单片机课程设计超声波测距离
基于单片机超声波测距系统的设计和实现

基于单片机超声波测距系统的设计和实现超声波测距系统是利用超声波传播速度较快的特性,通过发射超声波并接收其回波来测量距离的一种常见的测距方式。
在本文中,我们将介绍基于单片机的超声波测距系统的设计和实现。
一、系统设计原理超声波测距系统主要由超声波发射器、超声波接收器、单片机和显示器组成。
其工作原理如下:1.发送超声波信号:超声波发射器通过单片机控制,向外发射超声波信号。
超声波的发射频率通常在40kHz左右,适合在空气中传播。
2.接收回波信号:超声波接收器接收到回波信号后,将信号经过放大和滤波处理后送入单片机。
3.距离计算:单片机通过测量超声波发射和接收的时间差来计算距离。
以声速343m/s为例,超声波的往返时间与距离之间的关系为:距离=时间差×声速/2、通过单片机上的计时器和计数器来测量时间差。
4.数据显示:单片机将计算得到的距离数据通过显示器显示出来,实时展示被测物体与超声波传感器之间的距离。
二、系统设计步骤1.系统硬件设计:选择合适的超声波模块,其具有超声波发射器和接收器功能,并可通过接口与单片机连接。
设计好电源电路以及超声波传感器与单片机之间的连接方式。
2.系统软件设计:根据单片机的型号和编程语言,编写相应的程序。
包括超声波信号的发射和接收控制,计时和计数功能的编程,距离计算和数据显示的实现。
3.硬件连接和调试:将硬件连接好后,对系统进行调试。
包括超声波模块与单片机的连接是否正确,超声波信号的发射和接收是否正常,计时和计数功能是否准确等。
5.优化和改进:根据实际测试结果,对系统进行优化和改进。
如增加滤波和放大电路以提高信号质量,调整超声波模块的发射频率,改进显示方式等。
三、系统实现效果完成以上设计和实施后,我们可以得到一个基于单片机的超声波测距系统。
该系统使用简单,测距精度高,响应速度快,适用于各种距离测量的应用场景。
同时,该系统还可根据具体需求进行各种改进和扩展,如与其他传感器结合使用,增加报警功能等。
基于单片机的超声波测距课程设计

第1 章总体设计方案1.1总体设计方案方案一基于单片机的超声波测距系统,是利用单片机编程产生频率为40kHz 的方波,经过发射驱动电路放大,使超声波传感器发射端震荡,发射超声波。
超声波波经反射物反射回来后,由传感器接收端接收,再经接收电路放大、整形,控制单片机中断口其系统框图如图1.1 所示。
图1.1这种以单片机为核心的超声波测距系统通过单片机记录超声波发射的时间和收到反射波的时间。
当收到超声波的反射波时,接收电路输出端产生一个负跳变,在单片机的外部中断源输入口产生一个中断请求信号,单片机响应外部中断请求,执行外部中断服务子程序,读取时间差,计算距离,结果输出给LED 显示利用单片机准确计时,测距精度高,而且单片机控制方便,计算简单。
许多超声波测距系统都采用这种设计方法。
基于CPLD 的超声波测距系统,这种测距系统采用CPLD(Complex Programmable Logic Device) 器件,运用VHDL(Very High Speed Integrated Circuit Hardware DescriptionLanguage) 编写程序,使用MAX+plusII 软件进行软硬件设计的仿真和调试,最终实现测距功能。
CPLD 器件内部的宏单元是其最基本的模块,能独立地编程为D 触发器、T触发器、RS 触发器或JK 触发器工作方式或组合逻辑工作方式。
它的这种特性非常适用于本系统,可将本系统所需要的分频功能、计数功能、振荡器、七段码显示全部 由 MAX 来实现,而只需在外部配上适当的超声波传感器、接收和发送电路,即可组 成一个测量精度高、性能稳定、响应速度快且具有显示功能的超声波测距仪。
本系统利用 CPLD 器件控制超声波的发射, 并对超声波发射至接收的往返时间进 行计数,将计算结果在 LED 上显示出来。
