热塑性复合材料及成形技术
热塑性复合材料的加工技术现状应用及发展趋势

热塑性复合材料的加工技术现状应用及发展趋势热塑性复合材料是指由热塑性树脂基体和增强材料(如玻璃纤维、碳纤维等)组成的材料。
它具有良好的机械性能、化学稳定性和耐磨性,广泛应用于航空航天、汽车、电子、建筑等领域。
随着科学技术的发展,热塑性复合材料的加工技术也不断推进,应用范围也在不断扩大。
在热塑性复合材料的加工技术方面,目前主要有预浸法、树脂浸渍法和树脂缠绕法等。
预浸法是将热塑性树脂浸渍到增强材料中,形成预浸料,然后通过压塑和热固化等工艺进行成型。
这种加工技术具有成型周期短、生产效率高、成本低等优点,适用于大批量生产。
但是预浸法的工艺控制要求较高,需要保持一定的工艺温度和压力,以确保产品的质量。
树脂浸渍法是将增强材料浸渍到热塑性树脂中,形成蜂巢结构后加热熔融,然后采用压塑成型。
这种加工技术具有成型性能好、质量稳定等优点,适用于复杂产品的生产。
但是树脂浸渍法需要较长的热固化时间,加工周期较长。
树脂缠绕法是将热塑性树脂涂覆在纤维上,通过控制缠绕角度和缠绕层数,形成复杂的形状。
这种加工技术具有成型灵活、节约材料等优点,适用于空间限制较大的产品。
但是树脂缠绕法需要掌握一定的工艺技巧,以确保产品质量。
热塑性复合材料的加工技术在航空航天、汽车等行业得到了广泛的应用。
在航空航天领域,热塑性复合材料可以用于制造机翼、机身等零部件,以提高飞机的载重能力和燃油效率。
在汽车行业,热塑性复合材料可以用于制造车身、底盘等部件,以提高汽车的安全性和节能性能。
随着科学技术的不断进步,热塑性复合材料的加工技术也在不断发展。
一方面,加工工艺越来越精细化和自动化,提高了生产效率和产品质量。
另一方面,新型材料的研发和应用也为热塑性复合材料的加工技术带来了新的发展方向。
例如,纳米级增强材料的应用可以改善热塑性复合材料的力学性能和耐热性能;3D打印技术的应用可以实现复杂形状的制造,提高产品的适应性和精度。
综上所述,热塑性复合材料的加工技术在应用和发展方向上都取得了很大的进展。
纤维增强热塑性复合材料拉挤成型工艺研究进展

纤维增强热塑性复合材料拉挤成型工艺研究进展摘要:随着低碳经济、碳中和等环保理念的呼声不断高涨,低能耗、可回收的高性能复合材料的需求量不断增加。
高性能复合材料可作为关键的轻型承重材料,应用于风力涡轮机叶片根部加强件、高压绝缘子芯棒和建筑应用中的梁等。
不同于热固性拉挤成型复合材料,热塑性复合材料不需要化学固化,生产效率高、污染小、原材料利用率高,且制件具有可回收、可焊接、使用寿命长的特点,因此国内外都在积极开展高效率、低成本的热塑性复合材料生产工艺的研究。
基于此,本文章对纤维增强热塑性复合材料拉挤成型工艺研究进展进行探讨,以供相关从业人员参考。
关键词:纤维增强热塑性复合材料;拉挤成型工艺;研究进展引言纤维增强热塑性复合材料比热固性树脂复合材料具有更高的比强度和冲击强度,不需要特殊的储存和运输条件,易于维修和可回收再加工。
因此热塑性复合材料在加工性、效率、全寿命周期内的环保性和成本都明显优于热固性复合材料。
碳纤维增强热塑性聚合物复合材料是树脂基复合材料的发展方向,具有广阔的应用前景。
一、拉挤成型工艺拉挤成型工艺由于其生产效率高、拉挤制品纤维含量高、原材料成本低等优点被广泛应用于各种复合材料的生产制造中。
将拉挤成型工艺与热塑性复合材料相结合可充分发挥复合材料的优势,实现各种断面和空腔型材的高效生产。
热塑性树脂普遍存在黏度大的问题,导致了纤维浸渍困难,因此纤维增强热塑性复合材料拉挤成型工艺的改进方向主要集中在纤维浸渍方式上。
根据浸渍方式不同将热塑性复合材料拉挤成型工艺分为非反应型拉挤成型工艺和反应型拉挤成型工艺两大类。
从目前生产应用的角度来看,非反应型拉挤成型过程部分浸渍工艺与热固性复合材料拉挤成型工艺相似,技术更加成熟,设备投资也相对降低,因此应用更加广泛,而反应型拉挤成型工艺对生产设备要求高,技术难度较大,因此应用范围相对较小。
