河北省邯郸市临漳县第一中学高一数学《321几类不同增长的函数模型》学案

合集下载

高中数学3.2.1几类不同增长的函数模型教案(新人教A版必修1)河北地区专用

高中数学3.2.1几类不同增长的函数模型教案(新人教A版必修1)河北地区专用
4.教师引导学生利用解析式,结合图象,对例2的三个模型的增长情况进行分析比较,写出完整的解答过程.进一步认识三个函数模型的增长差异,并掌握解答的规范要求.(AB)
5.教师引导学生通过以上具体函数进行比较分析,探究幂函数 ( >0)、指数函数 ( >1)、对数函数 ( >1)在区间(0,+∞)上的增长差异,并从函数的性质上进行研究、论证,同学之间进行交流总结,形成结论性报告.教师对学生的结论进行评析,借助信息技术手段进行验证演示.(A)
教学
难点
选择合适的数学模型分析解决实际问题。
教学流程与教学内容
一、引入实例,创设情景.
教师引导学生阅读例1,分析其中的数量关系,思考应当选择怎样的函数模型来描述;由学生自己根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式,教师在数量关系的分析、函数模型的选择上作指导.
二、互动交流,探求新知.
1.观察数据,体会模型.
教师引导学生观察例1表格中三种方案的数量变化情况,体会三种函数的增长差异,说出自己的发现,并进行交流.
2.作出图象,描述特点.
教师引导学生借助计算器作出三个方案的函数图象,分析三种方案的不同变化趋势,并进行描述,为方案选择提供依据.
三、实例运用,巩固提高.
1.教师引导学生分析影响方案选择的因素,使学生认识到要做出正确选择除了考虑每天的收益,还要考虑一段时间内的总收益.学生通过自主活动,分析整理数据,并根据其中的信息做出推理判断,获得累计收益并给出本例的完整解答,然后全班进行交流.
课题
§3.2.1几类不


知识与
能力
1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异性。(AB)

高一数学人教A版必修一精品教案:3.2.1几类不同增长的函数模型Word版含答案

高一数学人教A版必修一精品教案:3.2.1几类不同增长的函数模型Word版含答案

课题:§ 321几类不同增长的函数模型
教学目标:
知识与技能结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异性.
过程与方法能够借助信息技术,利用函数图象及数据表格,对几种常见增长类型的函数的增长状况进行比较,初步体会它们的增长差异性;收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幕函数、分段函数等),了解函数模型的广泛应用.
情感、态度、价值观体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.
教学重点:
重点将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.
难点怎样选择数学模型分析解决实际问题.
教学程序与环节设计:
实际问题引入,激发学生兴趣.
选择变量、建立模型,利用数据表格、函数图象讨论模型,体会不
同函数模型增长的含义及其差异.
总结例题的探究方法,并进一步探索研究幂函数、指数函数、对数
函数的增长差异,形成结论性报告.
师生交流共同小结,归纳一般的应用题的求解方法步骤.
强化基本方法,规范基本格式.
收集一些社会生活中普遍使用的函数模型,了解函数模型的广泛应
用.
教学过程与操作设计:。

