北京市初一数学期末测试题全套及答案

合集下载

2024北京石景山初一(上)期末数学试卷及答案

2024北京石景山初一(上)期末数学试卷及答案

2024北京石景山初一(上)期末数 学学校 姓名 准考证号一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有..一个. 1.12−的相反数是 (A )12(B )12−(C )2 (D )2−2.以河岸边步行道的平面为基准,河面高 1.8m −,河岸上地面高5m ,则地面比河面高(A )3.2m(B ) 3.2m −(C )6.8m(D ) 6.8m −3.依据第三方平台统计数据,2022年12月至2023年5月,石景山区共有350人享受养老助餐服务(其10 534用科学记数法可表示为 (A )310.53410⨯(B )41.053410⨯(C )31.053410⨯(D )50.1053410⨯4. 如图,从左面看图中四个几何体,得到的图形是四边形的几何体的个数是(A )1(B )2(C )3(D )45. 将三角尺与直尺按如图所示摆放,若α∠的度数比β∠的度数的三倍多10︒,则α∠的度数是(A )20︒ (B )40︒ (C )50︒ (D )70︒6. 下列运算正确的是(A )325+=a b ab (B )2222−=c c(C )2()2−−=−+a b a b(D )22243−=−x y yx x y7.已知:如图O 是直线AB 上一点,OD 和OE 分别平分AOC ∠和BOC ∠,50BOC ∠=︒, 则AOD ∠的度数是(A )50︒ (B )60︒ (C )65︒(D )70︒8. 有理数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是(A )0ab >(B )<−a b (C )20+>a(D )20−>a b二、填空题(本题共16分,每小题2分)9.对单项式“0.5a ”可以解释为:一块橡皮0.5元,买了a 块,共消费0.5a 元.请你再对 “0.5a ”赋予一个实际意义________________________________________________.10. 如图是一数值转换机的示意图,若输入1=−x ,则输出的结果是 .11. 若233m x y −与253m x y −−是同类项,则m 的值为 .12. 若2=x 是关于x 的一元一次方程25−=x m 的解,则m 的值为 .13.A 村和B 村送水,修在 (请在,,D E F 中选择)处可使所用第13题图 第14题图14.如图,正方形广场边长为a 米,广场的四个角都设计了一块半径为r 米的四分之一圆形花坛,请用代数式表示图中广场空地面积 平方米.(用含a 和r的字母表示)15.规定一种新运算:1⊕=+−+a b a b ab ,例如:23232310⊕=+−⨯+=,(1)请计算:2(1)⊕−___________.(2)若32x −⊕=,则x 的值为 .16.a 是不为1的有理数,我们把11a −称为a 的差倒数,如2的差倒数是1112=−−,-1的差倒数是111(1)2=−− .已知113α=−,2α是1α的差倒数,3α是2α的差倒数,4α是3a 的差倒数,……,以此类推,则2023a =___________.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.计算:312−+−.18.计算:11124()834−⨯−+19.计算:3122(7)2−+⨯−÷. 20.本学期学习了一元一次方程的解法,下面是小亮同学的解题过程: (1)第②步的依据是_________________________________;(2)第_____(填序号)步开始出现错误,请写出这一步正确的式子__________. 21.解方程:52318x x +=−. 22.解方程:211123x x +−−=. 23.先化简,再求值:22(28)(14)x x x −−−−,其中2x =−.24.如图,已知直线l 和直线外两点,A B ,按下列要求作图并回答问题: (1)画射线AB ,交直线l 于点C ;(2)画直线AD l ⊥,垂足为D ;(3)在直线AD 上画出点E ,使DE AD =; (4)连接CE ; (5)通过画图、测量:点A 到直线l 的距离d ≈ cm (精确到0.1);图中有相等的线段(除DE AD =以外)或相等的角,写出你的发现: . 25.列方程解应用题:lA某公司计划为员工购买一批运动服,已知A 款运动服每套180元,B 款运动服每套210元,公司购买了这两种运动服共计50套,合计花费9600元,求公司购买两种款式运动服各多少套? 26.已知:线段=10AB ,C 为线段AB 上的点,点D 是BC 的中点.(1)如图,若=4AC ,求CD 的长.根据题意,补全解题过程:∵10,4AB AC CB ===,AB − , ∴CB = . ∵点D 是BC 的中点,∴CD = =CB .(理由: ) (2)若=3AC CD ,求AC 的长.27. 已知:OA OB ⊥,射线OC 是平面上绕点O 旋转的一条动射线,OD 平分BOC ∠. (1)如图,若40BOC =︒∠,求AOD ∠.(2)若=(0180)BOC αα︒<<︒∠,直接写出AOD ∠的度数.(用含α的式子表示)28. 对于点M ,N ,给出如下定义:在直线MN 上,若存在点P ,使得MP =kNP (k >0),则称点P 是“点M 到点N 的k 倍分点”.例如:如图,点Q 1,Q 2,Q 3在同一条直线上,Q 1Q 2=3,Q 2Q 3=6,则点Q 1是点Q 2到点Q 3的13倍分点,点Q 1是点Q 3到点Q 2的3倍分点.已知:在数轴上,点A ,B ,C 分别表示﹣4,﹣2,2.(1)点B 是点A 到点C 的 倍分点,点C 是点B 到点A 的 倍分点; (2)点B 到点C 的3倍分点表示的数是 ;(3)点D 表示的数是x ,线段BC 上存在点A 到点D 的4倍分点,写出x 的取值范围.参考答案阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.答案不唯一,正确即可 10.3 11.212.1− 13.E ;两点之间线段最短 14. 22()a r π−15.(1)4;(2)1 16.13−三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.解:原式312=−+ ………………………… 2分 9=. ………………………… 5分 18.解:原式386=−+− ………………………… 3分 1=−. ………………………… 5分19.解:原式82(7)2=−+⨯−⨯ ………………………… 2分 828=−− ………………………… 4分 36=−. ………………………… 5分 20.(1)等式基本性质2; ………………………… 2分 (2)③; ………………………… 3分 609502015x x −−−=. ………………………… 5分 21.解:移项,得53182x x −=−−. ………………………… 2分 合并同类项,得 220x =−. ………………………… 4分 系数化为1,得10x =−. ………………………… 5分 ∴10x =−是原方程的解.22.解:去分母,得 3(21)2(1)6x x +−−=. ………………………… 2分 去括号,得 63226x x +−+=. ………………………… 3分 移项,合并同类项,得 41x =. ………………………… 4分系数化为1,得14x =. ………………………… 5分 ∴14x =是原方程的解. 23.解:原式2241614x x x =−−−+2217x =−. …………………………4分 当2x =−时,原式22(2)17=⨯−−.9=−. …………………………6分24.解:(1)(2)(3)(4)画图并标出字母如右图所示; ……………… 3分(5)d ≈ cm (精确到0.1);(以答题卡上实际距离为准)……… 4分 CA CE =,ACD ECD ∠=∠,CAD CED ∠=∠. ……………… 6分25.解:设公司购买A 款式运动服x 套,则购买B 款式运动服(50x −)套. …… 1分 根据题意可得,180210(50)9600x x +−=. ………………………… 3分 解得:30x =. 则5020x −=. ………………………… 5分答:公司购买A 款式运动服30套,购买B 款式运动服20套. ……………… 6分 26.解:(1)补全解题过程如下:∵10,4AB AC CB ===,AB − AC ,……………………… 1分 ∴CB = 6 . ……………………… 2分 ∵点D 是BC 的中点, ∴CD =12=CB 3 .(理由:线段中点的定义).…………4分 (2)∵点D 是BC 的中点,∴CD BD =(线段中点的定义). ∵=3AC CD ,∴设CD BD x ==,=3AC x . ……………………… 5分∴10AB AC CD BD =++=. 即:310x x x ++=. 解得,2x =.∴=6AC . …………………………6分27. 解:(1)∵OA OB ⊥,∴90AOB ∠=︒(垂直定义). …………………………2分∵OD 平分BOC ∠,∴12BOD BOC ∠=∠(角平分线定义). …………………………4分 ∵40BOC ∠=︒,∴20BOD ∠=︒.∵AOD AOB BOD ∠=∠−∠,∴70AOD ∠=︒. …………………………5分(2)9090+22αα︒−︒或. …………………………7分28. 解:(1)12,23; …………………………2分 (2)1或4; …………………………4分 (3)5722x −≤≤. …………………………7分。

2024北京大兴区初一(上)期末数学试卷及答案

2024北京大兴区初一(上)期末数学试卷及答案

2024北京大兴初一(上)期末数 学2024.01一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1.大兴国际机场航站楼是全球唯一一座“双进双出”的航站楼,也是世界施工技术难度最高的航站楼,航站楼一共使用了12800块玻璃,白天室内几乎不需要照明灯光.将 12800用科学记数法表示为 (A )12.8×103 (B )1.28×103(C ) 1.28×104(D )0.128×1052。

