时间序列的小波分析及等值线图、小波方差制作
近40年贵州省降雨时空分布特征

105ECOLOGY区域治理作者简介:廖启迪,生于1993年,硕士研究生,研究方向为水文地质与工程地质。
基金项目资助:国家重点研发计划(项目编号:2016YFC0502603),国家自然科学基金资助项目(项目编号:41772292)。
近40年贵州省降雨时空分布特征*同济大学土木工程学院地下建筑与工程系 廖启迪摘要:水土地表流失和地下漏失导致贵州省石漠化现象普遍存在,而降雨是引起水土流失、漏失的重要因素之一。
根据1984–2019年贵州省近40年的77个站点的气象观测数据,通过小波分析法对其进行降雨周期性分析,采用Mann –Kendall非参数检验法进行降雨趋势和降雨突变分析,克里金插值法进行降雨空间分析,结果表明:(1)1984–2019年期间贵州省降雨存在不同时间尺度上的周期性变化,主要存在2、20、35年的周期,其中20年为第一主周期。
(2)近40年贵州省年降雨量存在一个减小——增大——减小——增大的趋势,其中1995–2002年存在显著增大趋势。
降雨量变化主要存在两个突变点,从1999年开始突变递增,从2008年又开始突变递减。
(3)贵州省降雨分布极不均匀,整体为西南部>东南部>东北部>西北部,降雨季节性差异变化较大,夏秋季节降雨主要集中在西南部,春冬季节降雨主要集中在东南部。
关键词:贵州省;降雨;时空分布特征中图分类号:P426.62文献标识码:A 文章编号:2096-4595(2020)38-0105-0003一、引言贵州省石漠化面积达2.47万km 2,占贵州省面积的14.04%[1]。
水土地表流失和地下漏失是引起石漠化的重要因素,而降雨又是水土流失、漏失的主要外营力。
近年来全球气候发生变化,贵州省降雨也发生了不同程度的变化。
降雨量特征的研究对水土流失、漏失和石漠化防治具有重要意义。
目前相关学者针对贵州省气候开展了不少研究,闫星光等对贵州省1951–2013年逐日降雨量数据进行分析,得出了其日降雨尺度下的时空分布规律[2]。
时间序列的小波分析及等值线图小波方差制作

时间序列得小波分析时间序列(Time Series)就是地学研究中经常遇到得问题。
在时间序列研究中,时域与频域就是常用得两种基本形式。
其中,时域分析具有时间定位能力,但无法得到关于时间序列变化得更多信息;频域分析(如Fourier变换)虽具有准确得频率定位功能,但仅适合平稳时间序列分析、然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间得变化往往受到多种因素得综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。
对于这类非平稳时间序列得研究,通常需要某一频段对应得时间信息,或某一时段得频域信息、显然,时域分析与频域分析对此均无能为力。
20世纪80年代初,由Morlet提出得一种具有时-频多分辨功能得小波分析(Wavelet Analysis)为更好得研究时间序列问题提供了可能,它能清晰得揭示出隐藏在时间序列中得多种变化周期,充分反映系统在不同时间尺度中得变化趋势,并能对系统未来发展趋势进行定性估计。
目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析与大气科学等众多得非线性科学领域内得到了广泛得应。
在时间序列研究中,小波分析主要用于时间序列得消噪与滤波,信息量系数与分形维数得计算,突变点得监测与周期成分得识别以及多时间尺度得分析等。
一、小波分析基本原理1. 小波函数小波分析得基本思想就是用一簇小波函数系来表示或逼近某一信号或函数。
因此,小波函数就是小波分析得关键,它就是指具有震荡性、能够迅速衰减到零得一类函数,即小波函数且满足:(1)式中,为基小波函数,它可通过尺度得伸缩与时间轴上得平移构成一簇函数系:其中, (2)式中,为子小波;a为尺度因子,反映小波得周期长度;b为平移因子,反应时间上得平移。
需要说明得就是,选择合适得基小波函数就是进行小波分析得前提。
在实际应用研究中,应针对具体情况选择所需得基小波函数;同一信号或时间序列,若选择不同得基小波函数,所得得结果往往会有所差异,有时甚至差异很大。
时间序列的小波分析

时间序列的小波分析时间序列(Time Series )是地学研究中经常遇到的问题。
在时间序列研究中,时域和频域是常用的两种基本形式。
其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。
然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。
对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。
显然,时域分析和频域分析对此均无能为力。
20世纪80年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。
目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。
在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。
一、小波分析基本原理1. 小波函数小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。
因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足:⎰+∞∞-=0dt )t (ψ (1)式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系:)abt (a)t (2/1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。
毕业论文-魏相育-小波和时间序列-终稿