配合使用 MAX+plusII 开发软件,可集设 计输入、设计处理、设计校验和器件编程于一体,集成度高,开发周期短 。
课程设计实验报告-超声波测距仪的设计

超声波测距仪的设计一、设计目的本设计利用超声波传输中距离与时间的关系,采用STC51单片机进行控制和数据处理,设计出能够精确测量两点间距离的超声波测距仪。
同时了解单片机各脚的功能,工作方式,计数/定时,I/O口的相关原理,并稳固学习单片机的相关内容知识。
二、设计要求1.设计一个超声波测距仪,能够用四段数码管准确显示所测距离2.精度小于1CM,测量距离大于200CM三、设计器材元器件数量STC51单片机 1个超声波测距模块URF-04 1个电阻〔1K 200 4.7K〕 3 个晶振〔12MHz〕 1 个共阳极四位数码管 1 个极性电容〔33pF〕 2 个非极性电容〔22uF〕 1 个四、超声波测距系统原理331.45米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测量精度理论上可以到达毫米级。
超声波测距的算法设计: 超声波在空气中传播速度为每秒钟340米〔15℃时〕。
X2是声波返回的时刻,X1是声波发声的时刻,X2-X1得出的是一个时间差的绝对值,假定X2-X1=0.03S,那么有340m×0.03S=10.2m。
由于在这10.2m 的时间里,超声波发出到遇到返射物返回的距离如下:图1 测距原理超声波测距器的系统框图如下列图所示:图2 系统框图五、设计方案及分析〔包含设计电路图〕4.1硬件电路设计4.1.1 单片机最小系统控制模块设计与比拟方案二:采用STC51单片机控制。
STC51单片机是一种低功耗、高性能CMOS8位微控制器,具有 8KB的系统可编程Flash 存储器。
AT89S52具有以下标准功能: 8k字节Flash,256字节RAM, 32 位I/O 口线,看门狗定时器,2 个数据指针,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路,能够满足题目设计的所有要求,而且我们对STC51单片机也比拟熟悉,因此我们选择方案二。
最小系统电路图如图3所示图3 单片机最小系统显示模块设计采用四位共阳极数码管显示,连接电路简单,显示电路连接图如图4所示图4 数码管显示电路超声波测距模块a.本系统采用超声波模块URF04进行测距,该模块使用直流5V供电,理想条件下测距可达500cm,广泛应用于超声波测距领域,模块性能稳定,测度距离精确,盲区〔2cm〕超近。
基于单片机的超声波测距器课程设计

嵌入式系统基础课程设计报告书——超声波测距器学院:信息工程学院班级:电子信息0801姓名:李占抚学号:2008001194一、课设题目:基于单片机的超声波测距器二、设计目的:设计一个超声波测距器,可以应用于汽车倒车位置监控,也可用于如液位、井深、管道长度的测量等场合。
要求测量范围在0.10-10.00m,测量精度1cm,测量时与被测物体无直接接触,能够清晰稳定地显示测量结果,能够手工设定报警量值。
三、设计思路:本系统的设计思想是采用MCS51单片机为核心,来设计一种低成本、高精度、微型化数字显示超声波测距仪。
超声波测距可测出回波和发射脉冲之间的时间间隔,利用S=Ct/2就可以算出距离,再在LED上显示出来。
当然还可以设置若干个键,以用来控制电路的工作状态。
限制的最大可测距离存有四个因素:超声波的幅度,反射面的质地,反射面和入射声波之间的夹角以及接收换能器的灵敏度。
接收换能器对声波脉冲的直接接收能力将决定最小的可测距离。
根据设计要求并综合各方面因素,采用单片机作为主控制器,用动态扫描法实现LED数字显示,超声波驱动信号可以用单片机的定时器和计数器来完成。
三、设计原理本设计采用MCS51单片机作为主控制器,用动态扫描法实现LED数字显示,超声波驱动信号用单片机的定时器和计数器来完成,超声波测距器的系统框图如图1所示:图1 超声波测距器系统的框图系统框图中的单片机MCS51用来协调各个单元,超声波接收电路用来接收要接收的信号,超声波发射电路用来发射需要发射的信号,存储器用来存储接收的信号,用数码管LED显示距离。