高一数学3.2.1几类不同增长的函数模型教案

高一数学3.2.1几类不同增长的函数模型教案

高一数学3.2.1几类不同增长的函数模型教案【课型】新授课【教学目标】结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义, 理解它们的增长差异性.【教学重点、难点】1. 教学重点将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.2.教学难点选择合适的数学模型分析解决实际问题.【学法与教学用具】1. 学法:学生通过阅读教材,动手画图,自主学习、思考,并相互讨论,进行探索.2.教学用具:多媒体.【教学过程】(一)引入实例,创设情景.教师引导学生阅读例1,分析其中的数量关系,思考应当选择怎样的函数模型来描述;由学生自己根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式,教师在数量关系的分析、函数模型的选择上作指导.高一数学3.2.1几类不同增长的函数模型教案1. 学法:学生自主阅读教材,采用尝试、讨论方式进行探究.2. 教学用具:多媒体【教学过程】(一)创设情景,揭示课题引例:大约在一千五百年前,大数学家孙子在《孙子算经》中记载了这样的一道题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只有几只鸡和兔?你知道孙子是如何解答这个“鸡兔同笼”问题的吗?你有什么更好的方法?老师介绍孙子的大胆解法:他假设砍去每只鸡和兔一半的脚,则每只鸡和兔就变成了“独脚鸡”和“双脚兔”.这样,“独脚鸡”和“双脚兔”脚的数量与它们头的数量之差,就是兔子数,即:47-35=12;鸡数就是:35-12=23.比例激发学生学习兴趣,增强其求知欲望.可引导学生运用方程的思想解答“鸡兔同笼”问题.(二)结合实例,探求新知例1. 某列火车众北京西站开往石家庄,全程277km,火车出发10min开出13km后,以120km/h匀速行驶.试写出火车行驶的总路程S与匀速行驶的时间t之间的关系式,并求火车离开北京2h内行驶的路程.探索:1)本例所涉及的变量有哪些?它们的取值范围怎样;2)所涉及的变量的关系如何?3)写出本例的解答过程.老师提示:路程S和自变量t的取值范围(即函数的定义域),注意t的实际意义.学生独立思考,完成解答,并相互讨论、交流、评析.高一数学3.2.1几类不同增长的函数模型教案例2.某商店出售茶壶和茶杯,茶壶每只定价20元,茶杯每只定价5元,该商店制定了两种优惠办法:1)本例所涉及的变量之间的关系可用何种函数模型来描述?2)本例涉及到几个函数模型?3)如何理解“更省钱?”;4)写出具体的解答过程.在学生自主思考,相互讨论完成本例题解答之后,老师小结:通过以上两例,数学模型是用数学语言模拟现实的一种模型,它把实际问题中某些事物的主要特征和关系抽象出来,并用数学语言来表达,这一过程称为建模,是解应用题的关键。

高中数学人教A版必修1《3.2.1几类不同增长的函数模型》教学案2

高中数学人教A版必修1《3.2.1几类不同增长的函数模型》教学案2

必修一《3.2.1几类不同增长的函数模型》教学案一、教学目标(1)使学生通过投资回报实例,对直线上升和指数爆炸有感性认识.(2)通过阅读理解题目中文字叙述所反映的实际背景,领悟其中的数学本质,弄清题中出现的量及起数学含义.(3)体验由具体到抽象及数形结合的思维方法.二、教学重点与难点重点:将实际问题转化为函数模型,比教常数函数、一次函数、指数函数模型的增长差异;结合实例让学生体会直线上升,指数爆炸等不同函数型增长的函义.难点:怎样选择数学模型分析解决实际问题.三、教学手段:运用计算机、实物投影仪等多媒体技术.四、教材分析:1、背景(1) 圆的周长随着圆的半径的增大而增大:L=2πR (一次函数)(2)圆的面积随着圆的半径的增大而增大:S=πR2 (二次函数)(3)某种细胞分裂时,由1个分裂成两个,两个分裂成4个……,一个这样的细胞分裂x次后,得到的细胞个数y与x的函数关系是y= 2x (指数型函数) .2、例题例1、假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.请问,你会选择哪种投资方案呢?投资方案选择原则:投入资金相同,回报量多者为优(1) 比较三种方案每天回报量(2) 比较三种方案一段时间内的总回报量[来源:学§科§网Z§X§X§K]哪个方案在某段时间内的总回报量最多,我们就在那段时间选择该方案.根据上表我们可以先建立三种投资方案所对应的函数模型,再通过比较它们的增长情况,为选择投资方案提供依据.解:设第x天所得回报为y元,则方案一:每天回报40元;y=40 (x∈N*)方案二:第一天回报10元,以后每天比前一天多回报10元;y=10x (x∈N*)方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.Y=0.4×2x-1(x*)N从每天的回报量来看:第1~4天,方案一最多:每5~8天,方案二最多:第9天以后,方案三最多;有人认为投资1~4天选择方案一;5~8天选择方案二;9天以后选择方案三.累积回报表天数方案1 2 3 4 5 6 7 8 9 1011一4 08121620024028032360400440二1 036010150********450550660图112-1结论投资8天以下(不含8天),应选择第一种投资方案;投资8~10天,应选择第二种投资方案;投资11天(含11天)以上,应选择第三种投资方案.3.例题的启示: 解决实际问题的步骤: (1)实际问题 (2)读懂问题抽象概括 (3)数学问题 (4)演算推理 (5)数学问题的解 (6)还原说明 (7)实际问题的解 4.练习某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且资金y (单位:万元)随着销售利润x (单位:万元)的增加而增加,但资金数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:y =0.25x ,y =log 7x +1,y =1.002x ,其中哪个模型能符合公司的要求呢?5.小结(1)解决实际问题的步骤:解决问题。