西南财经大学Southwestern University of Finance and Economics2014届本科毕业论文(设计)论文题目:基于小波分解的时间序列预测及应用学生姓名:魏相育所在学院:经济信息工程学院专业:信息系统与信息管理(金融智能与信息管理)学号:41032103指导教师:叶淋宁成绩:2014 年 5 月本科毕业论文(设计)原创性及知识产权声明本人郑重声明:所呈交的毕业论文(毕业设计)是本人在导师的指导下取得的成果。
对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
因本毕业论文引起的法律结果完全由本人承担。
本毕业论文(毕业设计)成果归西南财经大学所有。
特此声明毕业论文作者签名:作者专业:信息系统与信息管理(金融智能与信息管理)作者学号:410321032014年5月10日西南财经大学本科学生毕业论文(设计)开题报告表论文(设计)类型:A—理论研究;B—应用研究;C—软件设计等。
摘要摘要:黄金作为重要的储值工具,其价格对货币市场有相当大的影响。
从2002年起,国际金价持续上涨,其时间序列具有明显的不平稳性。
2008年爆发次贷危机,使全球经济陷入发展疲软状态,但国际金价具有相当好的回调力度,所以其数据具有一定的可研究性。
受全球经济一体化等因素的影响,金融市场波动性加剧,用传统时间序列分析进行预测,会带来一定的误差。
用小波变换对时间序列进行分解和去噪,然后再建立相应的时间序列模型进行预测,可以改变预测的效果。
本文探讨了小波分解与时间序列的理论知识和相关应用,并用国际金价进行了相应的实证分析:先将原始数据进行小波分解处理,对分解后的各低频信号和高频信号进行时间序列的建模及预测,然后用原始的数据进行时间序列的建模和预测,最后比较二者的预测误差和百分比,得到在小波分解的基础上进行的时间序列预测结果更好的结论。
同时,在对各个时间序列进行分析的过程中,本文用到了单位根检验、AIC 准则定阶法、相关函数确定模型以及残差序列等统计检验,为模型的建立和预测提供支持和验证。
小波分析-经典解读

时间序列-小波分析时间序列(Time Series )是地学研究中经常遇到的问题。
在时间序列研究中,时域和频域是常用的两种基本形式。
其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。
然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。
对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。
显然,时域分析和频域分析对此均无能为力。
20世纪80年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。
目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。
在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。
一、小波分析基本原理1. 小波函数小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。
因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足:⎰+∞∞-=0dt )t (ψ (1)式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系:)abt (a)t (2/1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。
(完整word版)时间序列的小波分析及等值线图、小波方差制作

时间序列的小波分析时间序列(Time Series )是地学研究中经常遇到的问题。
在时间序列研究中,时域和频域是常用的两种基本形式。
其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。
然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。
对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。
显然,时域分析和频域分析对此均无能为力。
20世纪80年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。
目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。
在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。
一、小波分析基本原理1. 小波函数小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。
因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足:⎰+∞∞-=0dt )t (ψ (1)式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系:)abt (a)t (2/1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2)式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。
《小波分析》PPT课件

3.1. 多分辨分析
(Multiresolution Analysis)
➢ 在(a,b)-W(a,b)给出的二维小波谱空间 ,二进离散小波谱点的分布规律可以用 Appendix C Fig.3. 加以说明。
Appendix C Fig.3.
