群体感应
群体感应抑制剂控制微生物污染的研究进展

群体感应抑制剂控制微生物污染的研究进展近年来,微生物污染在医疗、食品、饮用水等领域成为一个备受关注的问题,同时也引起了严重的卫生和经济问题。
传统方法常使用化学药剂对微生物进行控制和消除,但随着对环境保护意识的提高,该方法的应用范围越来越受到限制。
而群体感应抑制剂的出现,为控制微生物污染提供了新思路。
本文通过综述国内外有关群体感应抑制剂控制微生物污染的研究进展,以期为相关学科的研究提供借鉴和参考。
一、群体感应抑制剂的定义和作用机制群体感应抑制剂是一类能够抑制微生物群体感应的物质。
群体感应是微生物细胞间的一种细胞信号传递系统,具有在同一群体内调节基因表达、控制生长和代谢等生理功能的作用。
而群体感应抑制剂则可以干扰这种信号传递系统的正常运作,从而抑制微生物的群体感应和生长。
群体感应抑制剂可以通过多种途径干扰微生物的群体感应系统,例如:(1)光化学物质——例如紫外线、光敏剂等;(2)植物提取物——例如咖啡因、香草酸等;(3)海洋生物——例如藻类、海绵体等;(4)化合物合成——例如多肽、二元素等。
通过上述途径干扰微生物的群体感应系统,可以达到控制微生物生长和繁殖的目的,从而实现对微生物污染的控制。
二、群体感应抑制剂在医疗领域的应用在医疗领域,微生物的感染容易导致严重的健康问题。
传统的抗生素治疗方法存在多种局限性,例如抗生素对特定微生物的敏感性、多重耐药等问题。
群体感应抑制剂作为一种新的治疗方法,可以提供一种替代性的治疗方案。
目前已有多种群体感应抑制剂被应用于医疗领域。
1、肽类群体感应抑制剂肽类群体感应抑制剂是一种与肽类抗生素相近的化合物,具有广谱的抑菌作用。
例如已有报道表明,培养基中添加巴西牛樟脑(HD-034)、庆大霉素类似物(NSTA-4)等肽类群体感应抑制剂,可以抑制病原性菌种的生长、繁殖和生产外毒素等。
2、天然产物群体感应抑制剂天然产物群体感应抑制剂是利用植物、动物等自然界的资源,通过提取和化学合成等方法获得的有效成分。
微生物生理学(王海洪)9细菌的群体感应调节PPT课件

通过药物或其他小分子抑制与信号转 导相关的蛋白活性,可以阻断信号转 导途径,从而干扰群体感应的调控。
05 群体感应的研究前景与展 望
群体感应与其他微生物的相互作用
群体感应细菌与病原菌的相互作用
群体感应细菌通过群体感应系统调节其行为,与病原菌相互作用,影响病原菌的感染和 传播。
群体感应细菌与益生菌的相互作用
群体感应的信号转导
信号转导
群体感应的信号转导是指信号分子与受体结合后,通过一系列生化反应,将信号传递至细胞内,影响细菌的生理和行 为。
信号转导途径
群体感应的信号转导途径通常涉及多个蛋白和反应,如激酶、磷酸酶、转录因子等。这些蛋白和反应共同作用,将信 号分子传递的信息转化为细菌可识别的信号,进而影响其行为。
益生菌通过与群体感应细菌的相互作用,可以调节肠道微生物群落的结构和功能,维护 肠道健康。
群体感应与环境因素的关系
要点一
温度、湿度等环境因素对群体感 应细菌的影响
环境因素可以影响群体感应细菌的生理和行为,进而影响 其在生态系统中的作用。
要点二
抗生素对群体感应的影响
抗生素的使用可以影响群体感应细菌的耐药性和致病性, 因此需要深入研究抗生素对群体感应的影响。
AI-2
又称作LuxS代谢产物,是一种由多种革兰氏阴性菌和阳性菌分泌的信号分子。AI-2通过 与 LuxP 受体结合,影响细菌的群体行为。
群体感应的受体
LuxQ
是一种膜蛋白,作为AI-1的受体,能够识别并响应AI-1信号 分子。LuxQ受体的活化可以影响细菌的群体行为。
LuxP
是一种膜蛋白,作为AI-2的受体,能够识别并响应AI-2信号 分子。LuxP受体的活化可以影响细菌的群体行为。
QS

信息素的抗生素活性
有些细菌产生的信息素兼有抗生素的双重活性。如 Lactococcus lactis(乳酸乳球菌 )产生的乳链菌素 nisin不但作为信息素调节细胞生物合成和免疫基因的表 达,也作为抗生素拮抗其它微生物。
三、细菌信号分子的调大多数G-菌有着相似的调节机制,通常以V. fischeri 的生物发光调节系统LuxI-LuxR为基本模型, 其中LuxI是信息素合成酶,LuxR是相应的调节蛋白, 已知的许多G-菌的QS系统与LuxI-LuxR系统同源。 此外,还有:LuxM型合成酶,与LuxI的同源性不是 很高,可以利用同样的底物合成AHLs,以及从荧光假 单胞菌F113中鉴定出的Hdts合成酶,与LuxI和LuxM 均无同源性。
'Quorum Sensing' (QS) describe the phenomenon whereby the accumulation of signalling molecules enable a single cell to sense the number of bacteria (cell density).