四、系统框图:本设计就是以MCS51单片机为核心。
它采用模块化设计,由主程序、发射子程序、接收子程序、定时子程序、显示子程序等模块组成。
该系统的主程序处于键控循环工作方式,当按下测量键时,主程序开始调用发射子程序、查询接收子程序、定时子程序,并把测量结果用显示子程序在数码管上显示出来。
虽然用一个单独计时器电路也可以测量超声波的传输时间,但利用MCS51单片机可以简化设计,便于操作和直观读数。
单片机课程设计-超声波测距系统

目录第1章总体设计原理 (7)1.1 超声波测距原理 (7)1.2单片机设计思路 (7)1.3 超声波测距系统框图 (8)第2章系统硬件设计 (9)2.1超声波模块电路设计思路 (9)2.2 数码管显示电路设计思路 (9)2.3 键盘连接电路设计思路 (10)第3章系统软件设计 (11)3.1 程序设计总流程图 (11)3.2 显示程序设计流程 (12)第4章调试结果 (13)实验总结 (14)附录 A 整体电路图 (15)附录B 程序清单 (16)第1章总体设计思路1.1 超声波测距原理超声波传感器在测量过程中,超声测距器是根据超声波遇到障碍物反射回来的特性进行测量的。
超声波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。
通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和接收到回波的时间差△T,然后求出距离L。
基本的测距公式为:L=(△T/2)*V 式中 L——被测距离;△T——发射波和反射波之间的时间间隔;V——超声波在空气中的声速,常温下取为340m/s 。
声速确定后,只要测出超声波往返的时间,即可求得L。
图1-1 超声波测距原理1.2单片机设计思路我们的设计是基于STC89C52单片机的一个超声波测距系统,利用单片机的一个I/O口输出一个10us以上的高电平给超声波模块的控制端,当超声波模块的控制端接受到这个高电平时,其发射端就开始发射40Hz的超声波,同时发射端会输出一个高电平信号,当检测到这个高电平信号的时候单片机开始启动定时器计时,当发射端接收到超声波的返回信号时,发射端会输出一个低电平信号,此时单片机停止计时。
通过得到的定时器计时的时间可以计算出被测物与超声波发射探头的距离。
然后通过计算出的距离送到四位一体数码管进行显示。
单片机的P0口控制数码显示管的段,P2.0-P2.3口控制数码显示管的四个位。
基于51单片机的超声波测距系统的毕业设计

基于51单片机的超声波测距系统的毕业设计超声波测距系统是一种常见的非接触式测距技术,通过发送超声波信号并测量信号的回波时间来计算距离。
本文将介绍基于51单片机的超声波测距系统的毕业设计。
首先,我们需要明确设计的目标。
本设计旨在通过51单片机实现一个精确、稳定的超声波测距系统。
具体而言,我们需要实现以下功能:1.发送超声波信号:通过51单片机的IO口控制超声波发射器,发送一定频率和波形的超声波信号。
2.接收回波信号:通过51单片机的IO口连接超声波接收器,接收并放大返回的超声波信号。
3.信号处理:根据回波信号的时间延迟计算出距离,并在显示器上显示出来。
4.稳定性和精确性:设计系统时需考虑测量过程中误差的影响,并通过合适的算法和校准方法提高系统的稳定性和精确性。
接下来,我们需要选择合适的硬件和软件配合51单片机实现上述功能。
硬件方面:1.51单片机:选择一款性能稳定、易于编程的51单片机,如STC89C522.超声波模块:选择一款合适的超声波传感器模块,常见的有HC-SR04、JSN-SR04T等。
模块一般包括发射器和接收器,具有较好的测距性能。
3.显示设备:选择合适的显示设备,如7段LED数码管或LCD显示屏,用于显示测距结果。