-5的绝对值是 (A )5(B )−5 (C )−51(D )±53.如图,是由下列哪个立体图形展开得到的(A )三棱锥 (B )三棱柱 (C )四棱锥 (D )四棱柱 4.下列各组数中,互为相反数的是(A ))(−+3与)-(+3 (B )-(-4)与−4(C )−32与)(−32 (D )−23与)(−235.下列变形正确的是(A )若a =42,则 a =2 (B )若a =b ,则 −−a =b 2121 (C )若a =b ,则 a =b (D )若ac =bc ,则=a b6.如图,点C 是线段AB 上一点,AB =18,AC =6,点D 是 AC 的中点,则DB 的长为(A ) 3 (B ) 9(C ) 12 (D )157.如图,数轴上的点A ,B 表示的数分别是a ,b .如果a <b ,且<ab 0,那么该数轴的原点O 的位置应该在(A )点A 的左侧 (B )点B 的右侧 (C )点A 与点B 之间且靠近点A(D )点A 与点B 之间且靠近点B8.如图,点A ,O ,B 在一条直线上,∠AOC =∠DOE =78°,∠AOD=43°,那么∠BOE 的度数为(A )35° (B )43° (C )47° (D )59° 二、填空题(本题共16分,每小题2分) 9. 计算:2a a −=__________.10.圆周率是数学美的象征,它的无限不循环小数形式引发了人们对数学的好奇和探索.圆周率π 3.1415926=,用四舍五入法把π精确到百分位,得到的近似值是 .11.若x =2是关于x 的方程220x a +−=的解,则a = .12.写出一个含字母x 的一次二项....式.,满足当x =2时,它的值等于5,这个式子可以是____________. 13.计算:48321138''︒+︒= _____________.14.如图,某海域有三个小岛A ,B ,O ,在小岛O 处观测到小岛A 在它北偏东62º的方向上,同时,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是 .15.一个角的补角恰好是这个角的2倍,则这个角的度数是_________________ . 16.某学校把WIFI 密码按照如下规律设置,根据提供的信息可以推断该校的WIFI 密码是_____________. 账号:xuexiao 1*2⊕3=030609 4*5⊕6=243054 9*2⊕5=4510554*6⊕8= 密码三、解答题(本题共68分,第17-21题,每题5分,第22题6分,第23题5分,第24-26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程. 17.计算:()13(5)2011+−−−−. 18.计算:13255()()54÷⨯−÷−.19.计算:421110.51(2)5−−−⨯⨯−−(). 20.解方程:2(35)23(6)x x −=++. 21.解方程:121132x x +−=−. 22.如图,平面内有四个点A ,B ,C ,D .根据下列语句作图(保留作图痕迹),并回答问题.(1)连接AB ;(2)画射线AD ,并在线段AD 的延长线上用圆规截取DE =AB ;(3)作直线BC 与射线AD 交于点F .观察图形发现,线段AF +BF >AB ,得出这个结论的依据是: . 23.先化简,再求值:225(54)2(33)6x x x x −++−− ,其中2x =−.24.已知关于x 的方程 (3)213(1)k x x ++=++(k ≠0). (1)当k =1时,求方程的解;(2)若0k >,方程的解是整数,则x 有最 (填“大”或“小”)值,这个值是 ,此时,k = .25.如图,在数轴上有A ,B ,C ,D 四点,点A 表示的数是1,点B 表示的数是7,点C 位于点B 的左侧并与点B 的距离是2,点D 是线段AC 的中点.(1)在数轴上表示出点C ,点D ,直接写出点D 表示的数; (2)若点E 在数轴上,且满足EA =2EC ,求点E 是表示的数.26.某校组织若干师生到故宫进行参观活动,若学校只租用 45 座的客车,则刚好坐满;若只租用60座的客车,则可少租用1辆,且有一辆上只坐了15人,其余车辆都坐满. (1)参加此次活动的师生共有多少人?下面是解决该问题的两种方法,请选择其中的一种.......方法完成分析和解答.–1–2–3–41234567891011121314BA接写出45座客车和60座客车各租多少辆时,费用最少.27.如图,∠AOB =90º,∠COD =90º,∠AOC =30º,射线OP 在∠BOC 内, ∠BOP=n ∠COP .(1)当n =1时,请用量角器在图1中画出射线OP ,求∠DOP 的度数; (2)当n =2时,OQ 平分∠DOP ,直接写出∠BOQ 的度数.28.点A ,B ,C 在数轴上,对于线段AB 和线段AB 外一点C 给出如下定义:若点C 与线段AB 上的点的最小距离小于或等于12AB ,则称点C 是线段AB 的 “半关联点”. (1)如图,点A 表示的数是1,点B 表示的数是2,点D ,E ,F 在数轴上,它们表示的数分别是12,3,5,则在点D ,E ,F 中,线段AB 的半关联点”是 ;(2)若点A 表示的数是1,点B 表示的数是2,且点C 是线段AB 的 “半关联点”,则点C 表示的数c 的取值范围是 ;(3)若点A 表示的数是1,如点C 表示的数是1−,点C 是线段AB 的 “半关联点”,点B 表示的数b 的取值范围是 .DD图1备用图参考答案一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分) 9.a −10. 3.1411.2 −12.)3( 答案不唯一+x13.6010'︒ 14. 0815. 0616. 248803三、解答题(本题共68分,第17-21题,每题5分,第22题6分,第23题5分,第24-26题6分,第27-28题,每题7分)17.解:)11(20)5(13−−−−+1352011=−−+…………………………………………………………………………………2分 2425=−…………………… ……………………………………………………………………4分 .1−=………………………………………………………………………………………………5分18.解:)43()51(525−÷−⨯÷34515125⨯⨯⨯= …………………………………………………………………………………3分34=………………………………………………………………………………………………5分 19.解:|)2(1|51)5.01(124−−⨯⨯−−−|41|51211−⨯⨯−−= ……………………………………………………………………………2分351211⨯⨯−−=……………………………………………………………………………………3分1031−−=…………………………………………………………………………………………4分 3110=−……………………………………………………………………………………………5分 20.解:)6(32)53(2++=−x x1832106++=−x x ………………………………………………………………………2分1018236++=−x x303=x10x =…………………………………………………………………………………5分21.解:212131−−=+x x2(1)63(21)x x +=−−……………………………………………………………………………3分36622 +−=+x x87x =78x =………………………………………………………………………………………5分22.解:…………………………………………………………………4分依据是:两点之间,线段最短.………………………………………………………………6分23.解:6)33(2)45(522−−++−x x x x66645522−−+−−=x x x x212x x =+− ……………………………………………………………………………………3分 2x =−∴原式2(2)(2)12=−+−−10=−.……………………………………………………………………………………5分24.解:(1)∵k =1,∴原方程可化为4213(1)x x +=++ 42133x x +=++ 43132x x −=+−2x =…………………………………………………………………3分(2) 小,1,2.………………………………………………………………………………………6分 25.解:(1)点D 表示的数为3.………………………………………………………………………………3分 (2)① 当点E 在点A 左侧时,则点E 不存在;–1–2–3–412345678910111213140D C BA② 当点E 在点A 和点C 之间时,则点E 表示的数是311; ③ 当点E 在点C 右侧时,则点E 表示的数是9. ∴综上所述,点E 表示的数是9311或.…………………………………………………………6分 26.(1)方法一:45x ,60(2)15x −+.…………………………………………………………………………2分 解:设该校租用45座的客车x 辆,租用60座的客车(1)x −辆. 4560(2)15x x =−+解得:7=x457315⨯=(人)答:该校参加活动师生共有315人. ………………………………………………………………5分 方法二:45x,15160x −+.………………………………………………………………………………2分 解:设该校参加活动师生共有x 人.15114560x x −−=+ 解得: 315x =答:该校参加活动师生共有315人.…………………………………………………………………5分 (2)45座和60座客车各租3辆时费用最少. ………………………………………………………6分 27.解:(1)30,90=∠=∠AOC AOB ,60=∠−∠=∠∴AOC AOB BOC . 90=∠COD ,30=∠−∠=∠∴BOC COD BOD . 1=n , 3021=∠=∠=∠∴AOC COP BOP , 60=∠+∠=∠∴BOP DOB DOP .………………………………………………………………………5分(2) 5=∠BOQ .………………………………………………………………………………………7分 28.(1)点D ; …………………………………………………………………………………………1分D(2)12≤1c<或2c<≤52; …………………………………………………………………………4分(3)1b−<≤13−或b≥5.……………………………………………………………………………7分。

2023-2024学年北京市朝阳区七年级(下)期末数学试卷+答案解析

2023-2024学年北京市朝阳区七年级(下)期末数学试卷+答案解析

2023-2024学年北京市朝阳区七年级(下)期末数学试卷一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.9的算术平方根为()A.3B.C.D.812.在平面直角坐标系中,点在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,以单位长度为边长画一个正方形,以原点为圆心,正方形的对角线长为半径画弧,与数轴交于点A,则点A表示的数是()A. B. C. D.4.如图,三角形ABC中,,于点在线段AC,AB,BC,CD中,长度最短的是()A.线段ABB.线段ACC.线段BCD.线段CD5.若,则下列结论正确的是()A. B. C. D.6.一个等腰直角三角尺和一把直尺按如图所示的位置摆放厚度忽略不计,若,则的度数为()A.B.C.D.7.经调查,七年级某班学生上学所用的交通工具中,自行车占,公交车占,私家车占,其他占如果用扇形图描述以上数据,下列说法正确的是()A.“自行车”对应扇形的圆心角为B.“公交车”对应扇形的圆心角为C.“私家车”对应扇形的圆心角为D.“其他”对应扇形的圆心角为8.已知,,,给出下面3个结论:①当时,;②M的最小值是18;③M的最大值是上述结论中,所有正确结论的序号为()A.①②B.①③C.②③D.①②③二、填空题:本题共8小题,每小题3分,共24分。

9.的相反数是______.10.比较大小:4__________填“>”或“<”11.“a与2的差大于“用不等式表示为______.12.不等式的正整数解是______.13.有如下调查:①调查某批次汽车的抗撞击能力;②了解某班学生的视力情况;③选出某班长跑最快的学生参加全校比赛以上调查,适宜抽样调查的是______填写序号14.图中显示了15名七年级学生国家安全知识竞赛成绩和航天知识竞赛成绩单位:分例如:甲同学的国家安全知识竞赛成绩为40分,航天知识竞赛成绩为70分这15名学生中,国家安全知识竞赛成绩与航天知识竞赛成绩相等的有______人.15.如图,第一象限内有两个点,,将线段AB平移,使点A,B平移后的对应点分别同时落在两条坐标轴上,则点A平移后的对应点的坐标为______写出一个即可16.某校为提高校园足球质量和水平,让学生在参与校园足球运动中享受乐趣、增强体质、健全人格、锤炼意志,实现德智体美劳全面发展,举办了校园足球联赛.根据赛事安排,每队均需参赛19场,记分办法如下:胜1场得3分,平1场得1分,负1场得0分.在这次足球联赛中,若某队得13分,则该队可能负______场;写出一种情况即可在这次足球联赛中,若甲、乙两队都得33分,甲队所有比赛都没有踢平,甲、乙两队负场数不同,则乙队最多胜______场.三、计算题:本大题共1小题,共5分。

2023-2024学年北京市海淀区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市海淀区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市海淀区七年级(上)期末数学试卷一、选择题:本题共10小题,每小题2分,共20分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.的倒数是.()A. B. C.5 D.2.“霜降见霜,谷米满仓”,2023年我国粮食再获丰收.据统计,去年秋粮的种植面积为亿亩,比前年增加了700多万亩,奠定了增产的基础.将1310000000用科学记数法表示应为.()A. B. C. D.3.下列各组有理数的大小关系中,正确的是.()A. B. C. D.4.方程的解是.()A. B. C. D.5.下列运算结果正确的是.()A. B.C. D.6.已知等式,则下列等式中不一定成立的是()A. B. C. D.7.如图,D是线段AB的中点,C是线段AD的中点,若,则线段CB的长度为.()A.2acmB.C.3acmD.8.已知有理数x,y在数轴上对应点的位置如图所示,那么下列结论正确的是.()A. B. C. D.9.如图,在正方形网格中有A,B两点,点C在点A的南偏东方向上,且点C在点B的东北方向上,则点C可能的位置是图中的.()A.点处B.点处C.点处D.点处10.某玩具厂在生产配件时,需要分别从棱长为2a的正方体木块中,挖去一个棱长为a的小正方体木块,得到甲、乙、丙三种型号的玩具配件如图所示将甲、乙、丙这三种配件的表面积分别记为、、,则下列大小关系正确的是注:几何体的表面积是指几何体所有表面的面积之和.()A. B. C. D.二、填空题:本题共6小题,每小题2分,共12分。