2. 革兰氏阴性细菌的信号分子---AI-1
革兰氏阴性细菌的信号分子大多是酰 基高丝氨酸内酯(acyl-homoserine lactones,AHLs)衍生物,是一类水 溶性、膜透过性分子, 可自由出入细胞 内, 故胞内胞外浓度一致。这些小分子 被称为第一类自身诱导物, AI-1。 AHL 由LuxI 类蛋白酶催化脂肪酸代 谢途径中的酰基-酰基载体蛋白的酰基 侧链与S-腺苷甲硫氨酸中高丝氨酸部 分的结合, 并进一步内酯化而生成的。 AHL 类自诱导剂都是以高丝氨酸为母 体, 之间的差别只是酰基侧链的有无及 侧链的长短不同。
群体感应

费氏弧菌Vibrio fischeri 群体感应系统首先是在海洋细菌费氏弧菌,费氏弧菌定殖于夏威夷鱿鱼的发光器官内,当细菌达到一定的密度后,就会诱导发光基因的表达。
细菌的生物发光为鱿鱼提供光源,掩盖其影子来保护自身。
同时,细菌也获得一个合适的栖息场所。
Nealson等在1970 年首次报道了该菌菌体密度与生物发光呈正相关,该发光现象受细菌本身的群体感应调节系统(Quorum-Sensing System ,简称QS 系统) 所控制。
通用语言呋喃硼酸二酯Peptides呋喃硼酸二酯高丝氨酸内酯γ-丁酸内酯synthesizesautoinducer homoserine Autoinducer diffuses into the medium where it accumulates. At thresholdconcentration AI diffuses back into the cell and binds to activator protein LuxR.酰基高丝氨酸内酯(AHL)的结构AHL 由LuxI 类蛋白酶催化脂肪酸代谢途径中的酰基-酰基载体蛋白(acyl-ACP)的酰基侧链与S-腺苷甲硫氨酸中高丝氨酸部分的接合, 并进一步内酯化而生成的不同的细菌产生不同的AHLs ,差异只在于酰基侧链的长度与结构,高丝氨酸内酯部分是相同的。
以及与启动子DNA的结合The genesencoding the AHL synthaseregulatory protein, respectively. In thepresence of sufficient AHL signal, the Rregulatory protein is activated, possiblyby dimerization. The activated Rregulatory protein binds to a specificbinding site and stimulates (orrepresses) transcription initiation byRNA Polymerase holoenzyme•LuxR型蛋白也有特殊的酰基结合框,在有多种细菌存在的环境下,存在许多种AHL分子,每一种细菌都能对其自身的群体感应信号识别、监控、作出反应除了链霉菌中调控抗生素合成的γ黄色粘球菌肺炎链球菌枯草芽孢杆菌金黄色葡萄球菌Staphylococcus aureus uses a two -component response system (TCRS) to mediate quorum sensing (QS). The regulation of QS involves the productio increase in its concentration, expression of RNAIII and the subs genes. S. aureus produces an autoinducing and activates the TCRS. The TCRS involves signal recognition by (1), followed by histidine phosphorylation Regulation of the two quorum-sensing systems of Staph. aureusThe first quorum-sensing system, consisting of the peptide autoinducer protein, TRAP, is regulated by the accessory gene regulator (agr comprises two units (RNAII and RNAIII) that are divergently transcribed, whose transcription is under control of the P2 and P3 promoters respectively. A threshold concentration of RAP triggers the activation of TRAP, which activates the transcription of RNAII. The RNAII unit encloses four genes: agrB , agrD , agrC and agrA . AgrB and AgrD 呋喃硼酸二酯AI-2细菌可以利用这类信号分子感知其它细菌数量来调控自身的行为。
