电力牵引供电系统概述知识
电气化铁路牵引供电基本知识

G O
W2
W3平衡绕组 OCS
R
数学关系:非接地相O的阻抗: ZO=( )ZG 非接地相的两端增加了两个对 3 +1 称的外 移绕组——平衡绕组 W3:W3=( )/2W2 容量利用率接近100%。
SCOTTE结线
四、牵引变压器结线
• • • • • • • • • • • • • • • 优点:SCOTTE变压器把三相对称电压变换为两相对称电压(相位相差 900);当两臂负荷电流相等(相位相差900)时,原边三相电流对 称——不含负序电流。 每所设两台,一主一备。 SCOTTE变压器的两个输出电压可以根据需要取值:如适应AT供电方 式,取55kV,两个输出电压分别接两个自耦变压器的两端点,中间抽 头接地网和钢轨,获得2*27.5kV电压。 但55kV绕组无中间抽头,用于AT供电方式时,应另设2台AT变压器。 输出容量与额定容量接近相等,容量利用率接近1。 可采用逆SCOTTE变压器产生三相对称电压供牵引变电所的自用电。 缺点:绕组需全绝缘,变压器造价高。 主接线复杂,设备多,工程投资大。 存在中性点不能引出问题:原边接点0随负荷变化而产生漂移,漂移 引起各绕组电压不平衡,加重绕组绝缘负担。故只能用于中性点不接 地系统。容量利用率接近100%。
电气化铁路牵引供电基本知识
第一篇 电力牵引供变电系统
概述一
概述二
总体目录
• • • • • • • • • • • •
•
一、电力系统 二、牵引变电所的一次供电方式 三、牵引变电所的引入方式 四、牵引变压器结线 五、牵引变电电气主接线 六、电气化铁路的供电方式 七、接触网的供电方式 八、牵引变电所防雷、回流及接地 九、负序的影响及对策 十、并联电容无功功率补偿 十一、谐波的影响及对策 十二、牵引变电所的电气设备
电气化铁路特点和发展概况

此外,在经济效益上,速度越快的高铁,其维 护、折旧成本越大,资金回收越困难。“可以 预见高铁将全面亏损。”董焰告诉记者,“不 仅是建设费过高,运营费用也是主要原因。时 速350公里的列车耗电量很厉害,是超比例增 长的。此外劳务费、折旧费、债务利息等,按 照现在的票价和载客量,肯定就是全面亏损。” 此外,众多二、三线城市需不需要建设大量高 铁,建设资金从哪里来,也是学者关注的话题。 赵坚对《华夏时报》表示:“高铁已经绑架了 国家财政。”
1985年京秦线; 20世纪90年代有10条线共计2795.76Km电气 化铁路建成交付运营。 2008年8月1日京津高速电气化铁路开通运营。 2009年4月1日合武高速电气化铁路开通运 营。 2009年12月26日武广高速电气化铁路开通运营。 2010年2月6日郑西高速电气化铁路开通运营。 2011年7月1日京泸高速电气化铁路开通运营。 我国电气化铁路进入了高速电气化时代。
电气化铁路的供电制式
电气化铁路的供电制式有工频单相交流 2 16 电(50HZ)、低频单相交流电( 3 HZ )、 三相工频交流电、直流电。 我国电气化铁路采用工频单相交流制式 (50HZ)电力牵引。 我国城市轨道交通供电系统采用直流制 式。
第一节 电力牵引的特点及发展概况
一.电力牵引的特点 使用的是二次能源,与国家电网连接, 能源有保障 。 不污染环境。 能综合利用能源。 安全性高。 一次性投资较大。
谢谢!!