二、纤维增强热塑性复合材料特点复合材料基本上是一种新型材料,在对两种性质不同的材料进行物理或化学处理后进行加工,其性质相对较高。
热塑性复合材料的分类及特性

热 塑 性 复 合 材 料 (Fiber Reinforced Thermo Plastics简称FRTP)是指以热塑性树脂为基体,以 各种纤维为增强材料而制成的复合材料。 分类 按树脂基体及复合后的性能
第十章 热塑性复合材料
10.1.1 热 塑 性 复 合 材 料 的 分 类 及 特 性
增强材料在复合材料中的形状
课件
4 热塑性聚合物的物理状态与温度关系 玻璃态 高弹态 粘流态
物态的变化受其化学组成,分子结构,所受应力和 环境温度的影响
第十章 热塑性复合材料
纺丝 注射 吹塑 挤出 压延
课件
树 中空吹塑 脂 真空压力成型 基 热拉伸 体 冷拉伸 的 成 Tx Tg Tf Td 型 玻璃态 高弹态 粘流态 性 能 图10-2 热塑性聚合物温度-形变曲线与成型方法的关系。
第十章 热塑性复合材料
10.2.1 树 脂 基 体 的 成 型 性 能
3 可延展性
课件
高弹态聚合物受单向或双向拉伸时的变 形能力称为可延展性。
线型聚合物的可延展性取决于分子长链结构和柔顺性。 拉伸在Tg以下,称为冷拉伸 拉伸在Tg以上,称为热拉伸
第十章 热塑性复合材料
10.2.1 树 脂 基 体 的 成 型 性 能
第十章 热塑性复合材料
需要说明的是:
课件
聚 合 物 的 结 晶 和 定 向
10.3.3
1、并非所有的聚合物都能结晶,能够结晶的聚合物称 “晶态聚合物”,不能结晶的聚合物为“非晶态聚合 物”。 2、即使是晶态聚合物也只能部分结晶,不能与低分子一 样全部结晶。
3、同一种晶态聚合物的结晶度不同,会使其物理性质有 很大差异。比如硬度、密度、软化点、强度等。 二次结晶: 后结晶: 后处理:可以降低制品的内应力,提高制品的尺寸和 形状稳定性。
热固性复合材料与热塑性复合材料

热固性复合材料与热塑性复合材料1热固性树脂基复合材料热固性树脂基复合材料是应用十分广泛的复合型材料,这种材料是经过复合而成,在多高科技产品中都得到了广泛的应用与研究,例如在大型客运机的应用中,其不仅减轻了重量,并且还优化了飞机的性能,减轻了飞机在飞行过程中的阻碍,热固性树脂具有非常优异的开发潜能,其应用领域也会在其改性后得到更大的发展。
典型的热固性树脂复合材料分为以下几种:(1)酚醛树脂复合材料:随着对阻燃材料的强烈需求,美国西化学公司,道化学公司等一系列大型化学公司都先后研制成功了新一代的酚醛树脂复合材料。
其具有优异的阻燃、低发烟、低毒雾性能和更加优异的热机械物理性能。
在制备这种具有阻燃效果的材料上,研究人员重新设计思路,在加入不饱和键等其他基团条件下,提高了反应速度,减少了挥发组分。
使酚醛树脂复合材料在其应用领域得到大力发展。
(2)环氧树脂复合材料:由于环氧树脂本身的弱点,研究人员对其进行了两面的改性研究,一面是改善湿热性能提高其使用温度;另一面则是提高韧性,进而提高复合材料的损伤容限。
含有环氧树脂所制备的复合材料己经大力应用到机翼、机身等大型主承力构件上。
(3)双马来酞亚胺树脂复合材料:在双马来酞亚胺树脂复合材料中,由于双马来酞亚胺树脂具有流动性和可模塑性,良好的耐高温、耐辐射、耐湿热、吸湿率低和热膨胀系数小等优异性能,所以这种树脂则会广泛运用在绝缘材料、航空航天结构材料、耐磨材料等各个领域中。
(4)聚酰亚胺复合材料:聚酰亚胺复合材料具有高比强度,比模量以及优异的热氧化稳定性。
其在航空发动机上得到了广泛应用,主要可明显减轻发动机重量,提高发动机推重比。
所以在航天航空领域得到了大力的发展和运用。
2热塑性树脂基复合材料热塑性树脂基复合材料:其自身中的基体是热塑性树脂,该类复合材料是由热塑性树脂基体、增强相以及一些助剂组成。
在热塑性复合材料中最典型和最常见的热塑性树脂有聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、聚酰胺、聚酯树脂、聚碳酸树脂、聚甲醛树脂、聚醚酮类、热塑性聚酰亚胺、聚苯硫醚、聚飒等。