细菌群体感应系统功能

细菌群体感应系统功能
细菌群体感应系统是一种细菌激发细胞间相互作用的机制,通过该系统细菌能够感知并响应外界刺激,调节自身生长和行为,实现一种集体行为。
细菌群体感应系统包含以下功能:
1. 信息传递:细菌通过释放化学信号物质(自动诱导物质、群体感应激素等),使周围细菌感知到外界环境的变化。
这些信号物质可以通过扩散或分泌到周围环境中,也可以直接通过细胞间连接的纤毛或细胞间通道传递。
2. 群体行为:细菌感知到外界环境的变化后,能够通过群体行为来响应和适应。
例如,一些细菌在感知到相对高密度的环境后会进行群体聚集,形成生物膜或菌落。
这种群体行为可以提供保护、资源共享和传递信号等功能。
3. 调控基因表达:细菌群体感应系统能够影响细菌内部的基因表达,通过调节特定基因的转录和翻译过程来实现对环境的适应。
这些基因可能与细菌的生长、生存、毒力等相关。
4. 抗生素生产和耐药性:一些细菌群体感应系统能够诱导或抑制细菌对抗生素的产生。
此外,一些感应系统还能够调节细菌对抗生素的敏感性,从而实现对抗生素的耐药性。
细菌群体感应系统的功能使细菌能够在群体中实现一种高效的信息传递、协作和适应性,为它们在复杂的生态环境中生存和繁衍提供了竞争优势。
这种系统在医药、环境保护、生物工程等领域都有重要的应用潜力。
e42-1群体感应

e42-1 群体感应
群体感应是指某个菌体能够感应到周围环境中同种细菌的其他成员的存在并做出反应的现象。
在上个世纪60年代后期,J.Woodland Hastings等人发现,某些海洋发光细菌只有在达到临界数量后才会发光,而在细菌数量不足时就保持黯淡。
对此他们认为,细菌释放了一种叫自诱导物(autoinducer)的信号分子,来对生物荧光进行调控,同时用它来监测同种细菌的密度。
直到1981年,他们才首次纯化并确定自诱导物是一种脂酰高丝氨酰内酯(acylated homoserine lactone,AHL)。
目前已知具有群体效应的菌体会持续地释放出自诱导物,随着群体扩展,更多自诱导物被增殖的细菌制造,并释放到菌体周围,其浓度也因此渐渐上升。
一旦自诱导物浓度达到一个临界值,细菌便可感应到群体数目的变化,一些细胞行为也会因此改变,如生物荧光、接合作用、转化作用、孢子生成、生物薄膜(biofilm)形成、抗生素和毒素的合成。
迄今为止,具有群体感应的菌种已达数十种,其中,革兰氏阴性菌有两类自诱导物——AHL和呋喃糖硼酸二酯(furanosyl borate diester),革兰氏阳性菌则以寡肽为自诱导物。
以AHL为自诱导物的系统是由luxI和luxR两个结构基因组成,分别编码AHL合酶和AHL反应调节蛋白。
产生的自诱导物分子需要和反应调节蛋白结合,才能控制与群体感应有关的多个基因的表达(图e42-1),例如Vibrio fischeri及V. harveyi的生物荧光基因。
图e42-1 细菌群体感应的LuxI/LuxR系统。
细菌群体感应系统及其应用课件

群体感应在细菌耐药性中的作用
群体感应在细菌耐药性中的作用
群体感应在细菌生物被膜形成中的作用
01
02
03
04
05
05
总结与展望
总结
细菌群体感应系统的基本概念
01
细菌群体感应系统的研究进展
02
细菌群体感应系统的应用领域
03
展望
未来研究方向
随着基因组学、蛋白质组学和代 谢组学等技术的发展,未来将进 一步揭示细菌群体感应系统的分 子机制,为相关应用提供更多可
菌群体感系及
• 细菌群体感应系统概述 • 细菌群体感应系统的组成 • 细菌群体感应系统的应用 • 细菌群体感应系统研究的前景与挑
战
01
细菌群体感应系统概述
群体感应的定义
群体感应 群体感应系统
群体感应的发现与历史
01
1950年代
02
1980年代
03
1990年代
04
2000年代至今
群体感应的机制
AI-1信号分子
AI-2信号分子
群体感应受体蛋白
LuxQ受体蛋白
LuxP受体蛋白
结合AI-2信号分子,影响细菌的生物 膜形成和毒力。
群体感应调控基因
lux操纵子
包含一系列受群体感应调控的基因,如luxCDABE基因编码生物发光所需的酶。
AI-2合成酶基因
如luxS基因,编码AI-2信号分子合成酶。
能性。
应用前景
随着对细菌群体感应系统认识的 深入,其在农业、工业和医疗等 领域的应用将更加广泛,有望为
人类带来更多的益处。
面临的挑战与问题
尽管细菌群体感应系统具有广泛 的应用前景,但仍面临许多挑战 和问题,如如何提高应用的效率 和安全性等,需要进一步研究和
群体感应.