和谐系列货运电力机车。分为每轴 1200KW的和谐1、2、3型(1、2型为 八轴,3型为六轴),总功率7200 kW。 可在线路坡度12‰以下的路段,牵引 5000吨至5500吨货物列车。 以及六轴,每轴1600KW的和谐1B、 2B、3B两代9600KW大功率机车。
牵引供电系统名词解释

牵引供电系统名词解释
牵引供电系统是指为城市轨道交通、铁路、有轨电车等交通运输工具提供动力能源的电气系统。
它的主要功能是向行驶中的车辆提供电力,使其具有牵引和制动能力,同时也为车辆提供辅助电源。
在牵引供电系统中,电源为交流或直流电源,通过接触网、第三轨等设备向车辆传输电能。
牵引供电系统通常包括以下主要组成部分:
1.接触网:接触网是铁路牵引供电系统的主要组成部分,它用于提供电力给行驶中的列车。
接触网一般由钢轨、导线和支架组成,通过支架固定在正常的高度和位置。
2.集电装置:集电装置是车辆与接触网之间传递电能的设备,它通过对接触网的接触,将电能传输到车辆上。
3.变电所:变电所是牵引供电系统的电源设备,它将电网输送的高压电流转换为适合运输工具使用的低压电流,并将其输送到接触网上。
4.牵引变流器:牵引变流器是一种用于控制电力输出的电气设备,它将接收到的电能转换为适合电动车辆使用的电流和电压。
5.辅助电源:辅助电源是为车辆提供照明、空调、信号等设备供电的电源,也可以为车辆的启动和停车提供电能。
在牵引供电系统中,各个组成部分之间的协调和运行非常重要,它们共同保证了交通运输工具的牵引和制动能力,保障了交通运输的安全和稳定。
电力牵引供电系统概述知识共83页文档

谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
电力牵引供电系统概述知识
1、战鼓一响,法律无声。——英国 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
牵引供电总结

1、.牵引供电系统的组成:牵引变电所 ,牵引供电回路 ,开闭所,分区所,自耦变压器站,牵引网(供电线,接触网,回流线,分相绝缘器,分段绝缘器,供电分区)牵引变电所:在牵引变电所内装设有牵引变压器,将电力系统110kV 或220kV 的高压降低为27.5kV 或2×27.5kV(自耦变压器供电方式),以单相电馈送给牵引网,供电力机车使用。
分区所:接触网通常在两相邻牵引变电所的中央断开,将相邻的牵引变电所中间的两个供电臂分为两个供电分区没在中央断开出设置开关设备可以将两个供电分区联通,此处的开关设备称为分区所。
分区所可以使相邻的接触网供电区段实现并联或单独工作,可以增加供电的灵活性和运行的可靠性。
自耦变压器站:在沿线每隔10-15km 设置一台自耦变压器,用于自耦变压器供电方式。
2、供电电流制:直流制:600v ,750v ,1500v ,3000v 。
低频交流制:15kv/16.67hz ,11kv 或12.5kv/25hz ;单相工频交流制:27.5kv/50hz 。
3、牵引网的供电方式:直接供电方式(DF ),直接加回流供电方式(DN ),自耦变压器供电方式(AT ),吸流变压器供电方式(BT ),CC 供电方式。
DF :牵引变电所将电能通过馈线传输到接触网,接触网通过受电弓连接到变压器仪一次测,然后通过钢轨流回变电所。
特点:供电回路的构成最简单,工程投资、运营成本和维修工作量都少;但对邻近通信线路的干扰影响严重,钢轨电位比其它供电方式要高。