11.如果单项式与是同类项,那么__________.12.若关于x的一元一次方程的解为正数,则m的一个取值可以为__________.13.小明一家准备自驾去居庸关长城游玩.出发前,爸爸用地图软件查到导航路程为,小明用地图软件中的测距功能测出他家和目的地之间的距离为,如图所示,小明发现他测得的距离比爸爸查到的导航路程少.请你用所学数学知识说明其中的道理:__________.14.有这样一个问题:把一些图书分给某班学生阅读,如果每人分3本,则剩余18本,如果每人分4本,则还缺22本.这个班有多少学生?设这个班有x名学生,则可列方程为__________只列不解15.如图所示的网格是正方形网格,则__________填“>”“<”或“=”16.记为M,为我们知道,当这两个代数式中的x取某一确定的有理数时,M和N的值也随之确定,例如当时,若x和M,N的值如下表所示.x的值2cM的值3bN的值ab则a和c的值分别是:①__________;②__________.三、计算题:本大题共2小题,共20分。

2023年北京东城区初一(下)期末数学试题及答案

2023年北京东城区初一(下)期末数学试题及答案

2023北京东城初一(下)期末数 学一、选择题(本题共30分,每小题3分)1.如图,小手盖住的点的坐标可能为( )A.(﹣2,﹣3)B.(﹣2,3)C.(2,3)D.(2,﹣3)2.4的算术平方根是( )A.2B.±2C.16D.±16 3.下列调查方式,最适合全面调查的是( )A.检测某品牌鲜奶是否符合食品卫生标准B.了解某班学生一分钟跳绳成绩C.了解北京市中学生视力情况D.调查某批次汽车的抗撞击能力4.若21xy=⎧⎨=⎩是关于x,y的二元一次方程x+my=5的解,则m的值为( )A.2B.3C.5D.75.实数a,b对应的位置如图所示,下列式子正确的是( )A.a2<b2B.﹣2a<﹣2b C.a+5<0D.a+4<b+46.如图,直线AB,CD相交于点O,OE⊥AB,垂足为点O.若∠COE=40°,则∠BOD的度数为( )A.140°B.60°C.50°D.40°7的点最接近的点是( )A.点P B.点Q C.点M D.点N8.已知二元一次方程组28,2-5,x yx y+=⎧⎨+=⎩则x+y的值为( )A.﹣1B.﹣3C.1D.39.如图为小丽和小欧依次进入电梯时,电梯因超重而警示音响起的过程,且过程中没有其他人进出.已知当电梯乘载的重量超过400千克时警示音响起,且小丽、小欧的重量分别为50千克、70千克.若小丽进入电梯前,电梯内已乘载的重量为x千克,则x的取值范围是( )A.280<x≤350B.280<x≤400C.330<x≤350D.330<x≤400 10.2023年国家统计局公布了《2022年国民经济和社会发展统计公报》.公报显示了全国2018年至2022年货物进出口额的变化情况,根据国家统计局2022年发布的相关信息,绘制了如下的统计图.根据统计图提供的信息,下列结论正确的是( )①与2018年相比,2019年的进口额的年增长率虽然下降,但进口额仍然上升;②从2018年到2022年,进口额最多的是2022年;③2018﹣2022年进口额年增长率持续下降;④与2021年相比,2022年出口额增加了2.3万亿元.A.①②④B.①②③C.①③④D.①②③④二、填空题(本题共16分,每小题2分11.(2分)“m的2倍与5的和是正数”可以用不等式表示为 .12.(2分)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向过斑马线更为合理,这一想法体现的数学依据是 .13.(2分)北京中轴线南起永定门,北至钟鼓楼,全长7.8千米.如图是利用平面直角坐标系画出的中轴线及其沿线部分地点分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示天安门的点的坐标为(0,﹣1),表示王府井的点的坐标为(1,﹣1),则表示永定门的点的坐标为 .14.(2分)如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周(不滑动),圆上的一点由原点到达点O′,点O′所对应的数值是 .15.(2分)如图,将含有60°的直角三角板的两个顶点分别放在直尺的一组对边上,如果∠1=20°,那么∠2= °.16.(2分)如图,一块边长为10米的正方形花园,在上面修了一条道路,路的宽都是1米,其余部分种上各种花草,则种植花草的面积是 平方米.17.(2分)《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前.书中记载了一个数学问题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”其大意是:“用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,绳子比长木短1尺,问长木多少尺?”设绳长x 尺,木长y 尺,可列方程组为 .18.(2分)在平面直角坐标系xOy 中,若一个多边形的顶点都在格点(点的横、纵坐标均为整数)上,则称该多边形为格点多边形.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L .如图,△ABC 是格点三角形,对应的S =1,N =0,L =4.(1)图中格点四边形DEFG 对应的S 为 ;(2)已知格点多边形的面积可以表示为S =aN +bL ﹣1,其中a ,b 为常数.若某格点多边形对应的N =71,L =18,则S = .三、解答题(本题共54分,第19-23题每小题5分,第24题4分,第25题5分,第26题6分,第27-28题每小题5分)解答应写出文字说明、证明过程或演算步骤.19.(51+.20.(5分)解方程组321921x y x y +=⎧⎨-=⎩.21.(5分)解不等式组:513(1)1213x x x x ->+⎧⎪+⎨≥-⎪⎩,并求出它的整数解.22.(5分)请将下面的证明过程补充完整:如图,在四边形ABCD 中,AD ∥BC ,∠BCD =40°,∠BAD =80°,∠BAD 的角平分线交BC 于点E ,求证:AE ∥DC .证明:∵AE 平分∠BAD ,∠BAD =80°(已知),∴1402DAE BAD ∠=∠= (理由: ).∵AD ∥BC (已知),∴ =∠DAE =40°(理由: ).∵∠BCD =40°(已知),∴∠BCD = (等量代换).∴AE ∥DC (理由: ).23.(5分)一个数值转换器如图所示:(1)当输入的x 值为16时,输出的y 值是 ;(2)若输入有效的x 值后,始终输不出y 值,则所有满足要求的x 的值为 ;(3)若输出的yx 的值.24.(4分)如图.三角形ABC 的顶点坐标分别为A (﹣1.4),B (﹣4,﹣1),C (1,1).若将三角形ABC 向右平移4个单位长度,再向下平移3个单位长度得到三角形A 'B 'C ',其中点A ',B ',C '分别是点A .B ,C 的对应点.(1)画出三角形A 'B 'C ';(2)若三角形ABC 内有一点P (a ,b )经过上述平移后的对应点为P ',写出点P '的坐标:( , );(3)若点D 在y 轴上且三角形BOD 的面积为4,直接写出点D的坐标.25.(5分)如图为国家节水标志,节水标志各部分的含义为:灰色的圆形代表分像一只手托起一滴水,手又像一条蜿蜒的河流,象征滴水汇成江河.某市在实施居民用水定额管理前,对居民生活用水情况进行了调查,通过简单随机抽样调查获得了50个家庭去年的月均用水量(单位:吨).以下是整理数据后的不完整统计表、统计图.月均用水量频数分布表分组频数2≤x<343≤x<4124≤x<5a5≤x<696≤x<757≤x<848≤x<92合计50请根据图表中提供的信息解答下列问题:(1)表中a的值为 ,请补全频数分布直方图;(2)扇形统计图中,月均用水量为“E :6≤x <7”的扇形的圆心角是 °;(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费.若要使60%的家庭水费支出不受影响,你觉得家庭月均用水量应该定为多少?为什么?26.(6分)已知,直线AB ∥CD ,点E 为直线CD 上一定点,射线EK 交AB 于点F ,FG 平分∠AFK ,∠FED =α.(1)如图1,当α=60°时,∠GFK = °;(2)点P 为线段EF 上一定点,点M 为直线AB 上的一动点,连接PM ,过点P 作PN ⊥PM 交直线CD 于点N .①如图2,当点M 在点F 右侧时,求∠BMP 与∠PNE 的数量关系;②当点M 在直线AB 上运动时,∠MPN 的一边恰好与射线FG 平行,直接写出此时∠PNE 的度数(用含α的式子表示).27.(7分)围棋,起源于中国,古代称为“弈”,是棋类鼻祖,距今已有4000多年的历史.某商家销售A 、B 两种材质的围棋,每套进价分别为200元、170元,下表是近两个月的销售情况:销售数量销售时段A 种材质B 种材质销售收入第一个月3套5套1800元第二个月4套10套3100元(1)求A 、B 两种材质的围棋每套的售价.(2)若商家准备用不多于5400元的金额再采购A 、B 两种材质的围棋共30套,求A 种材质的围棋最多能采购多少套?(3)在(2)的条件下,商店销售完这30套围棋能否实现利润为1300元的目标?请说明理由.28.(7分)在平面直角坐标系xOy 中,对于点P (x 1,y 1),点Q (x 2,y 2),定义|x 1﹣x 2|与|y 1﹣y 2|中的值较大的为点P,Q的“绝对距离”,记为d(P,Q).特别地,当|x1﹣x2|=|y1﹣y2|时,规定d(P,Q)=|x1﹣x2|,例如,点P(1,2),点Q(3,5),因为|1﹣3|<|2﹣5|,所以点P,Q 的“绝对距离”为|2﹣5|=3,记为d(P,Q)=3.(1)已知点A(0,1),点B为x轴上的一个动点.①若d(A,B)=3,求点B的坐标;②d(A,B)的最小值为 ;③动点C(x,y)满足d(A,C)=r,所有动点C组成的图形面积为64,请直接写出r的值.(2)对于点D(﹣1,0),点E(2,5),若有动点M(m,n)使得d(D,M)+d(E,M)=5,请直接写出m的取值范围.参考答案一、选择题(本题共30分,每小题3分)1.【分析】根据第四象限点的坐标特征(+,﹣),即可解答.【解答】解:如图,小手盖住的点的坐标可能为(2,﹣3),故选:D.【点评】本题考查了点的坐标,熟练掌握平面直角坐标系中每一象限点的坐标特征是解题的关键.2.【分析】利用算术平方根的定义计算即可得到结果.【解答】解:∵22=4,∴4的算术平方根是2.故选:A.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.3.【分析】根据全面调查与抽样调查的特点,逐一判断即可解答.【解答】解:A、检测某品牌鲜奶是否符合食品卫生标准,最适合抽样调查,故A不符合题意;B、了解某班学生一分钟跳绳成绩,最适合全面调查,故B符合题意;C、了解北京市中学生视力情况,最适合抽样调查,故C不符合题意;D、调查某批次汽车的抗撞击能力,最适合抽样调查,故D不符合题意;故选:B.【点评】本题考查了全面调查与抽样调查,熟练掌握全面调查与抽样调查的特点是解题的关键.4.【分析】将21xy=⎧⎨=⎩代入原方程,可得出关于m的一元一次方程,解之即可得出m的值.【解答】解:将21xy=⎧⎨=⎩代入原方程得:2+m=5,解得:m=3,∴m的值为3.故选:B.【点评】本题考查了二元一次方程的解,牢记“把方程的解代入原方程,等式左右两边相等”是解题的关键.5.【分析】根据图示,可得:a<b且﹣5<a<﹣4,3<b<4,据此逐项判断即可.【解答】解:根据图示,可得:a<b且﹣5<a<﹣4,3<b<4,∵﹣5<a<﹣4,3<b<4,∴16<a2<25,9<b2<16,∴a2>b2,∴选项A不符合题意;∵a<b,∴﹣2a>﹣2b,∴选项B不符合题意;∵﹣5<a<﹣4,∴a+5>0,∴选项C不符合题意;∵a<b,∴a+4<b+4,∴选项D符合题意.故选:D.【点评】此题主要考查了实数与数轴上的点的一一对应关系,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.6.【分析】由垂线的定义得出∠AOE=90°,即可求出∠AOC的度数,根据对顶角相等即可得出∠BOD的度数.【解答】解:∵OE⊥AB,∴∠AOE=90°,∵∠COE=40°,∴∠AOC=∠AOE﹣∠COE=90°﹣40°=50°,∴∠BOD=∠AOC=50°,故选:C.【点评】本题考查了垂线的定义,对顶角的性质,熟知对顶角相等的性质.7.进行估算,再根据数轴表示进行求解.【解答】解:∵1<2,的点最接近的点是点Q,故选:B.【点评】此题考查了无理数的估算能力,关键是能准确理解并运用算术平方根知识进行求解.8.【分析】利用整体的思想,进行计算即可解答.【解答】解:2825x yx y+=⎧⎨+=-⎩①②,①+②得:3x+3y=3,解得:x+y=1,故选:C.【点评】本题考查了解二元一次方程组,熟练掌握整体的思想是解题的关键.9.【分析】根据“小丽进入电梯不超重,小欧进入电梯超重”,可列出关于x的一元一次不等式组,解之即可得出x的取值范围.【解答】解:根据题意得:504005070400 xx+≤⎧⎨++>⎩,解得:280<x≤350.故选:A.【点评】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.10.【分析】根据条形统计图与折线统计图所给的信息进行求解即可.【解答】解:①由条形图与折线图可知,2018的进口额为14.1万亿元,进口额的年增长率为12.8%,2019的进口额为14.3万亿元,进口额的年增长率为1.4%,所以与2018年相比,2019年的进口额的年增长率虽然下降,但进口额仍然上升,故①结论正确,符合题意;②由条形图可知,从2018年到2022年,进口额最多的是2022年,为18.1万亿元,故②结论正确,符合题意;③由折线图可知,2018﹣2022年进口额年增长率先下降再上升再下降,故③结论错误,不符合题意;④由条形图可知,与2021年相比,2022年出口额增加了24.0﹣21.7=2.3万亿元,故④结论正确,符合题意;故选:A.【点评】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况.二、填空题(本题共16分,每小题2分11.【分析】m的2倍与5的和是正数为5+2m;和是正数,那么前面所得的结果大于0.