2.另外,群体感应系统也在于真菌中,比如白色 念珠菌、新生隐球菌等,但人们是对真菌中的群体 感应系统研究还比较浅,尤其是对真菌群体感应系 统的效应分子、效应分子受体、靶蛋白、相关信号 转导通路以及靶基因的调控等方面的研究有待进一 步深入。
3.最近,一种被称为LED209的分子被发现能够抑制 QseC介导的致病基因激活及诸如EHEC、鼠伤寒沙门 菌和土拉弗朗西斯菌等细菌在活体哺乳动物体内所产 生的不良反应,而且其对哺乳动物的不良反应很小, 对这种分子的研究也许会有一个很好的前景。总之, 不久的将来,随着研究人员的不断探索,人们将可能 通过各种渠道来抑制群体感应系统中的各个环节,从 而达到治疗一些细菌性疾病的目的。
感谢您的关注
3. QS系统的特点 多样性
(1)信号分子的多样性 (2)分布的多样性
细菌种内、 种间,细菌与植物、 动物间
(3)信号分子产生机制的多样性
G-菌——信号分子合成酶,G+菌——前体,经蛋白酶切割
(4)信号分子运输的多样性
G+菌——ABC转运系统,G-菌——直接透过细胞膜
(5)信号响应的多样性
G+菌——双组分信号转导系统; G-菌——受体蛋白
群体感应概述
目录
1 群体感应的发现及其概念
2
群体感应的分类及机制
3
群体反应的特点
4 群体反应的应用与研究前景
1.1 发现
20世纪70年代
海洋细菌费氏弧菌(Vibrio fiscberi)和哈氏弧菌(V . harveyi) 生物发光现象
与海生动物共生,宿主利用其发出的光捕获食物、 躲避天敌以及寻觅配偶,而 V. fiscberi也获得了一个 营养丰富的生存环境
(3)不同 QS系统之间关系的复杂性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
群体感应
1.群体感应概念
细菌分泌一种或者几种小分子量的化学信号分子促进细菌个体间相互交流,协调群体行为,该现象称为群体感应( quorum sensing ,QS)。
细菌利用信号分子感知周围环境中自身或其他细菌的细胞群体密度的变化,并且信号分子随着群体密度的增加而增加,当群体密度达到一定阈值时,信号分子将启动菌体中特定基因的表达,改变和协调细胞之间的行为,呈现某种生理特性,从而实现单个细菌无法完成的某些生理功能和调节机制。
20世纪70年代,QS系统首先是在海洋细菌费氏弧菌(Vibrio fiscberi)中发现的,V. fiscberi 可以与某些海生动物共生,宿主利用其发出的光捕获食物、躲避天敌以及寻觅配偶,而V.fiscberi也获得了一个营养丰富的生存环境。
对细菌的QS 研究始于20 世纪90 年代初. 从已有的研究成果看: 其一, 大部分细菌一般均有两套群体感应系统, 一套用于种内信息交流, 一套用于种间信息交流; 其二, QS 对细菌的许多生理功能都有调节作用, 如生物发光、毒素的产生、质粒的转移、根瘤菌的结瘤、抗生素的合成, 等等.