DN :在直接供电方式的结构上增设与轨道并联的架空回流线,就成为带回流线的直接供电方式,特点:原来流经轨道、大地的回流,一部分改由架空回流线流回牵引变电所,其方向与接触网中馈电电流方向相反,架空回流线与接触网距离较近,因此,相当于对邻近通信线路增加了屏蔽效果。
牵引网阻抗和轨道电位都有所降低。
AT:自耦变压器供电方式,简称AT 供电方式。
特点:它无需提高牵引网的绝缘水平及可将供电电压提高一倍。
牵引供电系统简介

牵引供电系统简介:将电能从电力系统传送给电力机车的电力装置的总称叫电气化铁路的供电系统,又称牵引供电系统,主要由牵引变电所和接触网两大部分组成。
牵引变电所将电力系统输电线路电压从110kV(或220kV)降到27.5kV,经馈电线将电能送至接触网;接触网沿铁路上空架设,电力机车升弓后便可从其取得电能,用以牵引列车。
牵引变电所所在地的接触网设有分相绝缘装置,两相邻牵引变电所之间设有分区亭,接触网在此也相应设有分相绝缘装置。
牵引变电所至分区亭之间的接触网(含馈电线)称供电臂。
牵引供电回路是由牵引变电所——馈电线——接触网——电力机车——钢轨——回流联接——(牵引变电所)接地网组成的闭合回路,其中流通的电流称牵引电流,闭合或断开牵引供电回路会产生强烈的电弧,处理不当会造成严重的后果。
通常将接触网、钢轨回路(包括大地)、馈电线和回流线统称为牵引网。
牵引供电设备的检修运行由供电段负责,牵引供电系统的运行调度则由供电调度负责。
供电调度通常设在铁路局调度所。
牵引供电系统供电示意图如下所示:二、牵引变电所、分区所、开闭所牵引变电所:牵引变电所的任务是将电力系统三相电压降低,同时以单相方式馈出。
降低电压是由牵引变压器来实现的,将三相变为单相是通过变电所的电气接线来达到的。
牵引变压器(主变)是一种特殊电压等级的电力变压器,应满足牵引负荷变化剧烈、外部短路频繁的要求,是牵引变电所的“心脏”。
我国牵引变压器采用三相、三相——二相和单相三种类型,因而牵引变电所也分为三相、三相——二相和单相三类。
随着技术水平的提高,我国干线电气化铁路已推广使用集中监视及控制的远动系统,牵引变电所将逐步实现无人值班,直接由供电调度实行遥控运行。
分区所:分区所设置在两个变电所中间,作用有三:提高供电质量、供电分段、越区供电。
•开闭所:一般设置在大型站场附近,进线由变电所或接触网引入,由开关馈出多个供电线路向多个供电设备供电。
作用是增强供电的灵活性,便于供电设备的运行及检修,便于行车组织,缩小供电事故及故障范围。
铁路牵引供电系统基础知识

15
三、牵引供电方式
16
直接供电方式
带回流线的直接供电方式
17
直供方式
直供方式,在牵引网中不加特殊防护措施,一般只在通信线路少的山区采用,虽然有结构 简单,设备少,造价低,施工及运营维修方便等优点。但接触网对邻近通信线路干扰较大, 所以一般不采用
18
带回流线的直接供电方式(DN供电方式)
供电系统概述
一、 电力系统与铁路供电系统组成
1、发电厂 2、电力网 3、电能用户
电力 系统
铁路供电 系统
1、牵引供电系统组成 2、铁路变配电系统
供电示意图
牵引供电系统
3
一、牵引供电系统工作原理
4
二、牵引供电系统组成
牵引 供电 系统
5
牵引变电所