软件方面:1.C语言编程:使用C语言编写51单片机的程序,实现超声波测距系统的各项功能。
2.串口通信:通过串口与上位机进行通信,可以对系统进行监控和远程控制。
3.算法设计:选择合适的算法计算超声波回波时间延迟,并根据时间延迟计算距离值。
在设计过程中,我们需要进行以下步骤:1.硬件连接:按照超声波模块的说明书,将模块的发射器和接收器通过杜邦线与51单片机的IO口连接。
2.软件编程:使用C语言编写51单片机的程序,实现超声波模块的控制、信号接收和处理、距离计算等功能。
3.系统测试:进行系统的功能测试和性能测试,验证系统的可靠性和准确性,同时调试系统中出现的问题。
4.系统优化:根据测试结果,对系统进行优化,提高系统的稳定性和精确性。
基于51单片机超声波测距报警系统课程设计

基于51单片机超声波测距报警系统课程设计一、引言超声波测距技术是一种常见的非接触式测距技术,具有测距范围广、精度高等优点。
在日常生活中,超声波测距技术被广泛应用于车辆倒车雷达、智能家居中的人体感应等领域。
本文将介绍基于51单片机的超声波测距报警系统的课程设计。
二、设计思路本课程设计主要分为硬件设计和软件设计两部分。
硬件部分主要包括超声波模块、LCD显示屏、蜂鸣器等模块的连接和电路设计;软件部分主要包括51单片机程序设计及LCD显示程序编写。
三、硬件设计1. 超声波模块连接超声波模块是实现测距功能的核心部件。
在本课程设计中,我们采用HC-SR04型号的超声波模块。
该模块需要连接到51单片机上,具体连接方式如下:- 将VCC引脚连接到51单片机上的5V电源;- 将GND引脚连接到51单片机上的GND;- 将Trig引脚连接到P2.0口;- 将Echo引脚连接到P2.1口。
2. LCD显示屏连接LCD显示屏用于显示测距结果和报警信息。
在本课程设计中,我们采用1602型号的LCD显示屏。
该模块需要连接到51单片机上,具体连接方式如下:- 将VSS引脚连接到51单片机上的GND;- 将VDD引脚连接到51单片机上的5V电源;- 将VO引脚连接到一个10K电位器,再将电位器两端分别接到GND 和5V电源;- 将RS引脚连接到P1.0口;- 将RW引脚连接到P1.1口;- 将EN引脚连接到P1.2口;- 将D4-D7引脚分别连接到P0口的高四位。
3. 蜂鸣器连接蜂鸣器用于报警。
在本课程设计中,我们采用被动式蜂鸣器。
该模块需要连接到51单片机上,具体连接方式如下:- 将正极引脚(一般为长针)连接到51单片机上的P3.7口;- 将负极引脚(一般为短针)连接到51单片机上的GND。
四、软件设计1. 51单片机程序设计在本课程设计中,我们采用Keil C51作为编程工具,使用C语言编写程序。
主要程序流程如下:- 定义超声波模块的Trig和Echo引脚;- 定义LCD显示屏的RS、RW、EN和D4-D7引脚;- 定义蜂鸣器的引脚;- 定义变量存储测距结果和报警状态;- 初始化LCD显示屏、超声波模块等模块;- 循环执行以下操作:- 发送超声波信号并计算回波时间,从而得到距离值;- 根据距离值判断是否需要报警,并控制蜂鸣器发出报警声音;- 将测距结果和报警状态显示在LCD显示屏上。
51单片机课程设计 超声波测距仪

华中师范大学武汉传媒学院传媒技术学院课程设计报告华中师范大学武汉传媒学院传媒技术学院电子信息工程2011仅发布百度文库,版权所有.一、设计题目及原理超声波测距仪超声波测距仪是利用反射的原理测量距离的,被测距离一端为超声波传感器,另一端必须有能反射超声波的物体。
测量距离时,将超声波传感器对准反射物发射超声波,并开始计时,超声波在空气中传播到达障碍物后被反射回来,传感器接收到反射脉冲后立即停止计时,然后根据超声波的传播速度和计时时间就能计算出两端的距离。
测量距离D为式中c——超声波的传播速度;——超声波发射到接收所需时间的一半,也就是单程传播时间。
由上式可风,距离的测量精度主要取决于计时精度和传播速度两方面。