【解答】解:m的2倍为2m,5与m的2倍的和写为5+2m,和是正数,则5+2m>0,故答案为:5+2m>0.【点评】本题主要考查由实际问题抽象出一元一次不等式的知识点,解决本题的关键是理解正数用数学符号表示是“>0”.12.【分析】根据垂线段最短的性质求解即可.【解答】解:∵垂线段最短,∴行人沿垂直马路的方向过斑马线更为合理.故答案为:垂线段最短.【点评】本题考查垂线的性质,关键是掌握垂线的两条性质,明白垂线段最短.13.【分析】直接利用已知点坐标进而确定原点位置进而得出答案.【解答】解:永定门的点的坐标为(0,﹣7),故答案为:(0,﹣7).【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.14.【分析】求出OO′的长即可确定O′点对应的数.【解答】解:∵圆的周长为=1×π=π,∴圆从原点沿数轴向右滚动一周经过的路径长OO′=π,∴O′点对应的数是π.故答案为:π.【点评】本题主要考查了实数与数轴之间的对应关系,解题的关键是求出OO′的长.15.【分析】利用两直线平行,内错角相等作答.【解答】解:根据题意可知,两直线平行,内错角相等,∵∠1=20°,∠1+∠3=60°,∴∠3=40°,∵∠2=∠3,∴∠2=40°.故答案为:40.【点评】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.16.【分析】直接利用平移方法,将2条道路平移到图形的一侧,进而求出即可.【解答】解:(10﹣1)×(10﹣1)=9×9=81(平方米).故种植花草的面积是81平方米.故答案为:81.【点评】本题考查了生活中的平移现象,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致错误.17.【分析】根据“用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,绳子比长木短1尺”,即可列出关于x ,y 的二元一次方程组,此题得解.【解答】解:∵用一根绳子去量一根长木,绳子还剩余4.5尺,∴x ﹣y =4.5;∵将绳子对折再量长木,绳子比长木短1尺,∴y ﹣x =1.∴根据题意可列方程组 4.512x y x y -=⎧⎪⎨-=⎪⎩.故答案为: 4.512x y x y -=⎧⎪⎨-=⎪⎩.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.18.【分析】(1)过G 点作MH ⊥ED 延长线于点H ,过E 作NE ⊥DE ,过F 点作MN ∥x 轴,交MH 于点M ,交NE 于点N ,分别求出△GHD ,△MGF ,△FNE ,矩形MNEH 的面积,即可求出四边形DEFG 的面积.(2)通过已知可知1041361a b a b =⨯+-⎧⎨=+-⎩,即可求出a ,b 的值,从而可求所求S的值.【解答】解:(1)过G 点作MH ⊥ED 延长线于点H ,过E 作NE ⊥DE ,过F 点作MN ∥x 轴,交MH 于点M ,交NE 于点N ,则HD =1,GH =1,GM =1,MF =1,FN =2,NE =2,MH =2,HE =3,∴S 矩形MNEH =MH ×MN =2×3=6,S △GHD =12×GH ×HD =12×1×1=12,S △GMF =12×MG ×MF =12×1×1=12,S △FNE =12×FN ×NE =12×2×2=2,∴S 四边形DEFG =S 矩形MNEH ﹣S △GHD ﹣S △GMF ﹣S △FNE=6﹣12﹣12﹣2=3.故答案为:3.(2)对于四边形DEFG ,S =3,N =1,L =6,由题意知,1041361a b a b =⨯+-⎧⎨=+-⎩,解得,112a b =⎧⎪⎨=⎪⎩,∴S =aN +bL ﹣1=1×71+×18﹣1=79,故答案为:79.【点评】本题主要考查了新定义问题、平面直角坐标系中图形面积的求解、二元一次方程组的求解.求平面直角坐标系中图形面积时,常用的方法是间接法,即在图形外补出一个规则图形或者将所求图形分割成若干规则小图形.三、解答题(本题共54分,第19-23题每小题5分,第24题4分,第25题5分,第26题6分,第27-28题每小题5分)解答应写出文字说明、证明过程或演算步骤.19.【分析】先算算式平方根,立方根以及绝对值,二次根式的化简,再算加减法,即可求解.1+=2(4)31+--+-6-.【点评】本题主要考查了实数的混合运算,掌握算式平方根,立方根,二次根式的化简以及绝对值的概念是解题的关键.20.【分析】方程组利用代入消元法求出解即可.【解答】解:321921x yx y+=⎧⎨-=⎩①②,由②得:y=2x﹣1③,把③代入①得:3x+2(2x﹣1)=19,即x=3,把x=3代入③得:y=5,则方程组的解为35xy=⎧⎨=⎩.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.21.【分析】先求出两个不等式的解集,再求其公共解,从而得到它的整数解.【解答】解:解不等式①,得x>2,解不等式②,得x≤4,故原不等式组的解集为2<x≤4.故它的整数解为x=3或4.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.【分析】由角平分线求出∠DAE,再由平行的性质求出∠AEB,从而可判断∠AEB和∠BCD的大小关系,从而可证明AE∥DC.【解答】证明:∵AE平分∠BAD,∠BAD=80°(已知),∴1402DAE BAD∠=∠= (理由:角平分线的定义).∵AD∥BC(已知),∴∠AEB=∠DAE=40°(理由:两直线平行,内错角相等).∵∠BCD=40°(已知),∴∠BCD=∠AEB(等量代换).∴AE∥DC(理由:同位角相等,两直线平行).故答案为:角平分线的定义;∠AEB;两直线平行,内错角相等;∠AEB;同位角相等,两直线平行.【点评】本题考查了角平分线的定义、平行线的性质和判定.本题的关键是熟练应用平行的性质和判定.23.【分析】(1)根据算术平方根,即可解答;(2)根据0和1的算术平方根是它们本身,0和1是有理数,所以始终输不出y值;(3)25的算术平方根是5,5,据此解答.【解答】解:(1)∵16的算术平方根是4,4是有理数,4不能输出,∴4的算术平方根是2,2是有理数,2不能输出,∴2,(2)∵0和1的算术平方根是它们本身,0和1是有理数,∴当x=0和1时,始终输不出y的值;故答案为:0和1;(3)25的算术平方根是5,5,∴若输出的y,满足要求的x的值为5和25.【点评】本题考查了算术平方根,解决本题的关键是熟记算术平方根的定义.24.【分析】(1)利用平移变换的性质分别作出A,B,C的对应点A′,B′,C′即可;(2)利用平移变换的性质判断即可;(3)设D(0,m),构建方程求解即可.【解答】解:(1)如图,三角形A'B'C'即为所求;(2)若三角形ABC内有一点P(a,b)经过上述平移后的对应点为P',写出点P'的坐标:(a+4,b﹣3);故答案为:a+4,b﹣3;(3)设点D(0,m).则有12×4×|m|=4,∴m=±2,∴点D的坐标为(0,2)或(0,﹣2).【点评】本题考查作图﹣平移变换,三角形的面积等知识,解题的关键是掌握平移变换的性质,属于中考常考题型.25.【分析】(1)用50乘以C组的百分比即可求出a的值,即可补全频数分布直方图;(2)360°乘以E所占的比例即可求解;(3)由于50×60%=30,所以为了鼓励节约用水,要使60%的家庭收费不受影响,即要使30户的家庭收费不受影响,而7+23=30,故家庭月均用水量应该定为5吨.【解答】解:(1)C的频数为:a=50×28%=14,补全频数分布直方图如下:故答案为:14;(2)扇形统计图中,月均用水量为“E:6≤x<7”的扇形的圆心角是:360°×=36°;故答案为:36;(3)要使60%的家庭水费支出不受影响,家庭月均用水量应该定为5吨,理由如下:因为月平均用水量不超过5吨的百分比为8%+24%+28%=60%.【点评】本题考查读频数分布直方图和频数分布表的能力及利用统计图表获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.26.【分析】(1)由AB ∥CD 得∠KFB =∠FED =α,根据平角的定义及角平分线的性质可得出11(180)22GFK AFK α∠=∠=- ,然后将α=60°代入即可;(2)①延长MP 交CD 于点Q ,由AB ∥CD 得∠BMP +∠PQN =180°,由PN ⊥PM 得∠MPN =90°=∠PQN +∠PNE 可得出结论;②由于∠MPN 的一边恰好与射线FG 平行,因此有以下两种情况,(ⅰ)当PN 与射线FG 平行时,设∠PNE =θ,延长NP ∠AB 于点H ,由AB ∥CD 得∠PHF =∠PNE =θ,∠PFH =∠FED =α,再由PN ∥FG 及(1)的结论得1(180)2GFK HPF α∠=∠=- ,然后由三角形的内角和定理得∠PHF +∠PFH +∠HPF =180°,据此可得出答案;(ⅱ)当PM 与射线FG 平行时,由PM ∥FG 得1(180)2MPF GFK α∠=∠=- 由PN ⊥PM 得∠MPN =90°,进而得∠MPF +∠NPE =90°,据此可得12NPE α∠=,最后再由三角形的外角定理可得出答案.【解答】解:(1)∵AB ∥CD ,∴∠KFB =∠FED =α,∵∠AFK +∠KFB =180°,∴∠AFK =180°﹣∠KFB =180°﹣α,∵FG 平分∠AFK ,∴11(180)22GFK AFK α∠=∠=- ∵α=60°,∴11(180)(18060)6022GFK α∠=-=-= .(2)①∠BMP 与∠PNE 的数量关系是:∠BMP ﹣∠PNE =90°.理由如下:延长MP 交CD 于点Q ,∵AB ∥CD ,∴∠BMP +∠PQN =180°,∵PN ⊥PM ,∴∠MPN =90°,∴∠PQN +∠PNE =∠MPN =90°,∴∠PQN =90°﹣∠PNE ,∴∠BMP +90°﹣∠PNE =180°,∴∠BMP ﹣∠PNE =90°.②∠PNE 的度数为:1902α- 或12α.理由如下:∵∠MPN 的一边恰好与射线FG 平行,∴有以下两种情况,(ⅰ)当PN 与射线FG 平行时,设∠PNE =θ,延长NP ∠AB 于点H ,∵AB ∥CD ,∴∠PHF =∠PNE =θ,∠PFH =∠FED =α,∵PN ∥FG ,∴∠HPF =∠GFK ,由(1)可知:1(180)2GFK α∠=- ,∴1(180)2HPF α∠=-,∵∠PHF +∠PFH +∠HPF =180°,∴1(180)1802θαα++-= ,∴1902θα=- ,∴1902PNE θα∠==- ,(ⅱ)当PM 与射线FG 平行时,∵PM ∥FG ,∴1(180)2MPF GFK α∠=∠=- ,∵PN ⊥PM ,∴∠MPN =90°,∴∠MPF +∠NPE =90°,∴119090(180)22NPE MPF αα∠=-∠=--= ,∵∠FED =∠NPE +∠PNE ,∴1122PNE FPD NPE ααα∠=∠-∠=-=.【点评】此题主要考查了平行线的性质,角平分线的定义,垂直的定义,解答此题的关键是准确识图,熟练掌握两直线平行内错角相等,两直线平行同位角相等,难点是分类讨思想在解题中的应用,这也是解答此题的易错点之一.27.【分析】(1)设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,利用销售收入=销售单价×销售数量,结合近两个月的销售情况,可列出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设采购A 种材质的围棋m 套,则采购B 种材质的围棋(30﹣m )套,利用进货总价=进货单价×进货数量,结合进货总价不多于5400元,可列出关于m 的一元一次不等式,解之取其中的最大值,即可得出结论;(3)在(2)的条件下,商店销售完这30套围棋能实现利润为1300元的目标,利用总利润=每套的销售利润×销售数量,可得出关于m 的一元一次方程,解之可得出m 的值,再结合(2)中m 的取值范围,即可得出在(2)的条件下,商店销售完这30套围棋能实现利润为1300元的目标.【解答】解:(1)设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,根据题意得:3518004103100x y x y +=⎧⎨+=⎩,解得:250210 xy=⎧⎨=⎩.答:A种材质的围棋每套的售价为250元,B种材质的围棋每套的售价为210元;(2)设采购A种材质的围棋m套,则采购B种材质的围棋(30﹣m)套,根据题意得:200m+170(30﹣m)≤5400,解得:m≤10,∴m的最大值为10.答:A种材质的围棋最多能采购10套;采购金额不多余5400元(3)在(2)的条件下,商店销售完这30套围棋能实现利润为1300元的目标,理由如下:根据题意得:(250﹣200)m+(210﹣170)(30﹣m)=1300,解得:m=10,又∵m≤10,∴m=10符合题意,∴在(2)的条件下,商店销售完这30套围棋能实现利润为1300元的目标.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式;(3)找准等量关系,正确列出一元一次方程.28.【分析】(1)①设B(x,0),由题意可得|x﹣0|=3,从而可求出B点的坐标;②分当x<﹣1或x>1和﹣1≤x≤1两种情况求出d(A,B),即可求出最小值;③由已知可得点C在以A点为对称中心,边长为2r的正方形边上,根据面积即可求出r;(2)结合图象,画出符合题意的M点所在的区域,从而可求出m的取值范围.【解答】解:(1)设B(x,0),①∵|0﹣1|=1≠3,∴|x﹣0|=3,∴x=±3,∴B点的坐标为(﹣3,0)或(3,0).②当x<﹣1或x>1时,|x﹣0|>|0﹣1|,∴d(A,B)=|x|>1;当﹣1≤x≤1时,|x﹣0|≤|0﹣1|=1,∴d(A,B)=1,综上所述,d(A,B)的最小值为1.故答案为:1.③r=4.由题意知,点C在以A点为对称中心,边长为2r的正方形边上,∵正方形面积为64,∴正方形的边长为8,即2r=8,∴r=4.(2)由题意知,当M点在矩形DFEG内(含边)内运动时,d(D,M)+d(E,M)=5.∴﹣2≤m≤3.【点评】本题主要考查了平面直角坐标系中点的特征.本题的最后一问的解题关键是结合图象,先求出动点所在的区域,再求取值范围.。

