人教版九年级上册数学学案:22.1.1二次函数

合集下载

人教版数学九年级上册《二次函数》第一课时教案

人教版数学九年级上册《二次函数》第一课时教案
四、展示点评点拨升华达成反思
例1、下列函数中,哪些是二次函数?若是,分别指出二次项系数,一次项系数,常数项.
例2、函数
(1)当m为何值时,y是x的二次函数?
(2)当m为何值时,y是x的一次函数?
【反思节点2】怎么判定一个函数是否为二次函数?
五、整合提高建构体系内化反思
【生活问题数学化】:一农民用40m长的篱笆围成一个一边靠墙的长方形菜园,和墙垂直的一边长为 ,菜园的面积为 ,

二、学案引导自主学习目标反思
问题2n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队数n有什么关系?
问题3某种产品现在的年产量是20 t,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?
3.等式的右边最高次数为__________,可以没有一次项和常数项,但不能没有二次项.
4.没有特殊要求的话,x的取值范围是________.
二次函数的特殊形式:
当b=0时,y=_________
当c=0时,y=_________
当b=0,c=0时,y=__________
【反思节点1】二次函数必须满足的条件是什么?
(1)求y与x之间的函数关系式,并说出自变量的取值范围。
(2)当x=12m时,计算菜园的面积。
(3)当菜园的面积是 时,求x。
【反思节点3】如何求函数值及自变量的值?
【小结】知识网络
六、达标检测反馈矫正总结反思
1.下列函数中是二次函数的是()
A. B. C. D.
2.若函数 是关于x的二次函数,则()
思考:函数有什么共同特点?板书二次函数
一般地,形如

人教版九年级数学上册教案:22.1.1二次函数

人教版九年级数学上册教案:22.1.1二次函数
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次函数的基本概念。二次函数是形如y=ax^2+bx+c(a≠0)的函数表达式。它在数学、物理、工程等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例,如抛物线形的拱桥,分析其背后的二次函数原理。
3.重点难点解析:在讲授过程中,我会特别强调二次函数的定义和图像性质这两个重点。对于难点部分,如顶点式的推导和最值的求解,我会通过图示和具体例子来帮助大家理解。
在新课讲授过程中,我特别强调了二次函数的重点和难点,但可能过于注重知识点的讲解,而忽略了学生的实际操作和体验。在实践活动环节,虽然分组讨论和实验操作提高了学生的参与度,但我觉得在引导和启发学生思考方面还可以做得更好。例如,可以设置更具挑战性的问题,让学生在解决问题的过程中深入探讨二次函数的性质和应用。
五、教学反思
今天的课程结束后,我认真反思了自己的教学过程和方法。在讲解二次函数这一章节时,我发现学生们对概念的理解和图像性质的把握上还存在一些问题。首先,我意识到在引入新课的时候,虽然通过日常生活中的例子来激发学生的兴趣,但可能还需要更加生动具体的方式,让学生感受到二次函数与生活的紧密联系。
在理论介绍环节,我尽量用简单明了的语言解释二次函数的定义和性质,但发现部分学生对a、b、c这三个参数的理解还不够深入。今后,我可以尝试运用更多的图示和实际案例,帮助学生更好地理解参数对图像的影响。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过抛物线形状的情况?”(如篮球投篮的轨迹)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次函数的奥秘。