计时精度由单片机定时器决定,定时时间为机器周期与计数次数的乘积,可选用12MHz的晶振,使机器周期为精确的1µs,不会产生累积误差,使定时间达到1µs。
超声波的传播速度c并不是固定不变的,传播速度受空气密度、温度和气体分子成分的影响,关系式为式中γ——气体定压热容与定容热容的比值,空气为1.40R——气体普适常数,为8.314kg/molT——气体势力学温度,与摄氏温度的关系是T=273K+tM——气体相对分子质量,空气为28.8×10-3kg/mol——0℃时的声波速度,为331.4m/s由上式可见,超声波在空气中传播时,受温度影响最大,由表达式可计算出波速与温度的关系,如表2.1所示。
温度越高,传播速度越快,而且不同温度下传播速度差别非常大,例如0℃时的速度为332m/s,30℃时的速度为350m/s,相差18m/s。
因此,需要较高的测量精度时,进行温度补偿是最有效的措施。
对测量精度要求不高时,可认为超声波在空气中的传播速度为340m/s。
超声波传播速度与温度关系表二、设计框图超声波测距仪系统结构如下图所示。
它主要由单片机、超声波发射及接收电路、超声波传感器、温度传感器、键盘、LED显示电路及电源电路组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南工程学院课程设计任务书课程名称单片机原理与应用课题超声波测距系统设计专业班级自动化0901班学生姓名段志勤学号 200901020130 指导老师李晓秀审批任务书下达日期 2012 年 5 月 30 日任务完成日期2012 年 6 月 13 日目录序言 (6)第一章、总体设计原理 (6)1.1、超声波测距原理 (6)1.2、超声波测距系统框图 (8)1.3、程序流程图 (10)第二章、系统硬件设计 (11)2.1、超声波模块电路 (11)2.2、数码管显示电路 (12)2.3、单片机最小电路 (12)2.4、键盘连接 (13)第三章、系统软件设计 (14)3.1、主程序流程图 (14)3.2、子程序设计 (15)第4章、调试结果 (21)实验总结 (23)参考文献 (24)附录 A、整体电路图 (25)附录B、程序清单 (26)序言由于超生波测距是一种非接触检测技术,不受光线、被测对象颜色限制,较其他仪器更卫生,更耐潮湿、粉尘、高温、腐蚀等恶劣环境,具有少维护,不污染,高可靠,长寿命等特点。
因此,超声波测距有着广泛的应用领域。
利用超声波检测往往比较迅速,简单,计算方便,易于实现实时控制,并且在测量精度方面能达到工业使用要求。
超声波测距主要应用于倒车雷达、建筑施工工地以及一些工业现场,例如:液位、井深、管道长度等场合。
第一章、总体设计原理本章主要介绍单片机超声波测距的主要原理,包括超声波测距的原理和STC89C52单片机的原理1.1、超声波测距原理谐振频率高于20kHz的声波被称为超声波。
超声波为直线传播频率越高、绕射能力越弱、但反射能力越强。
利用超声波的这种性能就可制成超声传感器、或称为超声换能器、它是一种既可以把电能转化为机械能、又可以把机械能转化为电能的器件或装置。
换能器在电脉冲激励下可将电能转换为机械能、向外发送超声波、反之,当换能器处在接收状态时它可将声能(机械能)转换为电能。
压电式超声波发生器实际上是利用压电晶体的谐振来工作的。
超声波发生器内部结构如图1-1所示,它有两个压电晶片和一个共振板。
当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。
反之如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。
图1-1、超声波换能器内部示意图超声波发射器向某一方向发射超声波在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。
超声波测距是通过不断检测超声波发射后遇到障碍物所反射的回波,从而测出发射和接收回波的时间差t,然后求出距离S=Ct/2,式中的C为超声波波速。