北京初一初中数学期末考试带答案解析

北京初一初中数学期末考试带答案解析

北京初一初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列不等式中,是一元一次不等式的是()A.x2+1>x B.-y+1>y C.>2D.|x+1|>02.如图:要测河岸相对两点A、B间距离,先从B出发与AB成90°角方向,向前走50米到C立一根标杆,然后方向不变继续朝前走50米到D处,在D处转90°沿DE方向走17米,到达E处,使A、C与E在同一直线上,那么测得A、B的距离为17米.这一作法的理论依据是()A.SSS B.SAS C.ASA D.AAS3.根据不等式的性质,下列变形正确的是()A.由a>b得ac2>bc2B.由ac2>bc2得a>bC.由-a>2得a<2D.由2x+1>x得x>14.若点P(1-m,2m-4)在第四象限内,则m的取值范围是()A.m<1B.1<m<2C.m<2D.m>25.已知△ABC中,AB=5,AC=7,则BC边上的中线a的取值范围是()A.1<a<6B.5<a<7C.2<a<12D.10<a<146.如图,AD是△ABC的角平分线,∠C=90°,BC=9cm,BD=5cm,则点D到AB的距离是()A.4cm B.5cm C.6cm D.9 cm7.已知方程组的解满足x>y,则a的取值范围是()A.a>1B.a<1C.a>5D.a<58.如图,已知∠EAC=∠BAD,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠D.其中能使△ABC≌△AED的条件有()A.4个 B.3个 C.2个 D.1个9.如图,在△ABC中,∠C=90°,∠B=15°,D是AB的中点,DE⊥AB于D,交BC于E,则∠CAE的度数是()A.15°B.30°C.60°D.75°10.若关于x的不等式2a-x>1的解集是x<1,则a的值是()A.a="1"B.a>1C.a<1D.a=-111.已知Rt△ABC中,∠C=90°,将∠C沿DE向三角形内折叠,使点C落在△ABC的内部,如图,则∠1+∠2=()A.90°B.135°C.180°D.270°12.等腰三角形一腰上的高与另一腰的夹角是35°,则顶角的度数是()A.55°B.125°C.125°或55°D.35°或145°二、填空题1.不等式3-2x>-5的解集是 .2.如果是一元一次不等式,则m= .3.一个三角形的两边分别是5cm和3cm,则第三边xcm的取值范围是 .4.如图,已知AD平分∠BAC交BC于D,CE⊥AD于E,∠B=26°,∠DCE=34°,则∠BAC的度数为 .5.不等式(a-1)x<1-a的解集是x>-1,则a的取值范围是 .6.如图,△ABC≌△AED,∠B=40°,∠EAB=30°,∠ACB=45°,∠D= °.7.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是边形.8.有一个多边形的内角和是它外角和的5倍,则这个多边形是边形.9.如图,△ABC两内角的平分线AO、BO相交于点O,若∠AOB=110°,则∠C= °.10.在平面直角坐标系xOy中,已知A(3,0),B(-1,-2),AC⊥AB且AC=AB,则点C的坐标是 .三、计算题计算:四、解答题1.解不等式10-4(x-4)≤2(x-1),并把它的解集在数轴上表示出来.2.求不等式组的整数解.3.在△ABC中,求作BC上一点D,使其到AB、AC的距离相等.4.已知:如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED.求证:AC=CD.5.列一元一次不等式(组)解决实际问题:元旦联欢会上,班级为同学们买了一批小礼物,如果每个人分3个,还多5个;如果每个人分4个,就会有一个人能分到但分不到4个,若已知班级学生的人数是奇数,试问这些小礼物共有多少个?6.如图,在△ABC中,∠ACB=90°,CD⊥AB于D.把三角形沿AE对折使点C落在AB边上的点F上,CD与折痕AE相交于G,连结FG并延长交AC于H.(1)判断FH与BC的位置关系,并说明理由;(2)判断HG与DG的数量关系,并说明理由.7.在平面直角坐标系中,点A在y轴正半轴上,点B与点C都在x轴上,且点B在点C的左侧,满足BC=OA,若-3a m-1b2与a n b2n-2是同类项且OA=m,OB=n.(1)m= ;n= .(2)点C的坐标是.(3)若坐标平面内存在一点D,满足△BCD全等△ABO,试求点D的坐标.北京初一初中数学期末考试答案及解析一、选择题1.下列不等式中,是一元一次不等式的是()A.x2+1>x B.-y+1>y C.>2D.|x+1|>0【答案】B.【解析】:A、x2+1>x,是一元二次不等式,故A选项错误;B、-y+1>y,是一元一次不等式,故B选项正确;C、>2,是分式不等式,故C选项错误;D、|x+1|>0,是含绝对值的不等式,故D选项错误.故选B.【考点】一元一次不等式的定义.2.如图:要测河岸相对两点A、B间距离,先从B出发与AB成90°角方向,向前走50米到C立一根标杆,然后方向不变继续朝前走50米到D处,在D处转90°沿DE方向走17米,到达E处,使A、C与E在同一直线上,那么测得A、B的距离为17米.这一作法的理论依据是()A.SSS B.SAS C.ASA D.AAS【答案】C.【解析】∵先从B处出发与AB成90°角方向,∴∠ABC=90°,在△ABC和△EDC中,∴△ABC≌△EDC(ASA),∴AB=DE,∵沿DE方向再走17米,到达E处,即DE=17∴AB=17.故选C.【考点】全等三角形的应用.3.根据不等式的性质,下列变形正确的是()A.由a>b得ac2>bc2B.由ac2>bc2得a>bC.由-a>2得a<2D.由2x+1>x得x>1【答案】B.【解析】根据不等式的基本性质可知:选项A、C、D错误;故选B.【考点】不等式的基本性质.4.若点P(1-m,2m-4)在第四象限内,则m的取值范围是()A.m<1B.1<m<2C.m<2D.m>2【答案】A.【解析】∵点P(1-m,2m-4)在第四象限内,∴,解不等式①得,m<1,解不等式②得,m<2,所以,m的取值范围是m<1.故选A.【考点】1.点的坐标;2.解一元一次不等式组.5.已知△ABC中,AB=5,AC=7,则BC边上的中线a的取值范围是()A.1<a<6B.5<a<7C.2<a<12D.10<a<14【答案】A.【解析】延长AE到D,使AE=DE,连接BD.∵AE是中线,∴BE=CE,∠AEC=∠DEB,∴△AEC≌△DEB△(SAS),∴BD=AC=7,又AE=a,∴2<2a<12,∴1<a<6.故选A.【考点】1.全等三角形的判定与性质;2.三角形三边关系.6.如图,AD是△ABC的角平分线,∠C=90°,BC=9cm,BD=5cm,则点D到AB的距离是()A.4cm B.5cm C.6cm D.9 cm【答案】A.【解析】如图,过点D作DE⊥AB于E,∵BC=9cm,BD=5cm,∴CD=BC-BD=9-5=4cm,∵AD是△ABC的角平分线,∠C=90°,∴DE=CD=4cm,即点D到AB的距离是4cm.故选A.【考点】角平分线的性质.7.已知方程组的解满足x>y,则a的取值范围是()A.a>1B.a<1C.a>5D.a<5【答案】A.【解析】,①×2-②×3得:y=-1,将y=-1代入①得:3x+2=3a-4,解得:x=a-2,代入不等式得:a-2>-1,解得:a>1,故选A.【考点】1.二元一次方程组的解;2.解一元一次不等式.8.如图,已知∠EAC=∠BAD,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠D.其中能使△ABC≌△AED的条件有()A.4个 B.3个 C.2个 D.1个【答案】C.【解析】∵∠EAC=∠BAD,∴∠EAC+∠BAE=∠BAD+∠BAE,即∠BAC=∠EAD,当AB=AE时,在△ABC和△AED中,,∴△ABC≌△AED(SAS);当BC=ED时,不能判断△ABC≌△AED.当∠C=∠D时,在△ABC和△AED中,,∴△ABC≌△AED(ASA);当∠B=∠D,而AC=AD,所以∠B与∠D不是对应角,所以不能判断△ABC≌△AED.故选C.【考点】全等三角形的判定.9.如图,在△ABC中,∠C=90°,∠B=15°,D是AB的中点,DE⊥AB于D,交BC于E,则∠CAE的度数是()A.15°B.30°C.60°D.75°【答案】C.【解析】∵△ABC中,∠C=90°,∠B=15°,∴∠BAC=90°-∠B=90°-15°=75°.∵D是AB的中点,DE⊥AB于D,∴AE=BE,∴∠B=∠BAE=15°,∴∠CAE=∠BAC-∠BAE=75°-15°=60°.故选C.【考点】线段垂直平分线的性质.10.若关于x的不等式2a-x>1的解集是x<1,则a的值是()A.a="1"B.a>1C.a<1D.a=-1【答案】A.【解析】∵2a-x>1,∴x<2a-1,∵x<1,∴2a-1=1,解得a=1.故选A.【考点】不等式的解集.11.已知Rt△ABC中,∠C=90°,将∠C沿DE向三角形内折叠,使点C落在△ABC的内部,如图,则∠1+∠2=()A.90°B.135°C.180°D.270°【答案】C.【解析】根据题意得∠C′ED=∠CED,∠C′DE=∠CDE,由三角形内角和定理可得,∠CED+∠CDE=180°-∠C=90°,∴∠C′E C+∠C′DC=2(180°-∠C),∴∠1+∠2=360°-(∠C′EC+∠C′DC)=360°-2(180°-∠C)=2∠C=180°.故选C.【考点】1.三角形内角和定理;2.翻折变换(折叠问题).12.等腰三角形一腰上的高与另一腰的夹角是35°,则顶角的度数是()A.55°B.125°C.125°或55°D.35°或145°【答案】C.