人教版九年级数学上册第二十二章《二次函数》教案

人教版九年级数学上册第二十二章《二次函数》教案

第二十二章二次函数22.1 二次函数的图象和性质22.1.1 二次函数1.能结合具体情境体会二次函数的意义,理解二次函数的有关概念.2.能够表示简单变量之间的二次函数关系.3.通过具体问题情景中的二次函数关系了解二次函数的一般表述式,在类比一次函数、反比例函数表达式时感受二次函数中二次项系数a≠0的重要特征.4.在探究二次函数的学习活动中,体会通过探究发现的乐趣.【教学重点】结合具体情境体会二次函数的意义,掌握二次函数的有关概念.【教学难点】1.能通过生活中的实际问题情境,构建二次函数关系;2.重视二次函数y=ax2+bx+c中a≠0这一隐含条件.一、情境导入,初步认识问题1 如图所示是一个棱长为xcm的正方体,它的表面积为ycm2,则y与x 之间的关系式可表示为,y是x的函数吗?问题2 n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队n有什么关系?这就是说,每个队要与其他个球队各比赛一场,整个比赛场次数应为,这里m是n的函数吗?问题3 某种产品现在的年产量为20t,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x值而确定,y与x之间的关系应怎样表示?二、思考探究,获取新知全班同学合作交流,共同完成上面三个问题,教师全场巡视,发现问题可给予个别指导.在同学们基本完成情形下,教师再针对问题2,解释m=12n(n-1)而不是m=n(n-1)的原因;针对问题3,可引导同学们先算出第二年产量为20(1+x)t ,第三年产量为20(1+x)(1+x)t ,得到y=20(1+x)2.【教学说明】上述活动的目的在于引导同学们能通过具体问题情境建立二次函数关系式,体会二次函数是刻画实际生活中自变量与因变量的关系的重要模型之一.思考函数y=6x 2,m=12n 2-12n,y=20x 2+40x+20有哪些共同点? 【教学说明】在同学们相互交流、发言的过程中,教师应关注:(1)语言是否规范;(2)是否抓住共同点;(3)针对少数同学可能进一步探索出其不同点等问题应及时引导,让同学们在轻松快乐的环境中进入二次函数的学习.【归纳结论】上述三个函数都是用自变量的二次式表示的,从而引出二次函数定义.一般地,形如y=ax 2+bx+c(a,b,c 为常数,a ≠0)的函数,叫做二次函数.其中x 是自变量,a 、b 、c 分别是二次项系数,一次项系数和常数项.【教学说明】针对上述定义,教师应强调以下几个问题:(1)关于自变量x 的二次式必须是二次整式,即可以是二次单项式、二次二项式和二次三项式;(2)二次项的系数a ≠0是定义中不可缺少的条件,若a=0,则它是一次函数;(3)二次项和二次项系数不同,二次项指ax 2,二次项系数则仅是指a 的值;同样,一次项与一次项系数也不同.教师在学生理解的情况下,引导学生做课本P29练习.三、运用新知,深化理解1.下列函数中,哪些是二次函数,哪些不是?若是二次函数,指出它的二次项系数、一次项系数和常数项:(1)y=(x+2)(x-2);(2)y=3x(2-x)+3x 2; (3)y=21x -2x+1;(4)y=1-3x 2.2.若y=(m+1)xm 2+1-2x+3是y 关于x 的二次函数,试确定m 的值或取值范围.3.某商场以每件30元的价格购进一种商品,试销中发现:这种商品的销售量m(件)与每件商品的销售价x (元)满足一次函数关系m=162-2x ,试写出商场销售这种商品的日销售利润y (元)与每件商品的销售价x (元)之间的函数关系式,y 是x 的二次函数吗?4.如图,用同样规格的正方形白瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)在第n 个图中,每一横行共有 块瓷砖,每一竖列共有 块瓷砖(均用含n 的代数式表示);(2)设铺设地面所用瓷砖的总块数为y ,请写出y 与(1)中的n 的函数关系式(不要求写自变量n 的取值范围).【教学说明】这个环节的教学自主性很强,可让同学们分小组完成,对优胜小组给予鼓励,培养学生团队精神,让部分学生分享成功的快乐,但对题2、3、4,教师应及时给予引导,鼓励学生大胆完成.【答案】1.解:(1)y=(x+2)(x-2)=x 2-4,该函数是二次函数,它的二次项系数为1,一次项系数是0,常数项是-4.(2)y=3x(2-x)+3x 2=6x,该函数不是二次函数.(3)该函数不是二次函数.(4)该函数是二次函数,它的二次项系数为-3,一次项系数为0,常数项为1.2.解:∵()21123m y m x x +=+-+是y 关于x 的二次函数.∴m+1≠0且m 2+1=2,∴m≠-1且m2=1,∴m=1.3.解:由题意分析可知,该商品每件的利润为(x-30)元,则依题意可得:y=(162-3x)(x-30)即y=-3x2+252x-4860由此可知y是x的二次函数.4.解:(1)观察图示可知第1、2、3个图形中每一横行瓷砖分别为4,5,6,每一竖列瓷砖分别为3,4,5,由此推断在第n个图中,每一横行共有(n+3)块瓷砖,每一竖行共有(n+2)块瓷砖;(2)y=(n+3)(n+2)即y=n2+5n+6.四、师生互动,课堂小结1.二次函数的定义;2.熟记二次函数y=ax2+bx+c中a≠0,a、b、c为常数的条件.【教学说明】本环节设置的目的在于让学生进一步认识二次函数的相关定义,教师可与学生一起回顾.1.布置作业:教材习题22.1第1、2、7题;2.完成创优作业中本课时练习的“课时作业”部分.本课时的内容涉及到初中第二个函数内容,由于前面有了学习一次函数的经验,因此教师教学时可在学生以往经验的基础上,创设丰富的现实情境,使学生初步感知二次函数的意义,进而能从具体事物中抽象出数学模型,并列出二次函数的解析式.教学时应注重引导学生探究新知,在观察、分析后归纳、概括,注重学生的过程经历和体验,让学生领悟到现实生活中的数学问题,提高研究与应用能力.22.1.2 二次函数y=ax2的图象和性质1.会用描点法画二次函数y=ax2的图象,理解抛物线的有关概念;2.掌握二次函数y=ax2的性质,能确定二次函数y=ax2的表达式.3.通过画出简单的二次函数y=x2,y=-12x2等探索出二次函数y=ax2的性质及图象特征.4.使学生经历探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯.【教学重点】1.二次函数y=ax2的图象的画法及性质;2.能确定二次函数y=ax2的解析式.【教学难点】1.用描点法画二次函数y=ax2的图象,探索其性质;2.能依据二次函数y=ax2的有关性质解决问题.一、情境导入,初步认识问题1在八年级下册,我们学习的一次函数的图象是一条直线,二次函数的图象是什么形状呢?通常怎样画一个函数的图象?【教学说明】通过对问题1的思考,可激发学生的求知欲望,想尝试运用列表法画出一个二次函数的图象.问题2 你能画出二次函数y=x2的图象吗?【教学说明】学生分组画y=x2的图象,教师巡视,对于不正确的给予指导,尤其应关注学生的列表和连线,然后给予讲评,提醒注意的问题,并让学生发表不同的意见,达成共识.二、思考探究,获取新知问题1你能说说二次函数y=x2的图象有哪些特征吗?不妨试试看,并与同伴交流.【教学说明】教师应在学生的交流过程中,听取他们各自的看法,对于通过观察而归纳出的结论叙述较好的给予肯定,对不够完整的或叙述欠佳的学生给予鼓励,并予以诱导.在这一活动过程中,让学生们逐步积累对二次函数y=ax2的图象及其简单性质的感性认识.问题2请在同一坐标系中,画出下列函数的图象,并通过图象谈谈它们的特征及其差异.y=12x2与y=2x2.【教学说明】在这一活动过程中,教师可将全班同学进行适当分组,分别完成两个图象的画图,并结合图象给予恰当的描述.教师巡视,适时点拨,最后在黑板上与全班同学一起进行归纳总结.问题3(1)在同一直面坐标系中,画出函数y=-x2,y=-12x2,y=-2x2的图象,并考虑这些抛物线有什么共同点和不同点?(2)当a<0时,二次函数y=ax2的图象有什么特点?