群体感应参与调控细菌的多种生活习性以及各种生理过程,如生物发光、质粒的接合转移、生物膜与孢子形成、细胞分化、运动性、胞外多糖形成等[ 1 , 3],尤其致病菌的毒力因子的诱导、细菌与真核生物的共生、抗生素与细菌素合成等与人类关系密切的细菌生理特性相关。
因此, 细菌QS系统研究,深受医学、生物工程、农业和环境工程、食品科学等领域研究者广泛关注。
当前, 对致病菌的QS系统及以其为靶点的新型疗法和抗菌药物研究、根瘤菌QS系统及其在根瘤菌与植物互作中的作用研究、植物病原菌QS系统及寻找生物技术防治细菌病害的新靶点研究较为深入
意义:一方面有助于人们了解单细胞微生物的信息交流与行为特性的关系,建立起化学信号物质和生理行为之间的联系;另一方面则可通过人为地干扰或促进微生物的群体感应系统从而调控其某种功能,以达成其在实际意义上的应用。
2.群体感应分类
2.1革兰氏阴性菌的群体感应系统
图1革兰氏阴性菌的群体感应系统(LuxI-LuxR型QS系统)模式图
在细菌生长初期,LuxI蛋白(最广泛的一类AHLs合成酶)以SAM(5-腺苷甲硫氨酸)和acyl- ACP为底物合成自身诱导物AHLs(N-酰基高丝氨酸内酯类化合物)。
随着细菌群体密度的增加,AHLs浓度逐渐增大。
AHLs自由穿越或通过特定的转运机制透过细胞膜,在细胞外积累到一定浓度(通常达到微摩)时,AHLs进入细胞与LuxR蛋白结合。
LuxR-AHLs复合物结合到目标基因启动子上,激活其转录,从而引发相应的生物表型产生。
图2费氏弧菌Lux I-LuxR群体感应通路
AHLs 扩散到细胞外后, 随着细胞密度的增加而积累,当这种信号密度积累到临界密度时就与LuxR结合,结合后的复合物能激活荧光素酶基因( lux ICDABE)表达
2.2革兰氏阳性菌的群体感应系统
图3革兰氏阳性菌群体感应系统模式图
AIP(auto-inducing peptides自诱导肽)由ABC转运系统( ATPbindingcassettle)运送到细胞外,当其浓度达到阈值时,AIP通过结合HPK(组氨酸激酶感应蛋白)的氨基端传感器区域,启动HPK。
HPK感知外界环境变化,使羰基端所含的一个保守的组氨酸位点发生自我磷酸化。
接着,将磷酸基团转移至RR(应答调节蛋白)信号输出区域的保守天冬氨酸残基位点,使其发生磷酸化。
磷酸化的RR具有转录激活活性,激活目的基因的转录。
图4金黄色葡萄球菌的双组分群体感应调控系统
2.4种间的群体效应
细菌种间的交流则是利用呋喃酰硼酸二酯类化合物(AI-2), 此类信号分子在G+菌和G-菌中均可存在。
细菌识别AI- 2 分子的方式与革兰氏阳性菌中双组分识别系统一致, 即双组分激酶识别AI- 2分子后把磷酸化基团传递给受体蛋白并启动相关基因的表达。
3.群体感应的特点
多样性:细菌QS系统的信号产生、信号释放、信号识别和信号响应等各个环节均呈现多样性。
(1)分布的多样性在细菌种内、种间都存在QS系统,细菌与植物、动物间也存在此类系统,
进行信息的交流;
( 2)信号分子的多样性不但G+菌与G-菌的信号分子不同,呈多样性。
(2)信号分子产生机制的多样性G-菌和G+菌信号分子产生的机制不同,前者是由信号分
子合成酶来完成,而后者则是先生成前体,经蛋白酶切割后获得成熟的信号分子;
( 4)信号分子运输的多样性G+菌和G-菌信号分子运输机制不同,前者需要专有的ABC转运系统,而后者则可直接透过细胞膜。
( 5)信号响应的多样性G+菌以双组分信号转导系统感应信号分子,将信号传递; G-菌则通过受体蛋白识别信号分子,传递信号。
复杂性:(1)信号分子功能的复杂性有的QS系统中的信号分子不仅作为环境信号,而且具有其它功能,如某些乳酸菌中的QS系统的信号分子具有抗菌活性,Paeruginosa中信号分子N-3-氧-高丝氨酸内酯参与金属离子的运输等;
(2)系统组成的复杂性在V. harveyi中发现了一个与众不同的QS系统,该系统信号分子产生系统与G-菌相似,而信号分子的识别则与G+菌相似;。