1.研究热敏电阻、铜电阻;铂电阻、热电偶的温度特性。
2.掌握利用直流单臂电桥与控温实验仪测量热敏元件在不同温度下电阻值的方法。
【实验原理】温度传感器是利用一些金属、半导体等材料与温度相关的特性制成的。
常用的温度传感器的类型、测温范围和特点各不相同,本实验将通过测量几种常用的温度传感器的特征物理量随温度的变化,来了解这些温度传感器的工作原理。
1.热敏电阻温度特性原理:在一定的温度范围内,半导体的电阻率ρ和温度T 之间有如下关系:/1B TAe ρ= (1) 式中1A 和B 是与材料物理性质有关的常数,T 为绝对温度。
对于截面均匀的热敏电阻,其阻值T R 可用下式表示:T lR Sρ= (2) 式中T R 的单位为Ω,ρ的单位为cm Ω,l 为两电极间的距离,单位为cm ,S 为电阻的横截面积,单位为2cm 。
将(1)式代入(2)式,令1l A A S=,于是可得:/B TT R Ae = (3)对一定的电阻而言,A 和B 均为常数。
对(3)式两边取对数,则有:1l n l n T R B A T=+ (4)T R ln 与T1成线性关系,在实验中测得各个温度T 的T R 值后,即可通过作图求出B 和A 值,代入(3)式,即可得到T R 的表达式。
式中T R 为在温度)K (T 时的电阻值)(Ω,A 为在某温度时的电阻值)(Ω,B 为常数)K (,其值与半导体材料的成分和制造方法有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热敏电阻和模拟温度传感器感测解决方案
选择合适的温度传感器不但可以节省成本,还可以尽可能地提高系统性能。
在这篇博文中,我将主要来谈一谈热敏电阻和模拟温度传感器,这两个都是成本有效的温度感测解决方案。
而问题在于,你怎幺才能知道选择哪一个呢?
从技术上讲,热敏电阻是一种电阻器,它的电阻值随温度的变化而变化。
如图1中所示,需要一个偏置电路和少数几个外部组件,在这里,偏置电阻器和热敏电阻组成了一个分压器,并且被接到一个可选运算放大器上,这个运算放大器与微控制器(MCU) 的模数转换器(ADC) 相连,从而将热敏电阻的电阻值转换为一个温度值。
图1:热敏电阻解决方案
热敏电阻的优势在于其低成本。
此外,作为一个电阻器,它可以采用极小型两端子封装,并被放置在接线式探针内。