【教学说明】教师在处理问题时可让学生画图后回答,可让学生从开口方向、最值、增减性三个方面作答,最后教师以课件方式展示结论.【归纳结论】1.二次函数y=ax2的图象是一条开口向上或向下的抛物线.一般地,二次函数y=ax2+bx+c的图象叫做抛物线y=ax2+bx+c.2.二次函数y=ax2的图象及其性质,如下表所示:3.二次函数y=ax2的开口大小与a的关系:|a|越大,开口越小;|a|越小,开口越大.|a|值相同,开口形状相同.【教学说明】针对师生共同完成的归纳总结,教师应着重强调两点:(1)a 的符号决定着抛物线的开口方向,|a|的大小,影响抛物线的开口大小;(2)对于函数的增减性及最大(小)值,教师应引导学生通过图象进行分析,利用图象的直观性获得结论,切忌死记硬背,让同学感受到数形结合思想方法是函数问题中最重要的思想方法之一,增强他们的学习兴趣.三、运用新知,深化理解1.若抛物线y=ax2与y=4x2的形状及开口方向均相同,则a= .2.下列关于二次函数y=ax2(a≠0)的说法中,错误的是()A.它的图象的顶点是原点B.当a<0,在x=0时,y取得最大值C.a 越大,图象开口越小;a 越小,图象开口越大D.当a>0,在x>0时,y 随x 的增大而增大3.请在同一坐标系中画出函数y 1=x 和y 2=-x 2的图象,结合图象,指出当x 取何值时,y 1>y 2;当x 取何值时,y 1<y 2.4.一个二次函数,它的图象的顶点是原点,对称轴是y 轴,且经过点(-1,14). (1)求这个二次函数的解析式;(2)画出这个二次函数的图象;(3)根据图象指出,当x>0时,若x 增大,y 怎样变化?当x<0时,若x 增大,y 怎样变化?(4)当x 取何值时,y 有最大(或最小)值,其值为多少?【教学说明】本环节易采用先让学生独立思考,再以小组交流的方式展开.其中题2、3、4均是集图象与性质于一体,鼓励学生用自己的语言叙述,逐步渗透用数学语言进行说理的能力,同时进一步体现数形结合的思想.【答案】1.42.C 【解析】当a>0时,a 值越大,开口越小,a 值越小,开口越大;当a<0时,a 值越大,开口越大,a 值越小,开口越小.所以C 项说法不对.3.列表如下:如图所示:根据图象可知,当x>0或x<-1时,y1>y2,当-1<x<0时,y2>y1.4.解:(1)设这个二次函数解析式为y=ax2,将(-1,14)代入得a=14,所以y=14x2.(2)略(3)当x>0时,y随x的增大而增大;当x<0时,y随x的增大而减小.(4)当x=0时,y有最小值,y最小值=0.四、师生互动,课堂小结1.画二次函数y=ax2的图象时,有哪些地方是你需关注的?2.你是如何理解并熟记抛物线y=ax2的性质的?3.本节课你还存在哪些疑问?【教学说明】问题1旨在提醒学生画图过程中列表时应以原点为中心,左右对称选取点,连线时应用光滑曲线连接;问题2是为了进一步突出数形结合思想在函数问题的解决过程中的重要性;而问题3是想了解学生哪部分没学好,难学,以便教师可以进行针对性辅导.1.布置作业:教材习题22.1第3、4、11题.2.完成创优作业中本课时练习的“课时作业”部分.本课时的设计比较注重让学生动手操作,让学生通过画二次函数的图象初步掌握其性质,画图的过程中需注意引导学生与其他函数的图象与性质进行对比.本课的目的是要让学生通过动手操作,经历探索归纳的思维过程,逐步获得图象传达的信息,熟悉图象语言,进而形成函数思想.22.1.3 二次函数y=a(x-h)2+k的图象和性质第1课时二次函数y=ax2+k的图象和性质1.能画出二次函数y=ax2+k的图象;2.掌握二次函数y=ax2与y=ax2+k图象之间的联系;3.掌握二次函数y=ax2+k的图象及其性质.4.通过画二次函数y=2x2+1与y=2x2-1的图象,感受它们与y=2x2的联系,并由此得到y=ax2与y=ax2+k的图象及性质的联系和区别.5.在通过类比的方法获取二次函数y=ax2+k的图象及其性质过程中,进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.【教学重点】1.二次函数y=ax2与y=ax2+k的图象之间的联系;2.二次函数y=ax2+k的图象及其性质.【教学难点】二次函数y=ax2+k的性质的基本应用.一、情境导入,初步认识问题1请同学们谈谈一次函数y=x与y=x+2的图象之间的关系;问题2同样地,你能猜想出二次函数y=x2与y=x2+1的图象之间有何关系吗?【教学说明】问题1既是复习旧知识,同时又为解决本节知识起到抛砖引玉的作用.学生的回答也许形式多样,教师适时诱导,并设疑,为后面的解惑作铺垫.二、思考探究,获取新知问题1在同一坐标系中,画出二次函数y=2x2+1,y=2x2-1的图象.请观察图象,谈谈它们有哪些相同点和不同点,并指明这两个图象的关系如何?【教学说明】在学生自主操作时,教师应指导它们在画平面直角坐标系时的单位长度要稍大一些,如选取0.8cm或1cm为一个单位长度为好,这样学生们所画出的图形才有可能清晰些.教师应巡视,纠正画图过程中可能出现的失误,并引导他们进行分析,发现规律,获得感性认识.问题2(教材第33页练习)在同一直角坐标中,画出下列二次函数的图象y=12x2,y=12x2+2,y=12x2-2,观察三条抛物线的位置关系并分别指出它们的开口方向、对称轴和顶点.你能说出抛物线y=12x2+k的开口方向、对称轴和顶点吗?它与抛物线y=12x2有什么关系?【教学说明】设计问题2,一方面进一步增强学生的画图能力,另一方面加深学生的感性认识,从而形成对二次函数y=ax2+k的图象及其性质的初步认识.同伴间应相互交流,教师巡视指导,然后完成课本第33页练习.【归纳结论】1.二次函数y=ax2+k的图象可以由y=ax2的图象通过上、下平移得到.2.y=ax2与y=ax2+k的性质如下:三、运用新知,深化理解1.抛物线y=3x2可以看作是抛物线y=3x2-4向平移得到的.2.已知抛物线y=ax2+k与抛物线y=-2x2的形状相同,且图象到x轴的最近点的距离为3,求a、k的值,并指出抛物线y=ax2+k的开口方向,对称轴和顶点坐标.【教学说明】针对本节所学内容及学生掌握的情况,设计训练题1,2,目的是加深学生对新知识的理解,能灵活运用所学知识解决简单的问题.教师在这个过程中要予以诱导.【答案】略四、师生互动,课堂小结本环节师生共同回顾所学知识,如y=ax2+k的图象特征,函数的增减性等,并对可能出现的困难、疑问给予整理,进行辨析.完成创优作业中本课时练习的“课时作业”部分.本课时教学重点在于培养学生的比较能力,旨在希望学生通过对比发现函数图象的性质,从而进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.第2课时二次函数y=a(x-h)2的图象和性质1.能画出二次函数y=a(x-h)2的图象;2.了解抛物线y=ax2与抛物线y=a(x-h)2的联系;3.掌握二次函数y=a(x-h)2的图象特征及其简单性质.4.通过动手操作、观察比较、分析思考、规律总结等活动过程完成对二次函数y=a(x-h)2的图象及其性质的认知.5.在学生学习活动过程中,使他们进一步体会数形结合的思想方法,培养创造性思维能力和动手实践能力,增强学习兴趣、激发学习欲望.【教学重点】1.掌握二次函数y=a(x-h)2的图象及性质;2.二次函数y=ax2与y=a(x-h)2图象之间的联系.【教学难点】利用二次函数y=a(x-h)2的性质解决实际问题.一、情境导入,初步认识我们知道,二次函数y=ax2-2的图象可以由函数y=ax2的图象向下平移得到,那么函数y=12(x-2)2的图象是否可以由函数y=12x2的图象经过平移而得到呢?二、思考探究,获取新知问题在同一坐标系中画出二次函数y=-12(x+1)2,y=-12(x-1)2的图象,指出它们的开口方向、对称轴和顶点坐标;并结合图象,说说抛物线y=-12x2, y=-12(x+1)2,y=-12(x-1)2的关系.【教学说明】在教学过程中,学生独立思考后,合作完成.教师巡视指导,针对学生在画图、探究过程中可能出现的错误给予指正,对好的给予表扬,并展示其图象,在合作交流过程中探索出抛物线y=-12(x+1)2,y=-12(x-1)2与y=-12x2的联系.