金属学与热处理
金属学及热处理

时效处理工艺
总结词
时效处理是一种通过长时间放置或加热使金属内部发生沉淀 或析出反应的过程,主要用于提高金属的强度和稳定性。
详细描述
时效处理工艺通常将金属加热至较低的温度,并保持一定时 间,使金属内部的原子或分子的分布发生变化,形成更加稳 定的结构。通过时效处理,金属的强度和稳定性可以得到提 高。
表面热处理工艺
总结词
表面热处理是一种仅对金属表面进行 加热和冷却的过程,主要用于改善金 属表面的耐磨性、耐腐蚀性和抗氧化 性等。
详细描述
表面热处理工艺通常仅对金属表面进行加热 和冷却,而内部保持不变。通过表面热处理 ,可以改变金属表面的晶格结构、化学成分 和组织结构等,从而改善其表面的性能。
04 热处理设备与工具
热处理炉应定期进行维护和保养,确保设备的正常运行 和使用寿命。
在操作过程中,应定期检查炉温和炉压是否正常,防止 超温或超压。
在使用过程中,应保持炉膛的清洁,防止杂物和积炭对 加热元件和金属材料的影响。
热处理工具的选择与使用
01
02
03
04
根据不同的热处理工艺和金属 材料,选择合适的热处理工具
。
在使用过程中,应注意工具的 材质和尺寸是否符合要求,防 止工具损坏或金属材料表面损
金属学及热处理
contents
目录
• 金属学基础 • 热处理原理 • 热处理工艺技术 • 热处理设备与工具 • 热处理的应用与发展趋势
01 金属学基础
金属材料的分类与特性
钢铁材料
根据碳含量和用途,钢铁材料可分为生铁、铸铁和钢 材。其特性包括高强度、耐磨性和耐腐蚀性。
有色金属
如铜、铝、锌等,具有良好的导电性、导热性和延展 性。
金属学及热处理要点总结

第一章金属的晶体结构决定材料性能的三个因素:化学成分、内部结构、组织状态金属:具有正的电阻温度系数的物质。
金属与非金属的主要区别是金属具有正的电阻温度系数和良好的导电能力。
金属键:处以聚集状态的金属原子,全部或大部分贡献出他们的价电子成为自由电子,为整个原子集体所共有,这些自由电子与所有自由电子一起在所有原子核周围按量子力学规律运动着,贡献出价电子的原子则变为正离子,沉浸在电子云中,依靠运动于其间的公有化的自由电子的静电作用结合起来,这种结合方式叫做金属键。
双原子模型:晶体:原子在三维空间做有规则周期性重复排列的物质叫做晶体。
晶体的特性:1、各向异性2、具有一定的熔点。
空间点阵:为了清晰地描述原子在三维空间排列的规律性,常将构成晶体的实际质点忽略,而将其抽象为纯粹的几何点,称为阵点或节点,这些阵点可以是原子或分子的中心,也可以是彼此等同的原子团或分子团的中心,各个阵点的周围环境都相同。
做许多平行的直线将这些阵点连接起来形成一个三维空间格架,叫做空间点阵。
晶胞:从点阵中选取的一个能够完全反映晶格特征的最小几何单元。
晶格常数:晶胞的棱边长度称为晶格常数,在X、Y、Z轴上分别以a、b、c表示。
致密度:表示晶胞中原子排列的紧密程度,可用原子所占体积与晶胞体积之比K表示。
三种典型的晶体结构:体心立方晶格、面心立方晶格、密排六方晶格。
体心立方晶格:α-Fe、Cr、W、V、Nb、Mo 配位数8 致密度0.68 滑移系:{110}*<111> 共12 个堆垛顺序ABAB 面心立方晶格:γ-Fe、Cu、Ni、Al、Au、Ag 配位数12 致密度0.74 滑移系:{111}*<110> 共12 个堆垛顺序ABCABC 密排六方晶格:Zn、Mg、Be、Cd 配位数12 致密度0.74 滑移系:{0001}*<1121> 堆垛顺序ABAB晶向族指数包含的晶向指数:一、写出<u v w>的排列二、给其中每个晶向加一个负号,分三次加三、给其中每个晶向加两个负号,分三次加四、给每个晶向加三个负号晶面族指数包含的晶面指数:(如果h k l 中有一个是零就写出排列各加一个负号,如果有两个零就只写出排列就行。