热塑性复合材料的制造技术与应用

! ! 众所周知, 复合材料 简单地可 划分为两 个类 型: 一是热固性复合材料; 一是热塑性复合材料。热 固性复合材料得到广泛应用。进入 "& 世纪, 热塑性 复合材料越来越被人们重视。特别是民用产业显得 格外突出。据估计, 目前全球热塑性复合材料已占 复合材料总量的 )#/ 。 &! 纤维增强热塑性复合材料的优点 随着热塑性复合材料在航天、 航空、 汽车及其他 领域应用的不断发展, 热塑性复合材料逐渐被人们 所认识, 并成为复合材料研究开发的重点之一。纤 维增强热塑性复合材料具有以下优点: ! 预浸料可长期保存。热塑性复合材料由于 聚合反应已经完成, 因此预浸料保存期比较长。 韧性好。由于热塑性树脂韧性比热固性树 " 脂好, 热塑性复合材料的耐冲击性能也较热固性复 合材料高, 因此纤维增强热塑性复合材料在冲击性 能要求较高的汽车工业等领域获得了飞速的发展。 # 可回收再利用。将热塑性复合材料的边角 余料或报废制品粉碎后, 取代部分基体树脂或增强 材料, 对复合材料的性能影响不明显, 或重新压制成 力学性能要求稍低一些的制品。这样就减少了废料 对环境的污染, 因此热塑性复合材料被称为 “ 绿色 材料” , 世界各国都把树脂基 复合材料的发展重点 放到了热塑性复合材料上。 $ 生产加工周期短。热塑性片材模塑料的成 型加 工通常采用冲 压工艺, 其生产周期只 有 "# 0 ’#1 2 次。 "! 纤维增强热塑性复合材料的制造技术 热塑性塑料具有在特殊温度范围内反复加热软 化, 冷却硬化、 加工成型方便, 机械性能较好的特点。 热塑性塑料主要包括聚乙烯、 聚丙烯、 聚氯乙烯、 聚 苯乙烯! ,34 树脂、 聚酰胺、 聚甲醛、 聚碳 酸酯、 聚 苯醚、 聚砜等。大部分都是通用合成树脂。为提高 热塑性塑料的机械性能, 可用增强材料增强。常用 的增强材料有: 玻璃纤维、 碳纤维、 芳纶纤维、 硼纤维 和各种天然纤维。 "5 &! 热塑性复合材料预浸料的制造技术 对于连续纤维增强热塑性复合材料预浸料的制
树脂基复合材料

第5页,共28页。
Thermoplastic Resin composites molding
注塑成型 注塑成型是树脂基复合材料生产中的——种重要成型方法材料,它适用 于热塑性和热固性树脂基复合材料,但以热塑性树脂基复合材料应用为 广。 注射成型是将粒状或粉状的纤维-树脂混合料从注射机的料斗送入机 筒内,加热熔化后由柱塞或螺杆加压,通过喷嘴注入温度较低的闭合 模内,经过冷却定型后,脱模得制品。 特点:成型周期短,热耗量少,闭模成型,可使形状复杂的产品一次成型 ,生产效率高、本钱低。但是它不适于长纤维增强的产品,模具质量要求高 。
〔4〕纤维混合。热塑性聚合物纺成多根长丝纤维,使得 开发增强纤维和热塑性聚合物长丝混合形成特有预浸料成 为可能。根据纤维混合方式的不同,该种方法又可分为共
第10页,共28页。
Thermoplastic Resin composites molding
〔A〕共混纤维:连续增强纤维和热塑性聚合物纤维(长丝或短纤维)通过 特有的纺纱技术形成连续增强纤维/热塑性聚合物纤维混合纱。混合纱 可以机织、针织、编织加工,形成机织物、针织物和编织物预浸料。也 可进展单向缠绕加工单向复合材料板。混合纱的混合程度越好,在成型 加工中熔融基体的浸渍性越好。理想的混合纱是每根增强纤维与热塑性 聚合物纤维相邻,但由于两种纤维直径、刚度等方面存在着差异,在实 际中不可能到达这种理想纱线构造。
纤维和树脂无规混合。
长纤维粒料生产的制品力学性能较高,短纤维粒料那么用于 生产形状复杂的薄壁制品。
第4页,共28页。
Thermoplastic Resin composites molding
优点:能加工绝大多数热塑性复合材料及局部热固性复合材料时 ,生产过程连续,自动化程度高,工艺易掌握及产品质量稳定 等。