【归纳结论】函数y=ax2与y=a(x-h)2的图象及其性质如下表:三、运用新知,深化理解【设计说明】针对本节知识,设计了以下几道题,及时了解学生运用新知解决问题的能力,查漏补缺.1.抛物线y=3(x-3)2的开口方向是向,对称轴是,顶点是.2.若抛物线y=a(x-h)2的顶点是(-3,0),它是由抛物线y=-2x2通过平移而得到的,则a= ,h= .【教学说明】这两道题可采用抢答的形式来处理,可适当让学生说明其解题思路或依据.【答案】1.上x=3 (3,0)2.-2-3四、师生互动,课堂小结1.抛物线y=ax2与y=ax2+c和抛物线y=ax2与y=a(x-h)2有哪些共同点,又有哪些不同点?同伴间可相互交流.2.将抛物线y=ax2上下平移与左右平移所得到的表达式在形式上有何区别?3.课本第35页练习.【设计及教学说明】对所给两个问题的思考,让学生亲历知识的自主建构,不断完善自己的知识结构.完成创优作业中本课时练习的“课时作业”部分.本课时教学仍在于着重培养学生的比较和判断能力,通过比较找出异同点,从而进一步归纳性质,并通过练习使学生从“练”中“悟”,形成函数意识.第3课时二次函数y=a(x-h)2+k的图象和性质1.会用描点法画出二次函数y=a(x-h)2+k(a≠0)的图象;2.掌握抛物线y=ax2与y=a(x-h)2+k之间的平移规律;3.依据具体问题情境建立二次函数y=a(x-h)2+k模型来解决实际问题.4.通过“活动探究——观察思考——运用迁移”等三个环节来获取新知识,掌握新技能,解决新问题.5.进一步培养学生观察能力、抽象概括能力,渗透数形结合、从特殊到一般的思想方法,了解从特殊到一般的辩证关系.【教学重点】二次函数y=a(x-h)2+k(a≠0)的图象及其性质.【教学难点】1.二次函数y=a(x-h)+k与y=ax2(a≠0)的图象之间的平移关系;2.通过对图象的观察,分析规律,归纳性质.一、情境导入,初步认识问题将抛物线y=-12x2向下平移1个单位,所得到的抛物线表达式是什么?若再将它向左平移1个单位呢?【教学说明】学生通过对前两节课所学习的上、下平移和左、右平移规律的回顾与思考,在尝试解决问题的过程中,可增强他们的学习兴趣,激发求知欲望,也为新知识的学习做好铺垫.学生们可相互交流,教师对其结论可暂不作评价.二、思考探究,获取新知问题1 画出二次函数y=-12(x+1)2-1的图象,指出它的开口方向、对称轴及顶点坐标.问题2 请在问题1中所在的平面直角坐标系内,画出抛物线y=-12x2,及抛物线y=-12(x+1)2,y=-12x2-1,观察所得到的四个抛物线,你能发现什么?问题3请依据问题2中你的发现,说说抛物线y=a(x-h)2+k是由抛物线y=ax2(a ≠0)通过怎样的平移而得到的?并说说它的对称轴和顶点坐标.【教学说明】教师可给予15~20分钟的时间让学生自主探究,画出图象,并让学生们交流,获得感性认识.教师巡视,鼓励每个学生积极参与进来,针对个别同学,应适时予以点拨.如果条件允许,对学生的成果可通过多媒体展示.【归纳结论】1.一般地,抛物线y=a(x-h)2+k与抛物线y=ax2的形状相同(因为a值相同),而位置不同.将抛物线y=ax2上下平移,可得到抛物线y=ax2+k(k >0时,向上平移k个单位;k<0时,向下平移-k个单位),再将抛物线y=ax2+k 左右平移后,可得到抛物线y=a(x-h)2+k(h>0时,向右平移;h<0时,向左平移).2.抛物线y=a(x-h)2+k的性质:(1)a>0时,开口向上;a<0时,开口向下;(2)对称轴是直线x=h;(3)顶点坐标是(h,k).【教学说明】1.通过探究,师生共同交流,达成共识后,教师在黑板上与学生一道进行归纳,了解并掌握本课时知识.2.此时教师可对问题情境中的问题1作出评价,让学生体验成功的快乐.3.归纳结论完成后,教师引导学生做第37页练习,可让学生采取举手抢答的形式进行.三、典例精析,掌握新知例(教材第36页例4)要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?解:如图建立直角坐标系,点(1,3)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数是y=a(x-1)2+3(0≤x≤3).由这段抛物线经过点(3,0)可得0=a(3-1)2+3,解得a=-34.因此y=-34(x-1)2+3(0≤x≤3).当x=0时,y=2.25,也就是说,水管应长2.25m.【教学说明】教师讲解此例时,可向学生提问:(1)坐标系的原点为什么建立在池中心点?(2)自变量的取值范围为什么是0≤x≤3?(3)设函数解析式有什么诀窍?四、运用新知,深化理解【设计说明】针对本节所学知识,通过几道小题进行演练,巩固所学新知识,并依据学生的完成情况,教师可适时予以查漏补缺.1.抛物线y=-3(x+2)2-4的顶点坐标是,当x 时,函数值y随x的增大而增大.2.若抛物线的对称轴为x=-1,与x轴的一个交点坐标为(1,0),则这条抛物线与x轴的另一个交点是.3.已知二次函数的图象顶点坐标为(-4,3),且经过坐标原点,则这个二次函数的表达式是.4.已知二次函数y=a(x-h)2+k的图象先向左平移2个单位,再向上平移4个单位,得到抛物线y=-12(x+1)2+3.(1)试确定a,h,k的值;(2)指出二次函数y=a(x-h)2+k图象的开口方向,对称轴和顶点坐标.5.将抛物线y=2(x-1)2+3作下列移动,求得到的新抛物线的解析式.(1)向左平移2个单位,再向下平移3个单位;(2)顶点不动,将原抛物线开口方向反向.【教学说明】第1,2题较为简单,可采用抢答形式来处理,第3小题应引导学生设出所求的二次函数表达式为y=a(x-h)2+k的形式,第4、5题为选做题,教师可根据教学实际选择做或不做.五、师生互动,课堂小结1.抛物线y=a(x-h)2+k(a≠0)的特征有哪些?2.如果解抛物线的顶点坐标(或对称轴或最低点等),要想确定该抛物线表达式,如何设出这个表达式更有利于求解呢?【设计及教学说明】问题1侧重于所学知识回顾,而问题2侧重于应用,为后继学习做好铺垫.教学时,教师应予以评讲.1.布置作业:教材习题22.1第5题.2.完成创优作业中本课时练习的“课时作业”部分.前面的几个课时是从最基本的二次函数图象入手开始探索,已初步对二次函数的性质进行了归纳,因此本课时的内容算是对前面内容的小结.所以教学时教师应大胆放手让学生自主归纳与探究,教师给予引导和提示并让学生适时进行练习,以巩固所学,在这一过程中应注意渗透数形结合的思想方法.22.1.4 二次函数y=ax2+bx+c的图象和性质第1课时二次函数y=ax2+bx+c的图象和性质1.能通过配方法把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k的形式,以便确定它的对称轴和顶点坐标;2.会利用对称性画出二次函数的图象,掌握二次函数y=ax2+bx+c(a≠0)的平移规律;3.会用公式确定二次函数y=ax2+bx+c(a≠0)的对称轴和顶点.4.通过思考、探索、尝试与归纳等过程,让学生能主动积极地探索新知.5.经历探求二次函数y=ax2+bx+c的对称轴和顶点坐标的过程,感悟二次函数y=ax2+bx+c与y=ax2的内在联系,体验利用抛物线的对称轴画抛物线的方法,感受数学的对称美.【教学重点】用抛物线的对称轴画二次函数y=ax2+bx+c的图象,通过配方确定抛物线的对称轴和顶点坐标.通过配方法将二次函数的一般形式化为顶点式,探索二次函数y=ax2+bx+c的平移变换.【教学难点】用配方法推导抛物线的对称轴与顶点坐标.一、情境导入,初步认识问题1请说出抛物线y=ax2+k,y=a(x-h)2,y=a(x-h)2+k的开口方向、对称轴和顶点坐标.问题2你知道二次函数y=12x2-6x+21的图象的开口方向,对称轴和顶点坐标吗?【教学说明】问题1设计的目的既是对前面所学知识进行简单的回顾,又为本节知识的学习展示着方法和思路,学生处理起来较为简单,可采用抢答形式来处理.问题2设计的目的在于制造认知冲突,激发学生的求知欲望,学生在处理问题2时可能有些困难,教师适时诱导,引入新课.。