金属学与热处理名词解释汇总

金属学与热处理名词解释汇总热处理:在生产中,通过加热、保温和冷却,使钢发生固态相变,借此改变其内部组织结构,从而达到改善力学性能的目的的操作被称为热处理。
正火:将工件加热至Ac3(Ac是指加热时自由铁素体全部转变为奥氏体的终了温度,一般是从727℃到912℃之间)或Acm(Acm是实际加热中过共析钢完全奥氏体化的临界温度线)以上30~50℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。
淬火:将钢加热到Ac3或Ac1以上的某一温度,保温一定时间,然后取出进行水冷或油冷获得马氏体的热处理工艺。
等温淬火:将奥氏体化的工件淬入温度稍高于Ms的熔盐中,等温保持足够时间,使过冷奥氏体恒温发生贝氏体转变,待转变结束后取出在空气中冷却的处理方法称为等温淬火。
分级淬火:将奥氏体化的工件淬入温度稍高于或稍低于Ms的熔盐中,待工件内外温度均匀后,从熔盐中取出置于空气中冷却至室温,以获得马氏体组织,这种处理方法称为分级淬火。
单液淬火:将奥氏体化的工件投入一种淬火介质中,直至转变结束。
双液淬火:将奥氏体化的工件先放入一种冷却能力强的冷却介质冷却一定时间,当冷却至稍高于Ms后立即将工件取出并放入另外一种冷却能力缓一些的冷却介质冷却,使之转变为马氏体的热处理工艺。
回火:将淬火钢加热到低于临界点A1某一温度,保温一定时间,然后冷却到室温的一种热处理工艺。
回火索氏体:淬火碳钢500~650℃回火时,得到粗粒状渗碳体和多边形铁素体所构成的复相组织。
回火屈氏体:淬火碳钢350~500℃回火时,得到细粒状渗碳体和针状铁素体所构成的复相组织。
回火马氏体:淬火碳钢在250℃以下回火时,得到的过饱和的α固溶体和弥散分布的碳化物组成的复相组织。
退火:是将钢加热到临界点以上或以下的某一温度,保温一定时间后,随炉冷却的一种热处理工艺。
它是热处理工艺中应用最广、种类最多的一种工艺,不同种类的退火目的也各不相同。
等温退火:将亚共析钢工件加热到A3以上20〜30°C,保温一定时间,然后在Arl以下珠光体转变区间的某一温度进行等温,使之转变为珠光体后出炉空冷的一种热处理工艺。
《金属学与热处理》课件

本课程将介绍金属学基础、金属热力学、金属相变、金属缺陷与强化、金属 热处理以及金属表面处理,让您掌握金属材料与加工的基本知识。
第一章 金属学基础
1
金属的组成
金属是由原子或离子通过共用自由电子结合而成,是导热、导电、延展、可塑性 极强的物质。
2
金属的晶体结构
金属是具有整齐排列、具有规律性的晶体结构。晶格是六面体密排结构。
3
金属的晶界和位错
晶界是晶体内部不同晶粒相交界面。位错是晶粒中原子或离子排列存在的缺陷。
第二章 金属热力学
热力学第一定律
能量可以从一种形式转换成 另一种形式,但能量总量不 变。
热力学第二定律
热量不会自己从低温转移到 高温物体,只有在做功或吸 收外界热量的情况下才可以。
热力学第三定律
在温度绝对零度的情况下, 能量变为零。
2 热处理设备
有固体加热炉、电阻炉、气体加热炉、水加热炉等。
3 热处理工艺控制
包括加热速度、加热温度、保温时间、冷却速度等控制参数。