纤维增强热塑性复合材料拉挤成型工艺研究进展

纤维增强热塑性复合材料拉挤成型工艺研究进展
赵新涛;姜宁;王明道;李骏腾;李迪;谭洪生
【期刊名称】《材料导报》
【年(卷),期】2024(38)1
【摘要】拉挤成型作为一种连续生产固定截面的热塑性复合材料成型工艺,具有原材料利用率高、生产效率高、废品率低、产品复制性强、可设计等优点,已在轻量化汽车、建筑建材、风电叶片等领域内广泛应用。
热塑性树脂基体存在室温下呈固态、熔融状态下流动性差的问题,导致纤维浸渍困难,成为此类成型工艺发展的瓶颈,因此改进拉挤成型工艺的关键集中在纤维浸渍技术上。
本文综述了纤维增强热塑性复合材料拉挤成型工艺的研究进展,并根据浸渍方式的不同将热塑性复合材料拉挤成型工艺分为非反应型拉挤成型工艺和反应型拉挤成型工艺,介绍了每种成型工艺的浸渍特点、制备流程以及工艺优化方案,阐述了拉挤成型工艺中不同的纤维浸渍方式对制件质量的影响规律,最后对拉挤成型工艺现存的问题进行了讨论,展望了未来纤维增强热塑性复合材料拉挤成型工艺的发展趋势,为今后拉挤成型工艺的深入研究和开拓创新提供参考。
【总页数】9页(P220-228)
【作者】赵新涛;姜宁;王明道;李骏腾;李迪;谭洪生
【作者单位】山东理工大学交通与车辆工程学院;山东理工大学机械工程学院;山东理工大学材料科学与工程学院
【正文语种】中文
【中图分类】TB332
【相关文献】
1.连续纤维增强热塑性树脂基复合材料拉挤工艺研究与应用现状
2.拉挤工艺成型连续纤维增强热塑性FRP的性能研究
3.拉挤工艺成型连续纤维增强热塑性FRP的性能与应用研究
4.碳纤维增强热塑性复合材料成型工艺研究进展
5.碳纤维增强热塑性复合材料成型工艺的研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。
热塑性复合材料及其工艺

具有优良的力学性能、耐腐蚀性、绝 缘性、重量轻、易加工成型等特性。
分类与组成
分类
根据基体材料的不同,热塑性复合材料可分为聚合物基、无机非金属基和金属 基等。
组成
通常由增强材料、基体材料和各种添加剂组成,其中增强材料提供强度和刚度, 基体材料提供塑性和韧性。
历史与发展
历史
自20世纪50年代以来,热塑性复合材料的研究和应用逐渐受 到重视,随着科技的发展和环保意识的提高,热塑性复合材 料的应用领域不断扩大。
建筑行业
建筑模板
热塑性复合材料可用于建筑模板的制造 ,具有轻便、易加工和可重复使用的特 点。
VS
建筑管道
热塑性复合材料也可用于制造建筑管道, 如雨水管、排水管等,具有耐腐蚀、寿命 长的优点。
其他领域
医疗器械
热塑性复合材料可用于制造医疗器械,如导管、支架等,具有生物相容性好、耐高温和耐腐蚀的优点 。
挤出成型工艺具有生产效率高、制品尺寸精度高、可连续生 产等优点,广泛应用于管材、型材、板材等产品的生产。
注射成型工艺
01
注射成型工艺是一种将热塑性复 合材料加热至熔融状态,然后通 过注射机注入模具,冷却固化后 得到制品的加工方法。
02
注射成型工艺具有生产效率高、 制品尺寸精度高、可生产复杂结 构制品等优点,广泛应用于汽车 、电子、家电等领域。
加工效率高
热塑性复合材料的加工效率较高,能够提高 生产效率,降低生产成本。
市场接受度挑战
认知度低
相对于传统的金属和塑料材料,热塑性复合 材料的认知度较低,需要加强宣传和推广。
价格较高
热塑性复合材料的价格相对较高,可能会影 响其在某些领域的应用和推广。
技术成熟度挑战
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 性能优越 -耐高温和耐疲劳,200℃下长期使用达50000h; -比吸能是铝的10倍,钢的7倍,GFRP的3倍,碳纤 环氧的1.6倍; -耐腐蚀,金属/复合材料接头中未发现的化学腐蚀
和接触腐蚀;。
应用领域
PEEK及PEEK/CF
航空航天
工业
•ATF的机身和机 翼
•C-130 机身的腹 部壁板
45.3
PC/CF复合材料性能