牵引变电所的主要任务是将电力系统输 送来高等级的三相交流电变换为27.5 (或55)kV单相电,然后以单相供电 方式经馈电线送至接触网上。牵引变电 所通常设置两台(四台)变压器,采用 双电源供电。变压器的接线方式目前采 用的有V/X接线,单相V/V接线,纯单相 接线
6
牵引网
牵引网是由馈电线 (供电线)、接触网、 钢轨、大地和回流线 组成的供电系统,完 成对电力机车的送电 任务。
馈电线:连接牵引变电所和接触网的导线和电缆。它把牵引变电所 主变压器二次侧27.5KV的电压输送到接触网。
接触网:一种特殊的输电线,架设在铁路上方,机车受电弓与其磨 擦受电。
钢轨、大地和回流线:牵引变电所处的横向回流线,它将轨或与轨 平行的其它导线与牵引变压器指定端子相联。又能大大降低牵引负 荷电流对通信的干扰。
AT供电方式用于重载、高速需大电流的牵引供电系统。馈线电流只有直 供方式的一半。
电力牵引供电系统

多,继电保护复杂,会使成本增加。
• 双侧供电 电源来自电力系统的两个地区变 电所,给铁路供电的输电线是联络这两个 地区变电所的道路。根据可靠性的要求及 实际情况,双侧供电可分为图3的双路输电 线和单路输电线两种类型。但不论哪种类 型,各路输电线的容量应不小于相关牵引 变电所容量之和。单路输电线方式一次侧 进出开关少,投资也少,供电可靠性不及 双路方式,但一输电线或一电源分别故障 仍不会导致牵引变电所失电。
牵引变电所
接触网
• 接触网是一种悬挂在电气化铁道钢轨上方 并和轨顶保持一定距离的链型或单导线的 输电网。电力机车的受电弓和接触网滑动 接触取得电能。
馈电线
• 馈电线是联接牵引变电所和接触网的导线。 它把牵引变电所变换完备的牵引用电能输 送给接触网。馈电线大都采用大截面的钢 芯铝绞线。
轨道
复线环状供电方式
• 牵引变电所同侧的上、下行牵引网由同相 牵引母线供电,在供电臂末端将上、下行 牵引网联通,可构成环状供电方式
• 复线牵引网环状供电方式
复线全并联供电方式
• 每隔数百米将上、下行接触网进行死连接, 便于充分利用接触网导线截面的供电方式
• 这种方式的网内电压降和电能损失较小, 但上、下行牵引网在电气上无法分开,发 生短路事故时的影响范围较大。
• 习惯上将馈电线、接触网、钢轨、回流线 统称为牵引网。
分区亭(SP)
• 分区亭设于两个牵引变电所的中间,可使相邻的 接触网供电区段(同一供电臂的上、下行或两相邻 变电所的两供电臂)
•
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二 电力系统的组成
发电厂
电力网
电力用户
1. 发电厂
发电厂是实现把其他形式的能源转化成电能的场所。现 在我国的发电厂主要有火力发电厂、水力发电厂、核能发电 厂等。此外,还有利用地热资源、再生资源(太阳光能,太 阳热,风力,潮汐,波浪,海流等)其他形式的能源进行发 电。
1、火力发电厂 2、水利发电厂 3、核能发电厂 4、地热发电厂 5、潮汐发电厂 6、风力发电厂:已接近常规电厂的造价,上网电价可降到4角左右。 7、太阳能发电厂:高耗能、低效率。
Ic
UL 10
➢Ic—中性点不接地系统地单相接地电容电流(A)
➢U—电网额定线电压(Kv)
➢L—同一电压U具有电气联系的架空线路或电缆
线路总长度(km)
返回
习题
1、中性点不接地的电力系统发生单相接 地故障时,各相对地电压有什么变化? 单相接地电流有什么变化?性质如何?
• 1、中性点不接地的电力系统发生单相接 地故障时,各相对地电压有什么变化? 单相接地电流有什么变化?性质如何?