第六章 金属表面处理
金属表面处理方法
包括化学处理、机械加工、电 化学处理、热处理、电镀等多 种方法。
金属表面处理工艺流程
表面清洁、表面活化、表面处 理、表面涂装等环节组成。
产生于晶体生长、切割、变形等过程中。
包括薄亚晶带、位错、蠕变加工硬化带。
3
面缺陷
是金属晶体的缺陷,其形状是哑铃、孔
强化机理
4
等。表现为晶界、裂纹等。
金属材料经过不同的加工或处理过程, 可以获得不同的强度、硬度、延展性等
性能。
第五章 金属的热处理
1 热处理工艺
是在一定的加热、保温和冷却条件下,对金属材料进行组织和性能控制的工艺。
《金属学与热处理》课件

举例说明
电子器件中的微型线圈需要采用真空 热处理来确保其导电性能和稳定性; 而医疗器械中常用的钛合金则需要通 过特殊的化学热处理来提高其耐腐蚀 性和生物相容性。
05
热处理设备与工艺控 制
热处理设备的分类与选择
热处理设备的分类
根据加热方式、用途和特点,热处理设备可分为多种类型,如电炉、燃气炉、 真空炉、感应炉等。
举例说明
飞机发动机中的涡轮叶片需要采用特 殊的热处理工艺来提高其高温强度和 抗疲劳性能;而医疗器械中常用的钛 合金则需要通过精细的热处理来确保 其生物相容性和力学性能。
功能金属材料的热处理
总结词
详细描述
功能金属材料具有特殊的物理和化学 性能,其热处理工艺对材料的性能具 有重要影响。
功能金属材料的热处理主要包括真空 热处理、化学热处理和磁场热处理等 工艺。这些工艺能够改变金属的表面 组织结构和化学成分,从而赋予材料 特殊的物理和化学性能。例如,磁性 材料需要进行磁场热处理来提高其磁 导率和磁感应强度;而超导材料则需 要通过真空热处理和化学热处理来确 保其超导性能。
气氛控制
对于某些热处理工艺,如渗碳、 渗氮等,需要控制炉内的气氛, 包括气体组成、压力和流量等, 以确保工件表面的质量。
热处理过程中的环境保护
减少能源消耗
采用先进的热处理技术和设备,提高能源利用率 ,减少能源浪费。
降低污染物排放
通过改进工艺和设备,降低热处理过程中产生的 有害物质排放,如废气、废水和固体废弃物等。
热处理过程中的相变
相变概念
金属在加热和冷却过程中发生的组织结构变 化,包括晶体结构的变化和相的分离。
相变机理
固态相变、液态相变和气态相变等。
相变类型
共析转变、包晶转变、固溶体脱溶等。
《金属学及热处理》课件

降低汽车零部件的制造成本, 提高生产效率
提高汽车零部件的耐磨性、 耐腐蚀性和疲劳强度
提高汽车零部件的尺寸精度 和形状精度,保证其装配精
度和性能稳定性
热处理在航空航天工业的应用
提高材料强度和韧性
改善加工性能和焊接性能
改善疲劳性能和耐磨性
提高零件的尺寸稳定性和可靠性
提高耐腐蚀性和抗氧化性
延长零件的使用寿命和维护周期
单击此处添加副标题
金属学及热处理PPT课 件
汇报人:
目录
01 02 03 04 05 06
添加目录项标题 金属学基础
金属的热处理原理 金属的热处理工艺 金属热处理的应用 金属热处理的未来发展
01
添加目录项标题
02
金属学基础
金属材料的分类
按照化学成分分类:铁、铜、铝、锌等 按照组织结构分类:单相、多相、复合等 按照性能分类:高强度、高韧性、耐腐蚀等 按照用途分类:建筑、汽车、航空、电子等
热处理工艺:包括加热速度、保温时间、冷却速度等
热处理效果:影响金属的力学性能、物理性能和化学性能
热处理的分类
退火:将金属加热到一定温度,保温一定时间 后冷却,以消除内应力,降低硬度,提高塑性 和韧性