【解析】分别从△ABC是锐角三角形与钝角三角形去分析求解:如图(1),∵AB=AC,BD⊥AC,∴∠ADB=90°,∵∠ABD=35°,∴∠A=55°;如图(2),∵AB=AC,BD⊥AC,∴∠BDC=90°,∵∠ABD=35°,∴∠BAD=55°,∴∠BAC=125°;综上所述,它的顶角度数为:55°或125°.故选C.【考点】等腰三角形的性质.二、填空题1.不等式3-2x>-5的解集是 .【答案】x<4.【解析】利用不等式的基本性质,解不等式即可.试题解析:移项得:-2x>-8,系数化为1得:x<4.【考点】解一元一次不等式.2.如果是一元一次不等式,则m= .【答案】m=1.【解析】根据已知和一元一次不等式的定义得出m+1≠0,|m|=1,求出即可.试题解析:∵是关于x的一元一次不等式,∴m+1≠0,|m|=1,解得:m=1.【考点】一元一次不等式的定义.3.一个三角形的两边分别是5cm和3cm,则第三边xcm的取值范围是 .【答案】2<x<8.【解析】根据三角形的三边关系三角形两边之和大于第三边.三角形的两边差小于第三边可得5-3<x<5+3,再解即可.试题解析:根据三角形的三边关系可得:5-3<x<5+3,即:2<x<8.【考点】三角形三边关系.4.如图,已知AD平分∠BAC交BC于D,CE⊥AD于E,∠B=26°,∠DCE=34°,则∠BAC的度数为 .【答案】60°【解析】根据三角形的内角和定理可知∠ADC=56°,再根据三角形外角的性质求得∠BAD,再由角平分线即可得出∠BAC的度数.试题解析:∵CE⊥AD,∠DCE=34°,∴∠ADC=90°-∠DCE=56°,∴∠BAD=∠ADC-∠B=30°,∵AD平分∠BAC,∴∠BAC=2∠BAD=60°【考点】三角形内角和定理.5.不等式(a-1)x<1-a的解集是x>-1,则a的取值范围是 .【答案】a<1.【解析】运用不等式的性质求解即可.试题解析:∵(a-1)x<1-a的解集是x>-1,∴a-1<0,∴a<1.【考点】不等式的解集.6.如图,△ABC≌△AED,∠B=40°,∠EAB=30°,∠ACB=45°,∠D= °.【答案】45°.【解析】根据全等三角形的对应角相等即可得出∠D的度数.试题解析:∵△ABC≌△AED,∠ACB=45°,∴∠ACB=∠D=45°.【考点】全等三角形的性质.7.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是边形.【答案】13.【解析】根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n-3)条对角线,由此可得到答案.试题解析:设这个多边形是n边形.依题意,得n-3=10,∴n=13.故这个多边形是13边形【考点】多边形的对角线.8.有一个多边形的内角和是它外角和的5倍,则这个多边形是边形.【答案】12.【解析】一个多边形的内角和等于它的外角和的5倍,任何多边形的外角和是360度,因而这个正多边形的内角和为5×360度.n边形的内角和是(n-2)•180°,代入就得到一个关于n的方程,就可以解得边数n.试题解析:根据题意,得(n-2)•180=5×360,解得:n=12.所以此多边形的边数为12.【考点】多边形内角与外角.9.如图,△ABC两内角的平分线AO、BO相交于点O,若∠AOB=110°,则∠C= °.【答案】40°.【解析】根据角平分线的定义和三角形的内角和定理求出∠CAB+∠CBA的值,再利用三角形的内角和定理求出∠C的值.试题解析:∵AO、BO分别平分∠CAB、∠ABC,∴∠CAB=2∠OAB,∠CBA=2∠OBA,∴∠CAB+∠CBA=2(∠OAB+∠OBA)=2(180-∠AOB)=140°,∴在△ABC中,∠C=180°-140°=40°.【考点】三角形内角和定理.10.在平面直角坐标系xOy中,已知A(3,0),B(-1,-2),AC⊥AB且AC=AB,则点C的坐标是 .【答案】(1,4)或(5,-4).【解析】首先画出图形,根据已知条件,证得三角形全等,根据已知点的坐标,求得答案即可.试题解析:如图,∵AC⊥AB,C′E⊥AE∴∠C′AE+∠C′=∠C′AE+∠BAD∴∠C′=∠BAD在△ABD和△C′AE和△C″FA中∴△ABD≌△C′AE≌△C″FA∴AD=C′E=C″F=4,BD=AE=AF=2∴点C坐标为(1,4)或(5,-4).【考点】1.全等三角形的判定与性质;2.坐标与图形性质.三、计算题计算:【答案】-10+2.【解析】分别根据数的开方法则、绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.试题解析:原式=-3-6+2(-2+)=-9+3-4+2=-10+2.【考点】实数的运算.四、解答题1.解不等式10-4(x-4)≤2(x-1),并把它的解集在数轴上表示出来.【答案】x≥,数轴见解析【解析】不等式去括号,移项合并,将x系数化为1,求出解集,表示在数轴上即可.试题解析:去括号得:10-4x+16≤2x-2,移项合并得:-6x≤-28,解得:x≥表示在数轴上,如图所示:【考点】1.解一元一次不等式;2.在数轴上表示不等式的解集.2.求不等式组的整数解.【答案】1、2、3、4、5.【解析】首先解每个不等式,确定两个不等式的解集的公共部分就是不等式组的解集,然后在解集中确定整数解即可.试题解析:解不等式①得:x<6解不等式②得:x≥1不等式组的解集为:1≤x<6整数解有1、2、3、4、5.【考点】一元一次不等式组的整数解.3.在△ABC中,求作BC上一点D,使其到AB、AC的距离相等.【答案】作图见解析.【解析】本题作图的理论依据是角平分线上的点到两边的距离都相等.(本题中的角平分线上的点指的是∠BAC 的平分线与BC的交点)试题解析:如图所示:作∠BAC的平分线AD交BC于点D,则点D即为所求.【考点】作图—基本作图;角平分线的性质.4.已知:如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED.求证:AC=CD.【答案】证明见解析.【解析】根据AB∥ED推出∠B=∠E,再利用SAS判定△ABC≌△CED从而得出AC=CD.试题解析:证明:∵AB∥ED,∴∠B=∠E.在△ABC和△CED中,,∴△ABC≌△CED.∴AC=CD.【考点】全等三角形的判定与性质.5.列一元一次不等式(组)解决实际问题:元旦联欢会上,班级为同学们买了一批小礼物,如果每个人分3个,还多5个;如果每个人分4个,就会有一个人能分到但分不到4个,若已知班级学生的人数是奇数,试问这些小礼物共有多少个?【答案】26个.【解析】设班级学生的人数为x人,根据“每个人分3个,还多5个;如果每个人分4个,就会有一个人能分到但分不到4个,”列出不等式组求得x的值,再进一步求得问题即可.试题解析:设班级学生的人数为x人,由题意得,解得:5<x≤8.因为班级学生的人数是奇数,所以x=7,3x+5=26.答:这些小礼物共有26个.【考点】一元一次不等式组的应用.6.如图,在△ABC中,∠ACB=90°,CD⊥AB于D.把三角形沿AE对折使点C落在AB边上的点F上,CD与折痕AE相交于G,连结FG并延长交AC于H.(1)判断FH与BC的位置关系,并说明理由;(2)判断HG与DG的数量关系,并说明理由.【答案】(1)FH∥BC;理由见解析;(2)HG=DG;理由见解析.【解析】(1)连接EF,根据翻折变换的性质可得∠CAE=∠EAF,∠AFE=90°,CE=EF,根据垂直的定义可得∠ADC=90°,然后根据同位角相等,两直线平行判断出EF∥CD,然后根据等角的余角相等求出∠AGD=∠AEC,再求出∠CGE=∠AEC,根据等角对等边可得CG=CE,然后求出CG=EF,再根据一组对边平行且相等的四边形是平行四边形判断出四边形CEFG是平行四边形,根据平行四边形对边平行可得GF∥CE,即FH∥BC;(2)根据两直线平行,同位角相等可得∠AHG=∠ACB=90°,再根据角平分线上的点到角的两边距离相等可得HG=DG.试题解析:(1)解:如图,连接EF,由翻折的性质得,∠CAE=∠EAF,∠AFE=∠ACB=90°,CE=EF,∵CD⊥AB,∴∠ADC=90°,∴∠ADC=∠AFE,∴EF∥CD,∵∠CAE=∠EAF,∠CAE+∠AEC=∠EAF+∠AGD=90°,∴∠AGD=∠AEC,又∵∠AGD=∠CGE(对顶角相等),∴∠CGE=∠AEC,∴CE=CG,∴CG=EF,∴四边形CEFG是平行四边形,∴GF∥CE,即FH∥BC;(2)解:∵FH∥BC,∴∠AHG=∠ACB=90°,又∵∠CAE=∠EAF,∴HG=DG.【考点】翻折变换(折叠问题).7.在平面直角坐标系中,点A在y轴正半轴上,点B与点C都在x轴上,且点B在点C的左侧,满足BC=OA,若-3a m-1b2与a n b2n-2是同类项且OA=m,OB=n.(1)m= ;n= .(2)点C的坐标是.(3)若坐标平面内存在一点D,满足△BCD全等△ABO,试求点D的坐标.【答案】(1)3,2;(2)(5,0)或(1,0);(3)(5,2)或(5,-2)或(2,2)或(2,-2),(1,2)或(1,-2)或(-2,2)或(-2,-2).【解析】(1)根据同类项的概念即可求得;(2)根据已知条件即可求得B(2,0)或(-2,0),根据点B在点C的左侧,BC=OA,即可确定C的坐标;(3)根据三角形全等的性质即可确定D的坐标;试题解析:(1)∵-3a m-1b2与a n b2n-2是同类项,∴,解得.(2)∵OA=m,OB=n,∴B(2,0)或(-2,0),∵点B在点C的左侧,BC=OA,∴C(5,0)或(1,0);(3)当C(5,0)时,∵△BCD全等△ABO,BC=OA=3,∴CD=2或BD=2,∴D的坐标为(5,2)或(5,-2)或(2,2)或(2,-2);当C(1,0)时,∵△BCD全等△ABO,BC=OA=3,∴CD=2或BD=2,∴D的坐标为(1,2)或(1,-2)或(-2,2)或(-2,-2).所以D点的坐标为(5,2)或(5,-2)或(2,2)或(2,-2),(1,2)或(1,-2)或(-2,2)或(-2,-2).【考点】1.全等三角形的判定与性质;2.同类项;3.坐标与图形性质.。