人教版九年级上册数学 22.1.1 二次函数教案1

人教版九年级上册数学   22.1.1  二次函数教案1

22.1.1二次函数1.理解、掌握二次函数的概念和一般形式.2.会利用二次函数的概念解决问题.3.列二次函数表达式解决实际问题.一、情境导入已知长方形窗户的周长为6米,窗户面积为y(米2),窗户宽为x(米),你能写出y 与x之间的函数关系式吗?它是什么函数呢?二、合作探究探究点一:二次函数的有关概念【类型一】二次函数的识别下列函数哪些是二次函数?(1)y=2-x2; (2)y=1x2-1;(3)y=2x(1+4x); (4)y=x2-(1+x)2.解析:(1)是二次函数;(2)1x2-1是分式而不是整式,不符合二次函数的定义式,故y=1x2-1不是二次函数;(3)把y=2x(1+4x)化简为y=8x2+2x,显然是二次函数;(4)y=x2-(1+x)2化简后变为y=-2x-1,它不是二次函数而是一个一次函数.解:二次函数有(1)和(3).方法总结:判定一个函数是否是二次函数常有三个标准:①所表示的函数关系式为整式;②所表示的函数关系式有唯一的自变量;③所含自变量的关系式最高次数为2,且函数关系式中二次项系数不等于0.【类型二】确定二次函数中待定字母的取值如果函数y=(k+2)xk2-2是y关于x的二次函数,则k的值为多少?解析:紧扣二次函数的定义求解.注意易错点为忽视k+2≠0的条件.解:根据题意知⎩⎪⎨⎪⎧k2-2=2,k+2≠0,解得⎩⎪⎨⎪⎧k=±2,k≠-2,∴k=2.方法总结:紧扣定义中的两个特征:①a≠0;②自变量最高次数为2的二次三项式ax2+bx+c.【类型三】求函数值当x=-3时,函数y=2-3x-x2的值为________.解析:把x=-3直接代入函数的表达式得y=2-3×(-3)-(-3)2=2+9-9=2.即函数的值为2.方法总结:求函数值实际上就是求代数式的值.用所给的自变量的值替换函数关系式中的自变量,然后计算,注意运算顺序不要改变.【类型四】确定自变量的取值当x=________时,函数y=x2+5x-5的函数值为1.解析:令y=1,即x2+5x-5=1,解这个一元二次方程得x1=-6,x2=1.即x=-6或1.方法总结:求二次函数自变量的值实际上就是解一元二次方程.直接转化为关于自变量的一元二次方程,通过解方程确定自变量的取值.探究点二:列二次函数的解析式一个正方形的边长是12cm,若从中挖去一个长为2x cm,宽为(x+1)cm的小长方形.剩余部分的面积为y cm2.(1)写出y与x之间的函数关系式,并指出y是x的什么函数?(2)当x的值为2或4时,相应的剩余部分面积是多少?解析:几何图形的面积一般需要画图分析,相关线段必须先用x的代数式表示出来.如图所示.解:(1)y=122-2x(x+1),即y=-2x2-2x+144,∴y是x的二次函数.(2)当x=2或4时,相应的y的值分别为132cm2或104cm2.方法总结:二次函数是刻画现实世界变量之间关系的一种常见的数学模型.许多实际问题的解决,可以通过分析题目中变量之间的关系,建立二次函数模型.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:若设每件降价x元,每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围.解析:根据题意可知:实际商品的利润为(60-x-40),每星期售出商品的数量为(300+20x),则每星期售出商品的利润为y=(60-x-40)(300+20x),化简,注意要求出自变量x的取值范围.解:由题意,得:y=(60-x-40)(300+20x)=(20-x)(300+20x)=-20x2+100x+6000,自变量x的取值范围为0≤x<20.方法总结:销售利润=单位商品利润×销售数量;商品利润=售价-进价.三、板书设计教学过程中,强调判断一个函数为二次函数的三个条件,可对比已学过的一次函数,进一步巩固函数的有关知识.。