正火:将金属加热到一定温度,保温一定时间后 冷却,以细化晶粒,提高硬度和强度
淬火:将金属加热到一定温度,保温一定时间后 快速冷却,以获得高硬度和高耐磨性
热处理与环境保护的结合
绿色热处理技术:采用环保材料和工艺,减少污染排放 节能减排:优化热处理工艺,降低能耗,减少碳排放 循环利用:回收利用废热、废气、废液等,实现资源循环利用 环保法规:遵守环保法规,确保热处理过程符合环保要求
热处理在智能制造领域的应用前景
金属学与热处理知识点总结

金属学与热处理知识点总结金属学是研究金属材料的物理特性、化学特性和力学特性,以及金属原材料的加工工艺的学科。
热处理是指将金属材料通过加热、保温和冷却等工艺过程来改变金属材料的性能,改善金属材料的加工性能。
本文结合实例,从金属学和热处理两个方面对相关知识点进行总结。
一、金属学1、金属的性质金属的性质是由元素的原子结构和组成决定的,因此,金属的物理性质、化学性质和力学性质均受它的原子结构和组成的影响。
金属的主要性质有导电性、导热性、耐腐蚀性等。
它们的性质决定了金属在工业生活中的重要作用。
2、金属的加工工艺金属加工是指采用机械、热处理、电子和化学等不同类型的加工方法,改变金属原材料的形状、性能和结构,以达到使用和生产需要的加工工艺。
常见的金属加工工艺有冲压、锻造、焊接、切削等。
二、热处理1、热处理的种类热处理是指通过加热、保温和冷却等技术,改变金属材料的组织结构,以改善材料性能的一种技术手段。
热处理的分类很多,其中包括:硬化、回火、淬火、正火、调质等。
2、热处理的作用热处理的主要作用是改变金属材料的组织结构,从而改善金属材料的性能。
热处理可以增加材料的强度、耐磨性、耐腐蚀性,同时热处理还可以改变材料的尺寸、形状和外观等。
热处理是衡量金属材料质量的关键性步骤之一,因此,热处理技术的发展有助于提高金属材料的使用性能。
综上所述,金属学是研究金属材料的物理特性、化学特性和力学特性,及其原材料加工工艺的学科,金属加工工艺可以改变金属原材料的形状、性能和结构,以达到使用和生产需要。
热处理是通过加热、保温、冷却等技术,改变金属材料的组织结构,以改善材料性能的技术手段,可以改变材料的性能、尺寸、形状和外观等。
正确运用金属学和热处理知识,可以有效提高金属材料的使用性能。
《金属学与热处理》课程教学大纲

金属学与热处理课程代码:1013003总学时:96先修课程:普通化学、材料力学、物理化学、机械制造基础开课对象:金属材料工程专业一、课程的性质、目的与任务:1、性质:金属学与热处理是金属材料工程专业的一门主要技术基础课程,是该专业学生学习和研究工程材料及其工程技术的重要理论基础课程,其为进行进一步的专业课程学习打下理论和实验基础。
2、目的与任务:使学生掌握研究材料微观的方法,建立微观组织与宏观特性和性能间的联系与对应关系并通过实验掌握基本的金相实验方法。
二、教学基本内容与基本要求:3^基本内容(1)金属的晶体结构。
(2)纯金属结晶。
(3)二元合金的相结构与结晶。
(4)铁碳合金。
(5)三元合金相图。
(6)金属及合金的塑性变形与断裂。
(7)金属及合金的回复与再结晶。
(8)扩散。
(9)钢的热处理原理。
(10)钢的热处理工艺。
(11)工业用钢。
(12) 铸铁。
(13)有色金属及合金。
4、基本要求(1)掌握材料的基本结构、组织及与性能的联系。
(2)掌握材料的结晶过程及结晶过程组织变化的分析。
(3)利用相图分析材料的组织及组织转变。
(4)掌握金属的塑性变形过程及机理。
(5) 了解材料的强化途径及强化理论。