北京市海淀区2023~2024学年第一学期七年级期末数学参考答案

七年级练习数学参考答案一、选择题二、填空题11. 1− 12. 答案不唯一,m 为负数即可 13. 两点之间,线段最短 14. 318422x x +=−15. >16. 4;1说明:第14题写出方程的解也给3分;第16题第一空1分,第二空2分.三、解答题17. 解:(1)()()3258⨯−−−+658=−++ ········································································2分 7=········································································3分(2)()21126|3|2⎛⎫⨯−+−÷− ⎪⎝⎭()1=12634⨯+−÷········································································2分 ()=32+−········································································3分 =1········································································4分18. 解:(1)原方程可化为:733x x +=− ········································································1分 102x = ········································································2分 5x =········································································3分(2)原方程可化为:2(1)512x x −=−− ········································································1分 22512x x −=−− ········································································2分 35x =− ········································································3分 53x =−········································································4分19. 解: 3()4418a b a b −+−+3()4()18a b a b =−+−+7()18a b =−+ ········································································2分因为3a b −=,········································································3分所以7()18211839a b −+=+=. ········································································4分即3()441839a b a b −+−+=.20. 解:(1)作图如图所示:作出点B (保留作图痕迹); ········································································1分作出符合条件的射线OP ; ········································································2分作出点C ,并连接CA ,CB ; ········································································3分 (2)<········································································4分21. 解:因为∠AOD 与∠BOC 互为补角, 所以∠AOD +∠BOC =180°.········································································1分因为∠AOD = ∠AOC+∠COD ,∠BOC = ∠BOD+∠COD , 所以∠AOC+∠COD+∠BOD+∠COD=180°. ················································2分因为∠AOC =20°,∠BOD =2∠COD , 所以20°+4∠COD=180°. ········································································3分 所以∠COD=40°.········································································4分答:∠COD 的度数为40°.CAP BMN O22.解:(1)由图可知AB=AC+CB .因为AB =12,AC =2,所以12210CB AB AC =−=−=. ··································································1分因为D 为线段BC 的中点, 所以1110522CD CB ==⨯=.········································································2分(2)当E 在点A 右侧时, 如图①.因为5AE CD ==,且AB =12,所以1257EB AB AE =−=−=. ········································································3分当E 在点A 左侧时, 如图②.因为5AE CD ==,且AB =12, 所以12517EB EA AB =+=+=. ····························································4分综上所述,EB 的长为7或17.23. 解:设还需要增加x 名文物修复师才能按时完成修复工作. ······························1分依题意列方程,得10×16720+20(16+x)720=1. ··········································3分解得 x =12.··································································4分答:还需要增加12名文物修复师才能按时完成修复工作.························5分24. 解:(1)132. ·················································································1分因为17−<,所以()1131&7722−=−+=.(2)若2x >,2&1x x =+,于是5213x x ++=,解得12x =,舍; ·····················2分 若2x =,2&2x x =+,于是5223x x ++=,解得2x =,成立; ·····················3分 若2x <,2&22xx =+,于是52223x x ++=,解得87x =,成立·····················4分所以x 的值为2或87. 图①ACED B图②ACD BE(3)32. ·················································································5分 25.解:(1)①15;·················································································1分②∠MON =∠BOC ;·····································································2分(2)解:0120 1.α︒<<︒当时,如图 因为 2AOB BOC αα∠=∠=,,所以3.22AOC AOB BOC ααα∠=∠++=∠=因为OM 平分∠AOC , 所以.1234MOC AOC α∠=∠=因为ON 平分∠BOC , 所以.1214NOC BOC α∠=∠=(说明:两次角平分线用对一次可给1分)所以311.442MON MOC NOC ααα∠−∠==∠−= ·············································4分120180 2.α︒<<︒当时,如图因为2AOB BOC αα∠=∠=,,所以360()3603.2AOC AOB BOC α∠=︒−∠+∠=︒−因为OM 平分∠AOC ,所以83.14102MOC AOC α∠=∠=︒−因为ON 平分∠BOC , 所以.1214NOC BOC α∠=∠=(说明:两次角平分线用对一次可给1分) 所以11.820MON MOC NOC α∠=∠+∠=︒− 综上所述,1801.2MON MON αα∠=∠=︒−或·············································6分26. (1)212x −=−;是. ·············································2分(2)因为点 A 和点B 分别表示的数为a ,b , 所以线段AB 的中点表示的数为2a bc +=. 图 1图 2因为a=0.5,所以0.52b c+ =.因为线段AB的美好点恰好是线段AB的中点,所以代入方程ax b ab+=得:0.5+0.50.52bb b⨯+=.·································3分解得:16 b=−.所以0.5126bc+==. ·······························································4分(3)46. ·················································································6分。