人教版九年级数学上册22.1.1《二次函数》教学设计

人教版九年级数学上册22.1.1《二次函数》教学设计

人教版九年级数学上册22.1.1《二次函数》教学设计一. 教材分析人教版九年级数学上册22.1.1《二次函数》是整个初中数学的重要内容,它不仅巩固了之前学习的函数知识,还为高中阶段的数学学习奠定了基础。

这一节主要介绍二次函数的定义、性质和图象。

教材通过实例引入二次函数,让学生从实际问题中感受到二次函数的存在,进而引导学生去探究、理解二次函数的性质。

二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念、性质有所了解。

但是,二次函数相对于一次函数和反比例函数,其性质更为复杂,图象也更为抽象。

因此,学生在学习本节内容时可能会感到困惑。

另外,学生的数学思维能力和探究能力参差不齐,需要教师在教学中进行针对性的引导和帮助。

三. 教学目标1.理解二次函数的定义,掌握二次函数的一般形式。

2.了解二次函数的性质,包括对称轴、顶点、开口方向等。

3.能够绘制二次函数的图象,从图象中观察和理解二次函数的性质。

4.能够运用二次函数解决实际问题,提高解决问题的能力。

四. 教学重难点1.二次函数的定义和一般形式。

2.二次函数的性质,尤其是对称轴、顶点、开口方向等。

3.二次函数图象的绘制和分析。

4.运用二次函数解决实际问题。

五. 教学方法1.情境教学法:通过实例引入二次函数,让学生从实际问题中感受到二次函数的存在。

2.探究教学法:引导学生通过小组合作、讨论的方式,探究二次函数的性质。

3.数形结合教学法:利用图象展示二次函数的性质,让学生从图象中观察和理解二次函数。

4.实践教学法:让学生通过解决实际问题,运用二次函数的知识。

六. 教学准备1.教学课件:制作课件,展示二次函数的图象和性质。

2.实例:准备一些实际问题,用于引入二次函数。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个实际问题,引入二次函数的概念。