图1-2、超声波测距原理框图由于超声波也是一种声波,其声速C与温度有关,表1列出了几种不同温度下的声速。
在使用时,如果温度变化不大,则可认为声速是基本不变的。
如果测距精度要求很高,则应通过温度补偿的方法加以校正。
声速确定后,只要测得超声波往返的时间,即可求得距离。
这就是超声波测距仪的机理。
其系统框图如图1-2所示。
表1 声速与温度关系表1.2、STC89C52单片机原理STC89C52是一种低功耗、高性能CMOS8位微控制器,具有 8K 在系统可编程Flash 存储器。
在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得STC89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。
具有以下标准功能: 8k字节Flash,512字节RAM, 32 位I/O 口线,看门狗定时器,内置4KB EEPROM,MAX810复位电路,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口。
另外STC89X52 可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。
空闲模式下,CPU 停止工作,允许RAM、定时器/计数器、串口、中断继续工作。
掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。
最高运作频率35Mhz,6T/12T 可选。
图1-3、STC89C52引脚图1.3、超声波测距系统框图图1-4、超声波测距系统框图第二章、系统硬件设计硬件是一个机器的基础,没有硬件,所有机器都不存在,本章主要介绍单片机超声波测距的硬件原理。
2.1、超声波模块电路图2-1、超声波模块电路超声波模块如图2-1所示。
从P2.6口给Trig口送一个10us的脉冲,超声波模块自动发出40Khz的超声波,单片机中断计时。
当遇到障碍物时超声波返回,并将一个高平信号送入单片机,中断关闭。
2.2、数码管显示电路图2-2、数码管显示电路显示电路采用采用LED数码管显示。
本系统采用动态显示方式。
该组数码管位共阳极数码管。
当有低电平驱动时,数码管亮。
2.3、单片机最小电路图2-3、最小单片机电路单片机最小电路是单片机能正常工作的最小外接电路单元。
是设计电路的核心部分,也是整个作品最关键,最重要的部分。
单片机最小电路包括:复位电路,晶振电路。
2.4、键盘连接图2-4、矩阵键盘电路该矩阵键盘采用扫描式工作读入方式,扫描式键盘接口是一个输入输出接口,行是输入接口,而列式输出接口,输入接口主要功能是解决数据输入的缓冲问题,而列输出接口主要功能是进行数据保持能力。
系统扫描键盘是若有键按下,则执行主程序相应程序,实现相应功能。
第三章、系统软件设计软件是一个机器的灵魂,没有软件,机器就是一堆废铁,所以软件是一个机器必不可少的部分,本章主要介绍单片机超声波测距的软件设计。
3.1、主程序流程图图3-1、主程序流程图3.2、子程序设计3.2.1、延时程序void DelayUs2x(unsigned char t) { while(--t); }void DelayMs(unsigned char t){while(t--){//大致延时1mSDelayUs2x(245);DelayUs2x(245);}}3.2.2、键盘扫描程序void key_scanf(void) {if(p10==0){DelayMs(10);if(p10==0)a=1;}if(p11==0){DelayMs(10);if(p11==0)a=0;}if(p12==0){DelayMs(10);if(p12==0){a=0;disbuff[0]=0;disbuff[1]=0;disbuff[2]=0;disbuff[3]=0;}}}3.2.3、超声波模块驱动程序void