(教学要求:A -熟练掌握;B -掌握;C - 了解)本课程实验安排项目:16学时五、教学方法与教学手段1、教学方法采用启发式教学,鼓励学生自学,培养学生的自学能力;以扩大学生的知识面为原则,增加课堂讨论内容,调动学生学习的主动性与积极性。
2、教学手段采用黑板教学、幻灯教学、挂图讲解等教学方法相结合,并开展电子教案、CAI课件的研制、引进和应用、研制多媒体教学系统。
六、建议教材与参考书目1、金属学与热处理,崔忠圻,机械工业出版社,2000.2、金属学原理,侯增寿,上海科学技术出版社,1990。
3、金属学与热处理,丁建生,机械工业出版社,20044、金属材料与热处理原理,赵忠,丁仁亮,周而康,哈尔滨工业大学出版社,2000o 七、大纲编写的依据与说明本课程教学大纲,是根据金属材料工程专业本科生培养目标与教学计划要求,结合本课程的性质、教学的基本任务和基本要求编写的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的重要因素。
实用文档
1.2、金属结晶的微观过程
无论金属还是 非金属,在结晶时都遵 循相同的规律,即结晶 过程是形核和长大的过 程。
实用文档
过 程
熔体过冷 孕 育 期 形核→ 晶核长大
→未转变液体部分形核→ 晶核长大
→相邻晶体互相接触 →液体全部转变。
每个成长的晶体就是一个晶粒,它们的接触分 界面就形成晶界。 实用文档
HL-HS=DHf >0, DHf 为相变潜热,T=Tm时,DGv =0,因此有:
DHf = -TmDS, DS = -DHf /Tm
T <Tm时,DS变化很小,可视为常数,因此液固两相Gibbs
自由能差DGv为:
DGv= -DHf -TDS= -DHf+TDHf /Tm= -DHf DT/Tm
可见:T=Tm时,过冷度DT = 0, DGv= 0, 没有结晶驱动力, 不能凝固。
实用文档
2.2、金属结晶的结构条件
液体的原子排列:
相
① 短程有序,长程无序。
起 伏
② 短程有序集团不断出现
出 现
和消失,处于变化之中。
几 率
③ 这些瞬间出现、消失的
有序集团称为结构起伏
或相起伏。
实用文档
rmax相起伏大小来自 rmax过冷度DT相起伏或结构起伏是结晶的结构条件。 只有在过冷液体中出现的尺寸较大的相起伏才能 形成晶胚。这些晶胚才可能形成晶核结晶。
B. 晶核的临界大小
由于:DG = VDGv + sS
一定过冷度下,ΔGV<0,σ > 0 因此有最大体积和最小表面积
的球形晶核最有利。设ΔGV和 σ为常数,球半径为r,则有:
DG4r3
3
DGv
4r2
令dDG0 dr
得rc
2
DGv
2Tm
DH 实用文档f DT
r0 rc
r0 rc
rc称为临界晶核半径。
因此:dG = TdS-pdV+Vdp-TdS-SdT= Vdp – SdT
对于金属凝固过程,dp=0
因此:dG/dT = -S
实用文档
dG/dT = -S
熵S表征系统中原子排列混乱 程度的参量,S恒大于零。
固相原子排列有序;因此:
Ss < SL
│( dG/dT )s│<│( d因G此/d液T 固)L│两相G-T曲线斜率不同,液相下降更快。两者交点
Tm处,GL=Gs,表示两相可以同时共存,处于热力学平衡状态, 这一温度Tm就是金属的理论结晶温度。只有T< Tm时,液体转 变为固体时吉布斯自由能下降,存在结晶的驱动力,结晶过
程才能发生。
实用文档
过冷度DT与结晶驱动力 — 单位体积自由能的变化 DGv有何关系?