正交小波的点谱吸收特性
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
01234567
0
1
2
3
0
1
0
§3. 正交小波和多分辨分析
级数的系数k, j 正好是信号f(x)的
小波变W f换a, b
在二进离散点:
2k , 2k j
(37)
上的取值。这说明:对于正交小波来说,任 何信号在二进离散点上的小波变换包含了它 的小波变换的全部信息,所以
正交小波具有优美的谱吸收特点。
小波变换与Fourier变换
Fourier变换:
➢ 对于任何信号f(x),只有当它是时间有 限时,它的谱F()(Fourier变换)才是频 率吸收的;
信号f(x)的另一种等价描述(因为Fourier变
换是信号的等价描述)
局限
遗憾的是,Gabor变换存在如下局限:
Gabor变换没有“好”的(即可以
构成标架或者正交基)离散形式;
Gabor变换没有快速算法:比如没 有 类 似 于 离 散 Fourier 变 换 之 FFT
的快速数值算法;
Appendix A Fig.1. Gabor变换的固定时-频窗口
注释
注释:如果小波母函数 x
的
基于小波变换的时间序列预测

基于⼩波变换的时间序列预测本⽂的主题是考察⼩波变换在预测⽅⾯的应⽤。
思路将数据序列进⾏⼩波分解,每⼀层分解的结果是上次分解得到的低频信号再分解成低频和⾼频两个部分。
如此进过N层分解后源信号X被分解为:X = D1 + D2 + ... + DN + AN 其中D1,D2,...,DN分别为第⼀层、第⼆层到等N层分解得到的⾼频信号,AN为第N层分解得到的低频信号。
本⽂⽅案为对D1,D2...DN和AN分别进⾏预测,然后进⾏⼩波重构实现对源信号的预测。
步骤如下:(1)对原序列进⾏⼩波分解,得到各层⼩波系数;(2)对各层⼩波系数分别建⽴ ARMA 模型,对各层⼩波系数进⾏预测;(3)⽤得到的预测⼩波系数重构数据。
⼀、分解选取数据为A股2014-01-01到2016-04-21数据,最后10天数据⽤来预测。
其余数据⽤于建模。
⼩波函数取db4,分解层数为2。
对数据进⾏分解⼆、对各层系数建⽴ARMA模型并重构imageimageimage接着,⽬标为预测最后10个数据,我们得求出每个⼩波系数ARMA模型需要预测多少步。
⽅法就是查看所有数据⼩波分解后的系数个数并求出差值,具体如下:imageimage三、预测的结果imageimage从上⾯结果可以看出,模型对未来3天预测精度较⾼,在 1%(正负)以内。
不妨把代码打包为函数,进⾏多次检验imageimageimageimageimageimageimageimageimageimage对照⾛势图可以看出:(1)在12年5⽉份,13年5、6⽉份,14年5⽉份, 模型预测的效果在短期内表现不错。
对⽐整体⾛势图可以发现,这些时间段股市总体较为“平缓”。
(2)在15年5⽉、8⽉,预测效果急剧下降。
这两个阶段分别为⽜市上升期和急速下跌期。
另外14年7⽉份的下跌期预测精度也下降了(3)在振荡较频繁的时期15年12⽉、16年3⽉,预测精度也不如之前⾼。
四、结论在股市较“平稳”的时候,基于预测模型在短期有着较⾼的预测精度;当股市处于快速变化时,模型预测精度下降;另⼀⽅⾯,模型还有很⼤改进的潜⼒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间序列的小波分析时间序列(Time Series )是地学研究中经常遇到的问题。
在时间序列研究中,时域和频域是常用的两种基本形式。
其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。
然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。
对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。
显然,时域分析和频域分析对此均无能为力。
20世纪80年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。
目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。
在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。
一、小波分析基本原理1. 小波函数小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。