zd3() interrupt 3 //T1中断用来驱动超声波模块 { key_scanf(); 每800ms就发送一次超声波 TH1=0xf8; 这样就能进行连续多次测距 TL1=0x30;timer++;if(timer>=400){timer=0;TX=1; //800MS 启动一次模块 _nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();TX=0;//给超声波模块发送端一个10us的高电平,就能发送40khz的超声波}}3.2.4、计算程序void Conut(void){float S1;time=TH0*256+TL0;TH0=0;TL0=0;S1=(time*1.7)/100; //算出来是CMS=S1*10;if((S>=7000)||flag==1) //超出测量范围显示“-”{flag=0;disbuff[0]=10; //“-”disbuff[1]=10; //“-”disbuff[2]=10; //“-”disbuff[3]=10; //“-”}else{disbuff[0]=S/1000;disbuff[1]=S/100%10;disbuff[2]=S/10%10;disbuff[3]=S%10;}}3.2.5、数码管显示程序4位共阳数码管的驱动程序如下:void Display(void) //扫描数码管{p20=0;p21=1;p22=1;p23=1;P0=discode[disbuff[0]];//第1个数码管点亮DelayUs2x(20);P0=0xff;p20=1;p21=0;p22=1;p23=1;P0=discode[disbuff[1]];//第2个数码管点亮DelayUs2x(20);P0=0xff;p20=1;p22=0;p21=1;p23=1;P0=(discode[disbuff[2]])&0x7f;//第3个数码管点亮 DelayUs2x(20);P0=0xff;p20=1;p23=0;p21=1;p22=1;P0=discode[disbuff[3]];//第4个数码管点亮DelayUs2x(20);P0=0xff;p20=1;p23=1;p21=1;p22=1;//DelayMs(2);//显示小数}第四章、调试结果按第二章和第三章的原理接好电路图,把程序下载进去,接下来我们就能看到结果了。
如图4-1所示,其显示结果为20.6CM。
图4-1、LED显示结果这个设计需要用到三个按键,键1、键2、键3。
其中键1为开始键,键2为暂停键,键3为复位键。
先把单片机接好电源,按下键1就开始测距,距离显示在LED显示器上,按下键2就会把显示结果暂停,如图4-1所示。
按下键3,显示器自动复位为0实验总结两周的课程设计结束了,在这次的课程设计中不仅检验了我所学习的知识,也培养了我如何去把握一件事情,如何去做一件事情,又如何完成一件事情。
在设计过程中,与同学分工设计,和同学们相互探讨,相互学习,相互监督。
学会了合作,学会了运筹帷幄,学会了宽容,学会了理解,也学会了做人与处世。
课程设计是我们专业课程知识综合应用的实践训练,着是我们迈向社会,从事职业工作前一个必不少的过程.”千里之行始于足下”,通过这次课程设计,我深深体会到这句千古名言的真正含义.我今天认真的进行课程设计,学会脚踏实地迈开这一步,就是为明天能稳健地在社会大潮中奔跑打下坚实的基础.通过这次课程设计,本人在多方面都有所提高。
通过这次课程设计,综合运用本专业所学课程的理论和生产实际知识进行一次冷冲压模具设计工作的实际训练从而培养和提高学生独立工作能力,巩固与扩充了冷冲压模具设计等课程所学的内容,掌握冷冲压模具设计的方法和步骤,掌握冷冲压模具设计的基本的模具技能懂得了怎样分析零件的工艺性,怎样确定工艺方案,了解了模具的基本结构,提高了计算能力,绘图能力,熟悉了规范和标准,同时各科相关的课程都有了全面的复习,独立思考的能力也有了提高。