例如:一个物体从地面抛出,其高度与时间的关系可以表示为一个二次函数。

让学生思考:这个二次函数是什么样子?它的图象是什么样的?2.呈现(10分钟)利用课件,呈现二次函数的一般形式和图象。

22.1 二次函数的图象和性质 教案 【新人教版九年级上册数学】

22.1 二次函数的图象和性质 教案  【新人教版九年级上册数学】

22.1 二次函数的图象和性质教学目标1. 理解二次函数的概念,掌握二次函数的形式,通过对实际问题的分析,体会二次函数的意义.2. 会用描点法画出二次函数的图象,通过图象了解二次函数的性质.3. 会用配方法将数字系数的二次函数的表达式化为y=a(x-h)2+k的形式,并能由此得到二次函数图象的顶点坐标,能说出图象的开口方向,画出图象的对称轴,并能解决简单的实际问题.4. 了解二次函数y=ax2,y=a(x-h)2,y=a(x-h)2+k的图象之间的关系.会确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标.能够从图象的平移变换的角度认识二次函数y=a(x-h)2+k的图象特征.5. 让学生从实际问题情境中经历探索、分析和建立两个变量之间的二次函数关系模型的过程,发展概括及分析问题、解次问题的能力.教学重点1. 了解二次函数y=ax2,y=a(x-h)2,y=a(x-h)2+k的图象之间的关系.会确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标.2. 从图象的平移变换的角度认识二次函数y=a(x-h)2+k的图象特征.教学难点1. 了解二次函数y=ax2,y=a(x-h)2,y=a(x-h)2+k的图象之间的关系.2. 理解图象的平移和变换的理解和确定.课时安排6课时12教案A第1课时教学内容22.1.1 二次函数. 教学目标1.理解二次函数的概念,掌握二次函数的形式.2.会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围. 3.让学生从实际问题情境中经历探索、分析和建立两个变量之间的二次函数关系模型的过程,发展概括及分析问题、解次问题的能力.4.通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来源于生活,服务于生活的辩证观点.教学重点理解二次函数y =ax 2+bx +c (a 、b 、c )是常数,且a ≠0的概念. 教学难点教材中涉及的实际问题有的较为复杂,要求学生有较强的抽象概括能力. 教学过程一、导入新课正方体的六个面是全等的正方形(下图),设正方体的棱长为x ,表面积为y .如果改变正方体的棱长x ,那么正方体的表面积y 会随之改变,y 与x 之间有什么关系?教师引导学生思考问题,列出方程.导入新课的教学. 二、新课教学显然,对于x 的每一个值,y 都有一个对应值,即y 是x 的函数,它们的具体关系可以表示为y =6x 2.问题1 n 个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m 与球队数n 有什么关系?每个队要与其他(n -1)个球队各比赛一场,甲队对乙队的比赛与乙队对甲队的比赛是同一场比赛,所以比赛的场次数m =21n (n -1), 即3m =21n 2-21n . 这个函数解析式表示比赛的场次数m 与球队数n 的关系,对于n 的每一个值,m 都有一个对应值,即m 是n 的函数.问题2 某种产品现在的年产量是20 t ,计划今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产量y 将随计划所定的x 的值而确定,y 与x 之间的关系应怎样表示?这种产品的原产量是20 t ,一年后的产量是20(1+x ) t ,再经过一年后的产量是20(1+x )(1+x ) t ,即两年后的产量y =20(1+x )2, 即y =20 x +40x +40.这个函数解析式表示了两年后的产量y 与计划增产的倍数x 之间的关系,对于x 的每一个值,y 都有一个对应值,即y 是x 的函数.思考:函数y =6x 2、m =21n 2-21n 、y =20 x +40x +40有什么共同特点? 在上面的问题中,函数都是用自变量的二次式表示的.一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.其中,x 是自变量,a ,b ,c 分别是函数解析式的二次项系数、一次项系数和常数项.三、巩固练习教材第29页练习1、2. 四、课堂小结今天你学习了什么?二次函数的概念是什么? 五、布置作业 习题22.1 第1、2题.第2课时教学内容22.1.2 二次函数y =ax 2的图象和性质. 教学目标1.会用描点法画出形如y =ax 2的二次函数图象,了解抛物线的有关概念. 2.通过观察图象能说出二次函数y =ax 2的图象和性质.3.在探究二次函数y =ax 2的图象和性质的过程中,进一步体会研究函数图象和性质的基本方法和数形结合的思想.教学重点二次函数y =ax 2图象的描绘和图象特征的归纳.4 教学难点选择适当的自变量的值和相应的函数值来画函数图象,该过程较为复杂.教学过程一、导入新课1.同学们可以回想一下,一次函数的性质是如何研究的?先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质.2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么?可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象.3.一次函数的图象是什么?二次函数的图象是什么?我们已经学习了一次函数的概念,研究了它的图象和性质.像研究一次函数一样,现在我们来研究二次函数的图象和性质.二、新课教学1.二次函数y=x2的图象.教师指导学生列表,然后描点、画图,得出二次函数y=x2的图象,然后让学生归纳二次函数y=x2的图象的性质和特点.(1)列表:在x的取值范围内列出函数的对应值表.x…-3 -2 -1 0 1 2 3 …y=x2…9 4 1 0 1 4 9 …(2)描点.在直角坐标系中,用表里各组对应值作为点的坐标,在平面直角坐标系中描点.(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示.(4)归纳总结.提问:观察这个函数的图象,它有什么特点?。

二次函数(导学案)九年级数学上册同步备课系列(人教版)(解析版)

 二次函数(导学案)九年级数学上册同步备课系列(人教版)(解析版)

22.1.1二次函数学习目标:1)从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,经一步体验如何用数学的方法去描述变量之间的数量关系。

2)理解二次函数的概念,掌握二次函数的形式。

学习重点:二次函数的概念和解析式。

学习难点:用数学的方法去描述变量之间的数量关系。

1)学习过程一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.目前,我们已经学习了哪种类型的函数?问题一正方体的六个面是全等的正方形,设正方体的棱长为a,表面积为S,则S与a之间有什么关系?问题二n个球队参加比赛,每两队之间进行一场比赛。

比赛的场次数m与球队数有什么关系?问题三某工厂一种产品现在的年产量是20吨,计划今后两年增加产量。

如果每一年都比上一年的产量增加x倍,那么两年后,这种产品的产量y与x之间的关系应怎样表示?观察这三个式子你发现了什么?等号左边是函数,右边是关于自变量x的二次式,x的最高次数是22)归纳小结一般地,形如�=ax2+푏 +�(a、b、c是常数,a≠0)的函数叫做二次函数。

二次函数的特殊形式:1)当b=0时,y=ax2+c2)当c=0时,y=ax2+bx3)当b=0,c=0时,y=ax23)自我测试(基础)1.一台机器原价100万元,若每年的折旧率是x,两年后这台机器约为y万元,则y与x 的函数关系式为()A.y=100(1﹣x)B.y=100﹣x2C.y=100(1+x)2D.y=100(1﹣x)2【详解】解:根据题意知y=100(1﹣x)2,故选:D.2.线段AB=5.动点以每秒1个单位长度的速度从点出发,沿线段AB运动至点B,以线段AP为边作正方形APCD,线段PB长为半径作圆.设点的运动时间为t,正方形APCD周长为y,⊙B的面积为S,则y与t,S与t满足的函数关系分别是()A.正比例函数关系,一次函数关系B.一次函数关系,正比例函数关系C.正比例函数关系,二次函数关系D.反比例函数关系,二次函数关系【详解】解:依题意:AP=t,BP=5-t,故y=4t,S=(5-t)2故选择:C3.下列函数表达式中,一定为二次函数的是()A.y=2x﹣5B.y=ax2+bx+c C.h=t22D.y=x2+1x【详解】解:A.是一次函数,故此选项错误;B.当a≠0时,是二次函数,故此选项错误;C.是二次函数,故此选项正确;D.含有分式,不是二次函数,故此选项错误;故选:C.4.对于y=ax2+bx+c,有以下四种说法,其中正确的是()A.当b=0时,二次函数是y=ax2+c B.当c=0时,二次函数是y=ax2+bxC.当a=0时,一次函数是y=bx+c D.以上说法都不对【详解】A.当b=0,a≠0时.二次函数是y=ax2+c,故此选项错误;B.当c=0,a≠0时,二次函数是y=ax2+bx,故此选项错误;C.当a=0,b≠0时.一次函数是y=bx+c,故此选项错误;D.以上说法都不对,故此选项正确.故选D.5.设a,b,c分别是二次函数y=﹣x2+3的二次项系数、一次项系数、常数项,则()A.a=﹣1,b=3,c=0B.a=﹣1,b=0,c=3C.a=﹣1,b=3,c=3D.a=1,b=0,c=3【详解】解:二次函数y=﹣x2+3的二次项系数是a=﹣1,一次项系数是b=0,常数项是c=3;故选:B.6.y=mx m2+1是二次函数,则m的值是()A.m≠0B.m=±1C.m=1D.m=﹣1【详解】解:∵y=mx m2+1是二次函数,∴m≠0且m2+1=2,解得:m=±1.故选:B.7.已知函数y=m−2x m2−2+2x−7是二次函数,则m的值为()A.±2B.2C.-2D.m为全体实数【详解】解:∵函数y=m−2x m2−2+2x−7是二次函数∴m-2≠0,m2−2=2,解得:m=-2.故选:C.4)巩固练习(提高)8.一个二次函数y=(k−1)x k2−3k+4+2x−1.(1)求k的值.(2)求当x=3时,y的值?【详解】解:(1)依题意有k2−3k+4=2k−1≠0,解得:k=2,∴k的值为2;(2)把k=2代入函数解析式中得:y=x2+2x−1,当x=3时,y=14,∴y的值为14.5)本节课的收获、体会及存在问题。