电力系统还包括保证其安全可靠运行的继电保护装置、 安全自动装置、调度自动化系统和电力通信等相应的辅助系 统(一般称为二次系统)。
图1 电力系统示意图
380V/220V
火力发电厂
110kV 220kV 330kV 500kV
二次电压变电站
变压器台 10kV
10kV
35kV
220V
住宅
工厂
一次降压变电站
➢形成短路→危害大→装设继电保护→跳闸切除故障(供电可 靠性降低),避免接地点的电弧持续。
结论
➢优点: 1、不外加设备即可消弧 2、降低电网对地绝缘,节省造价
➢缺点: 1、供电可靠性降低 改进:装自动重合闸装置、 加备用电源 2、电流很大且单相磁场对弱电干扰 改进: 中性点经电抗器接地 、仅部分中性点接地 3、不产生过电压,设备绝缘水平低20%,造价低。
• 配电网是将电能从枢纽变电站直接分配到用户区或用户的 电网,它的作用是将电力分配到配电变电站后再向用户供 电,也有一部分电力不经配电变电站,直接分配到大用户, 由大用户的配电装置进行配电。
(1) 输电线路
电力输送设备是由输电线路、变电站和配电线路等组成。 输送电能通常采用三相三线制交流输电方式。
发电机基本工作原理
2. 电力网
电力系统中连接发电厂和用户的中间环节称为电力网, 它由各种电压等级的输配电线路和变电站组成。电力网按其 功能可分为输电网和配电网。
输电网是电力系统的主网,它是由35kV及以上的输电线 和变电站组成
配电网是由10kV及其以下的配电线路和配电变压器组成
就我国目前绝大多数电网来说,高压电网指:110KV, 220KV电网;超高压电网指330KV,500KV和750KV电网。特 高压电网指的是以1000KV输电网为骨干网架,超高压输电 网和高压输电网以及特高压直流输电(正负800KV),高 压直流输电和配电网构成的现代化大电网。
3、过补偿:IL>IC 即1/ωL>3ωC 接地点为为感性电流 采用
➢ 注意:电感电流数值不能过大≯10A
中性点经消弧线圈接地系统 U相金属性接地
电压变化特点: ➢故障相对地电压变为零 ➢非故障相对地电压升高 3 倍 ➢系统各相对地的绝缘水平也按线电压考虑
3 消弧线圈
1、消弧线圈结构特点:
①为了保持补偿电流与电压之间的线性关系,采用滞气隙铁芯
一 中性点不接地系统
一 中性点不接地系统
1 正常运行情况
⒈简化等值电路
图2-1 正常运行时的中性点不接地的电力系统 (a)电路图 (b)相量图
假设条件
C—各相对比地之间是空气层,空气是绝缘介质, 组成分散电容:图2-1 ➢为了方便讨论,认为: 1、三相系统对称 2、对地分散电容用集中电容表示,相间电容不予考虑 3、当导线经过完全换位后,Cu=Cv=Cw=C
中性点经消弧线圈接地运行方式
中性点直接接地运行方式
前两种接地系统统称为:小接地电流系统,
后一种接地系统又称为:大接地电流系统。
3、分析中性点运行方式的目的:运行方式的不同会影响运行的 可靠性、设备的绝缘、通信的干扰、继电保护等
目录 一 中性点不接地系统 二 中性点经消弧线圈接地系统 三 中性点直接接地系统 四 中性点不同接地方式的比较和应用范围
1 消弧线圈的工作原理
1、正常运行时: 消弧线圈不起作用 ➢ 中性点对地电位为零:UN=0 ➢ 消弧线圈中无电流:IL=0 ➢ 流过地中的电容电流为零:IC=0
2、单相接地时:
➢
中性点电位升高为相电压:U• N
•
U C
➢
消弧线圈中出现感性电流
•
I
L:与
相I• c 差1800
•
➢ 流过接地点电流:I L+
(I• c相互抵消)
→实现补偿
2 补偿方式及选用
1、全补偿:IL=IC 即1/ωL=3ωC
接地点电流为零
不采用
➢ 缺点:XL=Xc,网络容易因不对称形成串联谐振过电压危及绝缘
2、欠补偿:IL<IC 即1/ωL<3ωC 接地点为容性电流 少采用
➢ 缺点:易发展成为全补偿方式,切除线路或频率下降可能谐振。
• 答:故障相电压等于0,非故障相电压升
高 3倍。单相接地电流为一相对地电容
电流的3倍,为容性电流。
• 2、单相接地时接地电流可能产生的危 害?
2、单相接地时接地电流可能产 生的危害?