【新课标必修一】《3-2-1几类不同增长的函数模型(1)》教学案例

【新课标必修一】《3-2-1几类不同增长的函数模型(1)》教学案例

课题几类不同增长的函数模型(1)教学目标:1. 能够找出简单实际问题中的函数关系式,2. 初步体会应用函数模型解决实际问题.3. 能够利用给定的函数模型或建立确定性函数模型解决实际问题.4.进一步感受运用函数概念建立函数模型的过程和方法,对给定的函数模型进行简单的分析评价.体会函数模型在数学和其他学科中的重要性.5.体会运用函数思想处理现实生活中和社会中的一些简单问题的实用价值.教学重点难点:1.重点:利用给定的函数模型或建立确定性质函数模型解决实际问题..2.难点:将实际问题转化为数学模型,并对给定的函数模型进行简单的分析评价.教法与学法:1.教法选择:在相对熟悉的问题情境中,通过学生自主探究,合作交流中完成的学习任务.尝试指导与自主学习相结合2.学法指导:学生自主阅读教材,采用尝试、讨论方式进行探究.教学过程:一、设置情境,激发探索点作铺垫⑤指出它们属于哪种函数模型.⑥讨论它们的单调性.⑦比较它们的增长差异.⑧另外还有哪种函数模型.生分析问题的能力虑问题的思路.实验探索辨析研讨①总价等于单价与数量的积.②面积等于边长的平方.③由特殊到一般,先求出经过1年、2年、….④列表画出函数图象.⑤引导学生回忆学过的函数模型.⑥结合函数表格与图象讨论它们的单调性.⑦让学生自己比较并体会.⑧另外还有与对数函数有关的函数模型.讨论结果:①y=x.②y=x2.③y=(1+5%)x,④如下表x 1 2 3 4 5 6y=x 1 2 3 4 5 6y=x2 1 4 9 16 25 36y=(1+5%)x 1.05 1.01 1.16 1.22 1.28 1.34它们的图象分别为图3-2-1-1,图3-2-1-2,图3-2-1-3.图3-2-1-1 图3-2-1-2 图3-2-1-3⑤它们分别属于:y=kx+b(直线型),y=ax2+bx+c(a≠0,抛物线型),y=ka x+b(指数型).⑥从表格和图象得出它们都为增函数.⑦在不同区间增长速度不同,随着x的增大y=(1+5%)x的增长速度越来越快,会远远大于另外两个函数.⑧另外还有与对数函数有关的函数模型,形如y=log a x+b,我们把它叫做对数型函数.引发学生思考,经历建立函数基本模型的过程倡导学生合作学习,让学生体验成功的快乐。