因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足:⎰+∞∞-=0dt )t (ψ (1)式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系:)abt (a)t (2/1b ,a -=-ψψ 其中,0a R,b a,≠∈(2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。
需要说明的是,选择合适的基小波函数是进行小波分析的前提。
在实际应用研究中,应针对具体情况选择所需的基小波函数;同一信号或时间序列,若选择不同的基小波函数,所得的结果往往会有所差异,有时甚至差异很大。
目前,主要是通过对比不同小波分析处理信号时所得的结果与理论结果的误差来判定基小波函数的好坏,并由此选定该类研究所需的基小波函数。
2. 小波变换若)t (b ,a ψ是由(2)式给出的子小波,对于给定的能量有限信号)R (L )t (f 2∈,其连续小波变换(Continue Wavelet Transform ,简写为CWT )为:dt )abt (f(t)a)b ,a (W R2/1-f ⎰-=ψ (3) 式中,)b ,a (W f 为小波变换系数;f(t)为一个信号或平方可积函数;a 为伸缩尺度;b 平移参数;)a b x (-ψ为)abx (-ψ的复共轭函数。
地学中观测到的时间序列数据大多是离散的,设函数)t k (f ∆,(k=1,2,…,N; t ∆为取样间隔),则式(3)的离散小波变换形式为:)ab-t k (t)f(k t a)b ,a (W N1k 2/1-f ∆∆∆=∑=ψ (4) 由式(3)或(4)可知小波分析的基本原理,即通过增加或减小伸缩尺度a 来得到信号的低频或高频信息,然后分析信号的概貌或细节,实现对信号不同时间尺度和空间局部特征的分析。
实际研究中,最主要的就是要由小波变换方程得到小波系数,然后通过这些系数来分析时间序列的时频变化特征。
3. 小波方差将小波系数的平方值在b 域上积分,就可得到小波方差,即db)b a,(W )a (Var 2f ⎰∞∞-=(5)小波方差随尺度a 的变化过程,称为小波方差图。
由式(5)可知,它能反映信号波动的能量随尺度a 的分布。
因此,小波方差图可用来确定信号中不同种尺度扰动的相对强度和存在的主要时间尺度,即主周期。
二、小波分析实例-时间序列的多时间尺度分析(Multi-time scale analysis)例题河川径流是地理水文学研究中的一个重要变量,而多时间尺度是径流演化过程中存在的重要特征。
所谓径流时间序列的多时间尺度是指:河川径流在演化过程中,并不存在真正意义上的变化周期,而是其变化周期随着研究尺度的不同而发生相应的变化,这种变化一般表现为小时间尺度的变化周期往往嵌套在大尺度的变化周期之中。
也就是说,径流变化在时间域中存在多层次的时间尺度结构和局部变化特征。
表1给出了某流域某水文观测站1966-2004年的实测径流数据。
试运用小波分析理论,借助Matlab R2012a 、suffer 和其他相关软件(Excel 、记事本等),完成下述任务:(1)计算小波系数;(2)绘制小波系数图(实部、模和模方)、小波方差图和主周期变化趋势图,并分别说明各图在分析径流多时间尺度变化特征中的作用。
表1 某流域某水文观测站1966-2004年实测径流数据(×108m 3) 年份 径流量 年份 径流量 年份 径流量年份 径流量 年份 径流量 1966 1974 1982 1990 1998 1967 1975 1983 1991 1999 1968 1976 1984 1992 2000 1969 1977 1985 1993 2001 1970 1978 1986 1994 2002 1971 1979 1987 1995 2003 1972 1980 1988 1996 2004 1973198119891997分析1. 选择合适的基小波函数是前提在运用小波分析理论解决实际问题时,选择合适的基小波函数是前提。
只有选择了适合具体问题的基小波函数,才能得到较为理想的结果。
目前,可选用的小波函数很多,如Mexican hat 小波、Haar 小波、Morlet 小波和Meyer 小波等。
在本例中,我们选用Morlet 连续复小波变换来分析径流时间序列的多时间尺度特征。