22.1.1二次函数-教案

22.1.1二次函数-教案

人教版数学九年级上22.1.1二次函数第一课时教学设计课题22.1.1二次函数单元第二十一章学科数学年级九年级上学习目标情感态度和价值观目标体会数学与生活的联系,锻炼学生的理性思维,体会通过探究学习新知识的乐趣。

能力目标经历探索具体问题中数量关系和变化规律的过程,体会二次函数是刻画现实世界的一个有效的数学模型。

知识目标 1.结合具体情境体会二次函数的意义,理解二次函数的有关概念;2.能够表示简单变量之间的二次函数关系,能应用二次函数的相关知识解决简单的问题。

重点将简单的实际问题转化为二次函数的模型. 理解二次函数的有关概念,能应用二次函数的相关知识解决简单的问题。

难点将简单的实际问题转化为二次函数的模型。

学法自主思考、协作讨论、类比学习法教法引导发现法、合作交流、讨论以及讲练结合教学过程教学环节教师活动学生活动设计意图导入新课一、情境引入回忆:1.什么是函数?2.我们学过哪些函数?出示章前图,学生观察。

从喷头飞出的水珠,在空中走过一条美丽曲线,你想知道在这条曲线的各个位置上,水珠的竖直高度h与它距离喷头的水平距离x之间有什么关系吗?通过本章的学习,我们就可解开这一疑团。

引发学生兴趣,导入本课主题。

通过图片联系生活,从生活中发现问题,启发思考。

讲授新课二、探究新知【例题1】正方体的六个面是全等的正方形,如果正方体形的棱长为x,表面积为y,请你写出y与x的关系式。

分析:正方体的六个面是全等的正方形,设正方体的棱长为x,表面积为y.显然,对于x的每一个值,y都有一个对应值,即y是x的函数,它们的具体关系可以表示为y=6x2. ①【例题2】n 个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队数n有什么关系?分析:每个队要与其他(n-1)支球队各比赛一场,甲队对乙队的比赛与乙队对甲队的比赛是同一场比赛,所以比赛的场次数是y=1(1)2n n ②【例题3】某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x 之间的关系应怎样表示?分析:这种产品的原产量是20件,一年后的产量是件,再经过一年后的产量是______件,即两年后的产量为_________,教师出示问题,并给予一定的分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题: 22.1.1二次函数
一、 学习目标
1、经历对实际问题情境分析确定二次函数表达式的过程,理解并掌握二次例函数的概念
2、能判断一个给定的函数是否为二次例函数
3、能根据实际问题中的条件确定二次例函数的解析式。

二、教材导学
回忆一下什么是正比例函数、一次函数、反比例函数?它们的一般形式是怎样的?
1.设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值, y 都有唯一的值与它对应,那么就说y 是x 的 ,x 叫做 。

2.我们已经学过的函数有:一次函数、反比例函数,其中 的图像是直线, 的图像是双曲线。

我们得到它们图像的方法和步骤是:① 、② 、③ 。

3. 形如___________y =,( )的函数是一次函数,当______0=时,它是 函数,图像是经过 的直线;形如k y x
=( )的函数是 函数,它的表达式还可以写成:① ② 。

三、引领学习
知识点1:二次函数定义
问题1: 正方体的六个面是全等的正方形,如果正方形的棱长为x ,表面积为y , 写出y 与x 的关系。

问题2: n 边形的对角线数d 与边数n 之间有怎样的关系?

问题3: 某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的数量y 将随计划所定的x 的值而定,y 与x 之间的关系怎样表示?

问题4:观察以上三个问题所写出来的三个函数关系式有什么特点?
经化简后都具有 的形式。

问题5:什么是二次函数?
一般地,形如____________________________的函数,叫做二次函数。

其中x 是________,a 是__________,b 是___________,c 是_____________.
温馨提示:函数y=ax ²+bx+c ,当a 、b 、c 满足什么条件时,
(1)它是二次函数?
(2)它是一次函数?
(3)它是正比例函数?
知识点2:判断一个给定的函数是否为二次例函数
例1:下列函数表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数.
(1) y =1-3x 2 (2)y =3x 2+2x (3)y =x (x -5)+2(4)y =x +1x
温馨提示:有括号,要化简,再判断!
知识点3:根据实际问题中的条件确定二次例函数的解析式。

例2:用16m 长的篱笆围成长方形圈养小兔,圈的面积y(㎡)与长方形的长x(m)之间的函数关系式为 。

分析:在这个问题中,可设长方形生物园的长为x 米,则宽为 米,如果将面积记为y 平方米,那么y 与x 之间的函数关系式为y = ,整理为y = .
22.1.1二次函数 答案:
二、教材导学
1.函数,自变量
2.一次函数;反比例函数;列表;描点;连线
3.kx+b;k ≠0;b;正比例;原点; k ≠0;反比例;xy =k;y =kx 1-
三、引领学习
知识点1:
问题1:y=6x ²
问题2:d=
(3)2
n n -=12n ²-32n 问题3:y=20(1+x)²=20x ²+40x+20
问题4: y=ax ²+bx+c
问题4: y=ax ²+bx+c
问题5: y=ax ²+bx+c(a,b,c 是常数,a ≠0);自变量;二次项系数;一次项系数;常数项 温馨提示:(1)a ≠0 (2)a =0 b ≠0 (3)a =c=0
知识点2:
例1:(1)是;-3;0;1 (2)是;3;2;0 (3)是;1;-5;2 (4)不是
知识点3:
例2:y=-x ²+8x; 8-x; y=x(8-x); y=-x ²+8x。

相关文档
最新文档