高中数学3.2.1几类不同增长的函数模型教学设计新人教A版必修1

高中数学3.2.1几类不同增长的函数模型教学设计新人教A版必修1

3.2.1几类不同增长的函数模型(教学设计)教学目标:知识与技能:结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异性. 过程与方法:能够借助信息技术,利用函数图象及数据表格,对几种常见增长类型的函数的增长状况进行比较,初步体会它们的增长差异性;收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等),了解函数模型的广泛应用.情感、态度、价值观:体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.教学重点:重点:将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.难点:怎样选择数学模型分析解决实际问题.一、新课导入:材料:澳大利亚兔子数“爆炸” 在教科书第三章的章头图中,有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.二、师生互动,新课讲解:例1(课本P95例1),假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下: 方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0 .4元,以后每天的回报比前一天翻一番.请问,你会选择哪种投资方案?探究:1)在本例中涉及哪些数量关系?如何用函数描述这些数量关系?2)分析解答(略)(见P95--97)3)根据例1表格中所提供的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?例2:(课本P97例2)某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y (单位:万元)随销售利润x (单位:万元)的增加而增加但奖金不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:x y 25.0= 1log 7+=x y x y 002.1=.问:其中哪个模型能符合公司的要求?探究:1)本例涉及了哪几类函数模型?2)本例的实质是什么?3)你能根据问题中的数据,判定所给的奖励模型是否符合公司要求吗?解答:(课本P97—98)幂函数、指数函数、对数函数的增长差异分析:你能否仿照前面例题使用的方法,探索研究幂函数)0(>=n x y n 、指数函数)1(>=a a y x 、对数函数)1(log >=a x y a 在区间),0(+∞上的增长差异,并进行交流、讨论、概括总结。

人教版数学高一-3.2.1 几类不同增长的函数模型 教学设计(人教A版必修1)

人教版数学高一-3.2.1 几类不同增长的函数模型 教学设计(人教A版必修1)

3.2.1几类不同增长的函数模型教案【教学目标】1. 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异;2. 借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;3. 恰当运用函数的三种表示法(解析式、图象、表格)并借助信息技术解决一些实际问题.【教学重难点】教学重点:将实际问题转化为数学问题,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

教学难点:如何选择和利用不同函数模型增长差异性分析解决实际问题。

【教学过程】(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

(二)情景导入、展示目标。

材料:澳大利亚兔子数“爆炸”1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.一般而言,在理想条件(食物或养料充足,空间条件充裕,气候适宜,没有敌害等)下,种群在一定时期内的增长大致符合“J”型曲线;在有限环境(空间有限,食物有限,有捕食者存在等)中,种群增长到一定程度后不增长,曲线呈“S”型.可用指数函数描述一个种群的前期增长,用对数函数描述后期增长的,感知指数函数变化剧烈。

(三)典型例题例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0 .4元,以后每天的回报比前一天翻一番.请问,你会选择哪种投资方案?(1)请你分析比较三种方案每天回报的大小情况思考:各方案每天回报的变化情况可用什么函数模型来反映(2)你会选择哪种投资方案?思考:选择投资方案的依据是什么?反思:①在本例中涉及哪些数量关系?如何用函数描述这些数量关系?②根据此例的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?借助计算器或计算机作出函数图象,并通过图象描述一下三种方案的特点.解析:我们可以先建立三种投资方案所对应的模型,在通过比较他们的增长情况,为选择方案的依据。

高中数学3.2.1几类不同增长的函数模型教案

高中数学3.2.1几类不同增长的函数模型教案

教学目标:1.借助计算器或计算机制作数据表格和函数图像,对几种常见的函数类型的增长情况进行比较,在实际应用的背景中理解直线上升、指数爆炸、对数增长等不同函数类型增长的差异。

2.通过对投资方案的选择,学会利用数据表格和函数图像分析问题和解决问题;引导学生充分体验将实际问题“数学化”解决的过程,从而理解“数学建模”的思想方法解决问题的有效性。

3.鼓励学生收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等),体验函数是描述宏观世界变化规律的基本数学模型,从而培养学习数学的兴趣。

教学重点:将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.教学难点:如何选择和利用不同函数模型增长差异性分析解决实际问题。

技术手段:计算机辅助教学。

教学方法:启发探究式。

教学过程一、创设情境,引入课题(1)先看一张图片,这是什么动物(2)关于兔子有这样一段故事:1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.(3)请看画面。