原因如下:径流演变过程中包含“多时间尺度”变化特征且这种变化是连续的,所以应采用连续小波变换来进行此项分析。
实小波变换只能给出时间序列变化的振幅和正负,而复小波变换可同时给出时间序列变化的位相和振幅两方面的信息,有利于对问题的进一步分析。
复小波函数的实部和虚部位相差为π/2,能够消除用实小波变换系数作为判据而产生的虚假振荡,使分析结果更为准确。
2. 绘制小波系数图、小波方差图和主周期变化趋势图是关键当选择好合适的基小波函数后,下一步的关键就是如何通过小波变换获得小波系数,然后利用相关软件绘制小波系数图、小波方差图和主周期变化趋势图,进而根据上述三种图形的变化识别径流时间序列中存在的多时间尺度。
具体步骤1. 数据格式的转化2. 边界效应的消除或减小3. 计算小波系数4. 计算复小波系数的实部、模、模方、方差5. 绘制小波系数实部、模、模方等值线图6. 绘制小波方差图7. 绘制主周期趋势图下面,我们以上题为例,结合软件Matlab R2012a、suffer 、Excel、记事本等,详细说明小波系数的计算和各图形的绘制过程,并分别说明各图在分析径流多时间尺度变化特征中的作用。
1. 数据格式的转化和保存将存放在Excel表格里的径流数据(以时间为序排为一列)转化为Matlab R2012a识别的数据格式(.mat)并存盘。
具体操作为:在Matlab R2012a 界面下,单击“File-Import Data”,出现文件选择对话框“Import”后,找到需要转化的数据文件(本例的文件名为),单击“打开”。
等数据转化完成后,单击“Finish”,出现图1显示界面;然后双击图1中的Runoff,弹出“Array Editor: runoff”对话框,选择File文件夹下的“Save Workspace As”单击,出现图2所示的“Save to MAT-File:”窗口,选择存放路径并填写文件名(),单击“保存”并关闭“Save to MAT-File”窗口。
图1 数据格式的转化图2数据的保存2. 边界效应的消除或减小因为本例中的实测径流数据为有限时间数据序列,在时间序列的两端可能会产生“边界效用”。
为消除或减小序列开始点和结束点附近的边界效应,须对其两端数据进行延伸。
在进行完小波变换后,去掉两端延伸数据的小变换系数,保留原数据序列时段内的小波系数。
本例中,我们利用Matlab R2012a 小波工具箱中的信号延伸(Signal Extension )功能,对径流数据两端进行对称性延伸。
具体方法为:在Matlab R2012a 界面的“Command Window ”中输入小波工具箱调用命令“Wavemenu ”,按Enter 键弹“Wavelet Toolbox Main Menu ”(小波工具箱主菜单)界面(图3);然后单击“Signal Extension ”,打开Signal Extension / Truncation 窗口,单击“File ”菜单下的“Load Signal ”,选择文件单击“打开”,出现图4信号延伸界面。
Matlab R2012a 的Extension Mode 菜单下包含了6种基本的延伸方式(Symmetric 、Periodic 、Zero Padding 、Continuous 、Smooth and For SWT )和Direction to extend 菜单下的3种延伸模式(Both 、Left and Right ),在这里我们选择对称性两端延伸进行计算。
数据延伸的具体操作过程是:Desired Length 可以任意选,只要比原始信号长度大,建议在原始信号的基础上加20(这样左右对称地延伸10个数据),这里选择默认的64;Dircetion to extend 下选择“Both ”;Extension Mode 下选择“Symmetric ”;单击“Extend ”按钮进行对称性两端延伸计算,然后单击“File ”菜单下的“Save Tranformed Signal ”,将延伸后的数据结果存为文件。
从erunoff 文件可知,系统自动将原时间序列数据向前对称延伸12个单位,向后延伸13个单位。
3. 计算小波系数选择Matlab R2012a 小波工具箱中的Morlet 复小波函数对延伸后的径流数据序列()进行小波变换,计算小波系数并存盘。
小波工具箱主菜单界面见图3,单击“Wavelet 1-D ”下的子菜单“Complex Continuous Wavelet 1-D ”,打开一维复连续小波界面,单击“File ”菜单下的“Load Signal ”按钮,载入径流时间序列(图5)。