DGv =Gs - GL = -(HL-HS)-T(Ss-SL)
因此实际结晶温度必须低于理论结晶温度,这样才能满足结 晶的热力学条件。这就说明实了用文为档什么必须过冷的根本原因。
2.2、金属结晶的结构条件 • 金属的结晶是晶核的形成和长大的过程,而晶
核是由晶胚生成的,那么,晶胚又是什么呢? 它是怎样转变成晶核的?这些问题都涉及到液 态金属的结构条件,因此,了解液态金属的结 构,对深入理解结晶时的形核和长大过程十分 重要。
第二节 金属结晶的条件
问题:
为什么金属不能在理 论结晶温度结晶,而 需要过冷?
实用文档
2.1、金属结晶的热力学条件
金属各相Gibbs自由能G可表示为:
G = H –TS=U+pV-TS,
H:焓,U:内能,p:压力,V:体积,T:温度,S:熵。
dG=dU+pdV+Vdp-TdS-SdT
而 dU=TdS-pdV (热力学第一定律)
当晶胚半径 r > rc,
晶胚长大时吉 布斯自由能下降,晶胚 可以发育为晶核。
当晶胚半径r < rc,
晶胚长大时吉 布斯自由能将上升,因 此它将自发减小到消失。
实用文档
rc
2
DGv
2Tm
DHf DT
rc
rc、rrmmaxax rc
rmax
过冷度DT
过冷度DT
DTk
过冷度DT
实用文档 △Tk称为临界过冷度
实用文档
前面谈到了结晶的热力学条件和结构条 件。但事实上,许多过冷液体并不立即发生凝固 结晶。如液态高纯Sn过冷5~20oC时,经很长时间 还不会凝固。说明凝固过程还存在某种障碍。
因此,还必须进一步研究凝固过程究竟如何进行的 (机理问题)?进行的速度如何(动力学问题)?
以下两节的内容分别从形核和长大 两个基本过程进行讨论
实用文档
A. 形核时的能量变化
在一定的过冷度下,液体中若出现固态晶核,该 区域的能量变化包括两个方面:
1)液体结晶为固体时体积自由能的下降V△Gv 2)新增晶核的界面自由能σS
因此总的吉布斯自由能变化量为: DG=VDGv+sS
V:晶核体积; σ:界面能;S:晶核的表面积
ΔGv:单位体积内固液吉实用布文档斯自由能之差
实用文档
非均匀形核
又称异质形核或非自发形核。是指依 附液体中现有固体杂质或容器表面形 成晶核的过程。
实际液态金属中,总有或多或少的杂 质,晶胚总是依附于这些杂质质点上 形成晶核,实际的结晶过程主要是按 非均匀形核方式进行。
实用文档
3.1、均匀形核
为什么过冷液体形核 时要求晶核必须达到 一定的临界尺寸?
实用文档
第三节 晶核的形成 母相中形成等于或超过一定临界尺寸的新 相晶核的过程称为形核。液体金属中形核 有均匀形核和非均匀形核两种方式。
实用文档
均匀形核
又称均质形核或自发形核。是指从液 相晶胚发展成一定临界尺寸晶核的过 程。
均匀形核是一种理想的形核方式,只有在液 态绝对纯净,也不和型壁接触下发生。液体 各区域形核几率相同,只是依靠液态金属的 能量变化,由晶胚直接形核的过程。
越大。当冷却速度达到106 oC/s以上时,液 态金属来不及结晶就固化下来,这样形成的 固体称为金属玻璃,是一种非晶态材料。
实用文档
B、结晶潜热
结晶潜热 ⇋ 环境散热 →冷却平台→平台延续 的过程就是结晶所需的 时间。
结晶潜热>环境散热→温度上升→局部区域出现重
熔现象。因此结晶潜热的释放和重熔,是影响结晶
实用文档
第一节 金属结晶的现象
1.1、结晶过程的宏观现象
A. 过冷现象 金属的实际结晶温度 与理论结晶温度之差 称为过冷度 (ΔT )。 ΔT = Tm - Tn
实用文档
A. 过冷现象
过冷度随金属的种类、纯度以及结晶时的 冷却速度有关。
➢ 纯度越高,过冷度越大; ➢ 其它条件相同时,冷却速度越快,过冷度也