(4)可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.(5)一般而言,在理想条件(食物或养料充足,空间条件充裕,气候适宜,没有敌害等)下,种群在一定时期内的增长大致符合“J”型曲线;在有限环境(空间有限,食物有限,有捕食者存在等)中,种群增长到一定程度后不增长,曲线呈“S”型.可用指数函数描述一个种群的前期增长,用对数函数描述后期的增长.(6)生活中的增长现象比比皆是,在我们学过的函数中也有许多成增长形态发展的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.2.1几类不同增长的函数
模型(2)
学习目标
1. 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异;
2. 借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;
3. 恰当运用函数的三种表示法(解析式、图象、列表)并借助信息技术解决一些实际问题.
98~ P 101,找出疑惑之处) 复习1:用石板围一个面积为200平方米的矩形场地,一边利用旧墙,则靠旧墙的一边长为___________米时,才能使所有石料的最省.
复习2:三个变量123,,y y y 随自变量x 的变
________,呈指数型函数变化的变量是________,呈幂函数型变化的变量是________.
二、新课导学
探究任务:幂、指、对函数的增长差异 问题:幂函数(0)n y x n =>、指数函数
(1)x y a a =>、对数函数log (1)a y x a =>在区间(0,)+∞上的单调性如何?增长有差异吗?
实验:函数12x y =,22y x =,2log y x =,试计算:
思考:22log ,2,x x x 大小关系是如何的?增长差异?
结论:在区间
(0,)+∞上,尽管(1)x y a a =>,
log (1)a y x a =>和(0)n y x n =>都是增函数,
但它们的增长速度不同,而且不在同一个“档次”上,随着x 的增大,(1)x y a a =>的增长速度越来越快,会超过并远远大于(0)n y x n =>的增长速度.而log (1)a y x a =>的增长速度则越来越慢.因此,总会存在一个0x ,当0x x >时,就有log n x a x x a <<
※ 典型例题
例1某工厂今年1月、2月、3月生产某种产品的数量分别为1万件,1.2万件,1.3万件,为了估计以后每个月的产量,以这三个月的产品数量为依据用一个函数模拟该产品的月产量t 与月份的x 关系,模拟函数可以选用二次函数或函数(,,)x y ab c a b c =+其中为常数. 已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.
小结:待定系数法求解函数模型;优选模型.
※动手试试
练1. 为了预防流感,某学校对教室用药熏消毒法进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y
与t的函数关系式为
1
()
16
t a
y-
=(a为常
数),如图所示,根据图中提供的信息,回答下列问题:
(1)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为.
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过小时后,学生才能回到教室.
练 2. 某商场购进一批单价为6元的日用品,销售一段时间后,为了获得更多利润,商场决定提高销售价格. 经试验发现,若按每件20元的价格销售时,每月能卖360件,若按25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.
(1)试求y与x之间的关系式;
(2)在商品不积压,且不考虑其它因素的条件下,问销售价格定为多少时,才能时每月获得最大利润?每月的最大利润是多少?※当堂检测(时量:5分钟满分:10分)计分:
1. 某工厂签订了供货合同后组织工
人生产某货物,生产了一段时间后,
由于订货商想再多订一些,但供货时
间不变,该工厂便组织工人加班生产,
能反映该工厂生产的货物数量y与时间x的函数图象大致是().
2. 下列函数中随x增大而增大速度最快的是().
A.2007ln
y x
=B.2007
y x
=
C.
2007
x
e
y=D.20072x
y=⋅
3. 根据三个函数
2
()2,()2,()log
x
f x x
g x
h x x
===给出以下命题:
(1)(),(),()
f x
g x
h x在其定义域上都是增函数;
(2)()
f x的增长速度始终不变;(3)()
f x 的增长速度越来越快;
(4)()
g x的增长速度越来越快;(5)()
h x 的增长速度越来越慢。

其中正确的命题个数为().
A. 2
B. 3
C. 4
D. 5
5. 某厂生产中所需一些配件可以外购,也可以自己生产,如外购,每个价格是1.10元;如果自己生产,则每月的固定成本将增加800元,并且生产每个配件的材料和劳力需0.60元,则决定此配件外购或自产的转折点是____件(即生产多少件以上自产合算)。

相关文档
最新文档