性能与对比
材料 GF/PP[2] CF/PPS[3] prepreg(CF/PP)[4] CF/PC[5] prepreg(CF/PP) PC/CF
工艺 模压 热压 热压 热压 热压 热压
表4 PC/CF复材性能与文献结果对比 纤维体积含量 拉伸强度MPa/模量GPa 弯曲强度MPa/模量GPa
PEEK/CF复合材料简介
聚醚醚酮(PEEK):高性能热塑性树脂材料;耐高温;耐腐蚀;耐摩擦;耐辐照 PEEK/CF复合材料:比强度高,在高温、高载、高冲击及高磨损环境中广泛应用 成形难度较大:融化温度高343℃;溶剂中的溶解度低;熔融粘度很高
• 轻质高强
-PEEK/CF复合材料抗拉强度接近C形钛合 金; -PEEK/CF复合材料的弯曲强度超过铝合金
10
20
6.45
PC/CF复合材料制备
板材制备
采用薄膜层压的技术,热压成形CF/PC层 合板。 原料:盖尔 PC薄膜(0.175mm)
T300 平纹碳纤布
表2 各层合板的工艺参数
序号 层数 温度/℃ 压力 保压时 厚度
(P+F)
/Mpa 间/min /mm
a
11+10
240
10
6
2.7
b
11+10
50%
——
140/16
50%
655/55.66(120℃测定)
——
45.2%
452/47.8
——
50%
——
550(approx.)/40
55%
797/15
116/9.6
40%
537/44.7
519/32(approx.)
[1] Flexural and impact response of woven glass fiber fabric/polypropylene composites [2] About the influence of stamping on thermoplastic-based composites for aeronautical applications [3] Interply hybrid composites with carbon fiber reinforced polypropylene and self-reinforced polypropylene [4]Effect of molding condition on flexural strength of textile carbon fiber reinforced polycarbonate laminates [5] Influence of Interleaved Films on the Mechanical Properties of Carbon Fiber Fabric/Polypropylene Thermoplastic Composite
•法国阵风发动机 的隧道
•A400M的紧固件
• L形加强筋
•发动机内罩 •轴承 •垫片 •密封件 •离合器 •齿环 •车盖
医疗器械
•外固定器 •拉钩、环 •颈环 •外固定铰链 •外固定支架 •椎板固定销 •自定义结构
石油、天然气
•立管 •导线 •井下电缆 •电缆 •出油管 •海底管道 •阀门
PEEK/CF复合材料制备
板材制备
采用静电粉末喷涂制备预浸料,通过高温 热压成形制备PEEK/CF层合板。 原料:VICTREX PEEK 150PF 超细粉,
T300 平纹碳纤布
表1 各层合板的工艺参数
序号
层数
温度 /℃
压力 保压时 厚度 /Mpa 间/min /mm
1
5
380
10
20
0.9
2
10
380
ห้องสมุดไป่ตู้
10
20
2
3
21
380
240
10
12
2.7
c
11+10
240
10
18
2.7
d
11+10
240
10
24
2.7
PEEK/CF复合材料性能
性能与对比
表3 PEEK/CF力学性能与对比
项目\单位
TENCATE
自制
拉伸强度(Mpa)
802
720
拉伸模量(Gpa)
56.8
47.5
弯曲强度(Mpa)
859
772
弯曲模量(Gpa)
46.3