• 单相接地电流为一相对地电容电流
的3倍,单相接地时的接地电流将 在故障点形成电弧。当出现稳定 电弧时可能烧坏电气设备,或引 起两相或三相短路。
(3) 配电线路
配电的作用是将电能分配到各类用户。常用的配电电压 有10kV或6kV高压和380/220V低压。由10kV或6kV 高压供电的用户称为高压用户。由380/220V低压供电的 用户称为低压用户。
低压配电线路是指经配电变压器,将高压10kV降低到 380/220V等级的线路。
三 用户
我们将这个由发电、送电、变电、配电和用电五个环节 组成的“整体”称为电力系统。
一 概述
电力系统是由发电厂、输电网、配电网和电力用户组成 的整体,是将一次能源转换成电能并输送和分配到用户的一 个统一系统。
输电网和配电网统称为电网,是电力系统的重要组成部 分。发电厂将一次能源转换成电能,经过电网将电能输送和 分配到电力用户的用电设备,从而完成电能从生产到使用的 整个过程。
第一章 电力牵引供电系统概述
• 1.1 电力牵引特点及发展概况(略) • 1.2 电力系统简介 • 1.3 三相电力系统的中性点运行方式 • 1.4 牵引供变电系统的组成 • 1.5 牵引供电方式
1.2 电力系统简介
一 概述
由于电能不能大量储存,电能的生产、传输、分配和使 用就必须在同一时间内完成。这就需要将发电厂发出的电能 通过输电线路、配电线路和变电站配送,将发电厂和用电设 备连接在一起有机地联成一个“整体”。
返回
中性点经小阻抗(小电阻或电抗器)接地
着眼点是 为了增大 零序电抗, 以限制单 相短路电 流
四 中性点不同接地方式的比较和 应用范围
1 中性点不同接地方式的比较
1、供电可靠性 小接地系统优先
经消弧线圈接地>不接地>直接接地
2、过电压与绝缘水平 大接地系统优先 大接地→相电压 小接地→线电压
3、继电保护
电力网按电压等级分为:
低压电网——电压1KV以下 中压员网——电压1-10KV 高压电网——电压高于10KV,低于330KV 超高压网——电压高于330KV,低于750KV 特高压网——电压1000KV及其以上
• 输电网是电力系统中最高电压等级的电网,是电力系统中 的主要网络(简称主网),起到电力系统骨架的作用,所 以又可称为网架。在一个现代电力系统中既有超高压交流 输电,又有超高压直流输电。这种输电系统通常称为交、 直流混合输电系统。
I
' C.
A
IC' .B
3IC0
•
•'
•'
I C (I C.A I C.B )
IC 3IC.A 3 3IC0 3IC0
结论
➢接地故障相对地电压降低为零;
➢非接地故障相电压升高为线电压( 3倍)且相位改变
→绝缘水平按线电压设计(35KV及以下 ) ➢中性点对地电压升为相值(方向与故障相电压相反, 即-Uc) ➢相对中性点电压和线电压仍不变→三相系统仍然对称, 可以继续运行2h(供电可靠性提高) ➢接地点流过的电容电流是正常每相对地电容电流的3 倍,即Ic=3Ico →故在接地点有电弧
三级负荷: 不属于一、二级负荷者是三级负荷。三级 负荷对供电没有什么特别要求,可以非连续性地供电,如小 市镇公共用电、机修车间等,通常用一个电源供电 。
1.3 三相电力系统的中性点运行方式
1、电力系统的中性点:发电机、变压器的中性点且指变压器Y 形接线。
2、运行方式共三种: 中性点不接地运行方式
(2) 变电站
变电站有升压变电站与降压变电站之分。 根据供电的范围不同,变电站可分为一次(枢纽)变电 站和二次变电站。一次变电站是从110kV以上的输电网受电, 将电压降到35kV—110kV,供给一个大的区域用电。二次变 电站,大多数从35—110V输电网络受电,将电压降到6— 10kV,向较小范围供电。
②气隙沿整个铁芯均匀设置,以减少漏磁
③为了绝缘及散热,铁芯和线圈都浸在油中
④为适应系统中电容电流变化特点,消弧线圈中设有分接头
(5~9个)
2、补偿容量的选择:Qh.e≥1.35IcUx 3、消弧线圈的安装地点
发电厂的发电机或厂变的中性点;变电所主变的中性点。
4、适用范围:广泛应用在不适合采用中性点不接地的以架空线