2024北京大兴区初一(下)期末数学试题及答案

2024北京大兴初一(下)期末数 学2024.07一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.在平面直角坐标系中,点P (﹣3,2)在 (A )第一象限(B )第二象限(C )第三象限(D )第四象限2.下列调查中,适合采用全面调查方式的是(A )了解某班学生的身高情况 (B )了解某批次汽车的抗撞击能力 (C )了解某食品厂生产食品的合格率 (D )了解永定河的水质情况 3. 4的算术平方根是(A )4± (B )4 (C )2± (D )24. 已知12x y =−⎧⎨=⎩是关于x ,y 的方程32mx y +=的解,则m 的值为(A ) 8 (B ) 8− (C ) 4 (D ) 4− 5.不等式组13x +≥的解集在数轴上表示正确的是(A )(B )(C ) (D )6.如图,在三角形ABC 中,点D ,E ,F 分别在AB BC AC ,,上,连接DE DF CD ,,,下列条件中,不能推理出AC DE ∥的是(A )EDC DCF ∠=∠ (B )DEB FCE ∠=∠(C )180DEC FCE ∠+∠=︒ (D )180FDE DEC ∠+∠=︒ 7.下列四个说法: ①若a b >,则a c b c +>+;②若a b >,则ac bc >; ③若a b >,且 c ≠0,则22a b c c>; ④若0a b c <<<,则22a c b c >. 其中说法正确的个数是 (A )1个(B )2个(C )3个(D )4个8.小兰在学习了“如果//b a ,//c a ,那么//b c .”,由此进行联想,提出了下列命题: ①对于任意实数a ,b ,c ,如果a >b ,b >c ,那么a >c ;②对于平面内的任意直线a ,b ,c ,如果a ⊥b ,b ⊥c ,那么a ⊥c ;③对于平面内的任意角α,β,γ,如果α与β互余,β与γ互余,那么α与γ互余;④对于任意图形M ,N ,P (其中图形M ,N ,P 不重合),如果M 可以平移到N ,N 可以平移到P ,那么M 可以平移到P .其中所有真命题的序号是(A )①③ (B )①④ (C )②③ (D ) ①③④ 二、填空题(本题共16分,每小题2分)9.把方程31x y +=改写成用含x 的式子表示y 的形式,则y________________.10.为了解某校学生进行体育活动的情况,从全校 2800名学生中随机抽取了 100名学生,调查他们平均每天进行体育活动的时间,在这次调查中,样本容量是 .11.已知方程()130m m x y +−=是关于x ,y 的二元一次方程,则m =___________.12这三个数中, 是该不等式组的解.13.《孙子算经》是中国古代重要的数学著作.书中记载了这样一个问题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余 4.5尺;将绳子对折再量木条,木条剩余 1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 .14.已知关于x 的不等式组0213x m x −<⎧⎨+⎩≥有解,则m 的取值范围是 .15.如图,AOB ∠的一边OA 是平面镜,50AOB ∠=︒,点C 是OB 上一点,一束光线从点C 射出,经过平面镜OA 上的点D 反射后沿射线DE 射出,已知ODC ADE =∠∠,要使反射光线DE BO ∥,则DCB ∠= °.16.两个数比较大小,可以通过它们的差来判断,例如:比较m 和n 的大小,我们可以这样判断,当0m n −>时,一定有m >n ;当0m n −=时,一定有m n =;当0m n −<时,一定有m n <.请你根据上述方法判断下列各式. (1)已知42Mab ,33Nab ,当a b >时,一定有M ______N (填“>”,“=” 或“<”);(2)已知11132M a b =−−,1223N b a =−,当M N >时,一定有 a ____b (填“>”,“=” 或“<”).三、解答题(本题共68分,第17-22题,每题5分,第23 -26题6分,第27-28题,每题7分) 解答应写出文字说明、演算步骤或证明过程. 17()202421+−−−.18.解不等式2123x x −≥,并在数轴上表示它的解集.19.解方程组:2310x y x y −=⎧⎨+=⎩,.20.解不等式组:235412x x x x +⎧>⎪⎨⎪−<+⎩,.21.如图,点B 是射线AC 上一点,射线AC 的端点A 在直线DE 上,按要求画图并填空: (1)过点B 做直线l 平行直线DE ;(2)用量角器做BAE ∠的角平分线,交直线l 于点F ; (3)做射线AG ⊥AF ,交直线l 于点G ;(4)若FBC α∠=,则BFA ∠= (用含α的式子表示); (5)请用等式写出BAF DAG ∠∠与的数量关系 .22.我们已经在小学通过剪拼的方法,知道“三角形内角和等于180°”这一结论,但这种实验得到的结论仍需要严格的证明,小明同学利用所学的平行线的相关知识,采用两种方法,通过添加辅助线进行证明,请你选择其中一种方法........完成证明.23.根据《北京市教育委员会关于印发义务教育体育与健康考核评价方案的通知》要求,自2024年起,本市初三年级体育与健康考核评价现场考试内容进行调整,其中运动能力Ⅰ中新增:乒乓球—左推右攻发球、羽毛球—正反手挑球和发高远球两项.某学校为此在体育大课间中专门开设乒乓球和羽毛球课程,需要购买相应的体育器材上课使用,其中羽毛球拍25套,乒乓球拍50套,共花费4500元,已知一套羽毛球拍的单价比一套乒乓球拍的单价高30元.(1)求羽毛球拍和乒乓球拍一套的单价各是多少元?(2)根据需要,学校决定再次购进乒乓球拍和羽毛球拍共50套,恰逢体育用品商店搞“优惠促销”活动,羽毛球拍一套单价打8折,乒乓球拍一套单价优惠4元.若此次学校购买两种球拍的总费用不超过2750元,且购买羽毛球拍数量不少于23套,请通过计算,设计一种符合购买要求且节约资金的购买方案.24.某校组织全体学生参加“网络安全知识”竞赛,为了解学生们在本次竞赛中的成绩,调查小组从中选取若干名学生的竞赛成绩(百分制,成绩取整数)作为样本,进行了抽样调查,下面是对样本数据进行了整理和描述后得到的部分信息:a.抽取的学生成绩的频数分布表:c .抽取的学生成绩的扇形统计图:根据以上信息,回答下列问题:(1)写出频数分布表中的数值a =______,b = _______; (2)补全频数分布直方图;(3)扇形统计图中,竞赛成绩为C :7080x ≤<的扇形的圆心角是 °; (4)如果该校共有学生400人,估计成绩在7080x ≤<之间的学生有 人. 25.如图,点E ,G 在线段AB 上,点F 在线段CD 上,EF DG ∥,1=2∠∠. (1)判断AB 与CD 的位置关系,并证明;(2)若=80A ∠︒,BC 平分ACD ∠,1∠与BCF ∠互余,求2∠的度数.26.如图,网格中标有面积为2的长方形ABCD .(1)通过裁剪、拼接长方形ABCD ,可以拼出一个面积为2的正方形,请以点D 为顶点,在图中画出一个满足条件的正方形,则此正方形的边长为 ;(2)请在图中建立适当的平面直角坐标系xOy ,使点C 位于(0,1)−,线段AB 的中点E 位于(1,0)−. ①请选用合适的工具,在平面直角坐标系xOy中描出点(01F ,;②若点G 的纵坐标为1−,连接EC ,三角形ECG 的面积是1,直接写出点G 的坐标.27.如图,已知AB //CD ,∠BGH =∠EFC ,点P 为直线CD 上一动点.(1)求证:EF//GH ;(2)作射线HM 交直线CD 于点M ,交直线EF 于点N ,且GHM PHM ∠=∠.①当点P 运动到如图1所示的位置时,用等式表示∠1,∠2与∠3之间的数量关系,并证明;②当点P 运动到如图2所示的位置时,补全图形,直接用等式写出∠HPD 、∠MFE 与∠ENM 之间的数量关系.28.在平面直角坐标系xOy 中,对于图形M 与图形N 给出如下定义:点P 为图形M 上任意一点,点P 与图形N 上的所有点的距离的最小值为k ,将点P 延x 轴正方向平移2k 个单位长度得到点'P ,称点'P 是点P 关于图形N 的“关联点”,图形M 上所有点的“关联点”组成的新图形记为'M ,称'M 是图形M 关于图形N 的“相关图形”.(1)已知(20)A −,,(01)B ,,(0)C t ,,其中1t ≠. ①若0t <,点A 关于线段BC 的“关联点”'A 的坐标是 ;②若1t >,请用尺规在图中画出点A 关于线段BC 的“关联点”'A (保留作图痕迹);Cy(2)如图,线段DE关于图形N的“相关图形”如图所示(D'F'为曲线且除F'外,其余点的横坐标大于6),如果图形N上的点都在同一条直线上,请在图中画出图形N.D'F'大兴区2023~2024学年度第二学期期末检测初一数学参考答案及评分标准一、选择题(本题共16分,每小题2分) 题号 1 2 3 4 5 6 7 8 答案 BDACDDCB二、填空题(本题共16分,每小题2分) 9.13y x =- 10. 10011. 112.513. 4.5112x y x y -=-⎧⎪⎨-=⎪⎩ 14.32m <-15. 10016.(1) > (2) >三、解答题(本题共68分,第17-22题,每题5分,第23-26题,每题6分,第27-28题,每题7分)17.解:()2024316+281-+---()4221=++--……………………………………………………………………………………4分 =3……………………………………………………………………………………………………5分18.解:2123x x -≥()3221x x -≥……………………………………………………………………………………1分 342x x -≥………………………………………………………………………………………2分 2x -≥- …………………………………………………………………………………………3分 2x ≤.…………………………………………………………………………………………4分–1–2–3–4–512345……………………………………………5分19.解:2310x y x y -=⎧⎨+=⎩①②由①+②得:412x =3x =………………………………………………………………………………………2分 把3x =代入①中得:1y =………………………………………………………………………………4分∴31x y =⎧⎨=⎩是原方程组的解. ……………………………………………………………………………5分20.解:235412x x x x +⎧⎪⎨⎪-+⎩>①<② 由①得:1x > ……………………………………………………………………………………………2分 由②得:4x < ……………………………………………………………………………………………4分 ∴14x <<是不等式组的解集.…………………………………………………………………………5分 21.解:lG FBA D EC(1)—(3) ……………………………………………………………………………………………3分 (4)12α;………………………………………………………………………………………………4分(5)∠BAF +∠DAG=90°………………………………………………………………………………5分22.答:选择方法一. 证明:DE BC ∥, DAB B ∴∠=∠,EAC C ∠=∠.……………………………………………………………………………………………3分 180DAB BAC EAC ∠+∠+∠=︒,180BAC B C ∴∠+∠+∠=︒.……………………………………………………………………………5分选择方法二. 证明:AB CD ∥,A ACD ∴∠=∠,B DCE ∠=∠.…………………………………………………………………………………………3分 180ACB ACD DCE ∠+∠+∠=︒,180A B ACB ∴∠+∠+∠=︒.……………………………………………………………………………5分23.解:(1)设羽毛球拍一套价格为x 元,乒乓球拍一套价格为y 元.∴3025504500x y x y -=⎧⎨+=⎩解得:8050x y =⎧⎨=⎩.∴羽毛球拍一套80元,乒乓球拍一套50元. …………………………………………………………3分 (2)设购买羽毛球拍m 套,则购买乒乓球拍()50m -套. ()()8080%+50-450-2750m m ⨯≤25m ≤∵羽毛球拍数量不少于23套, ∴2325m ≤≤.方案一:当23m =时,羽毛球23套,乒乓球27套; 方案二:当24m =时,羽毛球24套,乒乓球26套;方案三:当25m =时, 羽毛球25套,乒乓球25套. ………………………………………………6分24.(1)m =4,n =16;……………………………………………………………………………… 2分 (2)………………………………………………………… 4分(3)108;……………………………………………………………………………………………… 5分 (4)120.……………………………………………………………………………………………… 6分25.(1)答:AB CD ∥. ………………………………………1分 证明:EF DG ∥, 2D ∴∠=∠. 12∠=∠, 1D ∴∠=∠.AB CD ∴∥.………………………………………………………………………………………………3分(2)解:AB CD ∥,180A ACD ∴∠+∠=︒. 80A ∠=︒, 100ACD ∴∠=︒.CB ACD ∠平分, 50ACB FCB ∴∠=∠=︒.1BCF ∠∠与互余, 190BCF ∴∠+∠=︒. 140∴∠=︒.240∴∠=︒.……………………………………………………………………………………………6分21G FBCADE26.解:(1)如图,正方形的边长为2;DB A C答案不唯一.……………………………………………………………………………………………2分 (2)①如图,xyFD BA CO② (2,1)(2,1)G ---或.…………………………………………………………………………………6分27.(1)α;……………………………………………………………………………………………2分 (2)①2123∠=∠+∠;………………………………………………………………………………3分 证明:过点H 作HK //AB ,交EF 于点K . AB CD ∥,2GEF ∴∠=∠. EF GH ∥,BGH GEF ∴∠=∠. 2BGH ∴∠=∠.AB HK ∥, BGH GHK ∴∠=∠. AB CD ∥,321KN MAEFGH P BDCCD HK ∴∥. 3KHP ∴∠=∠. 3GHP BGH ∴∠=∠+∠. EF GH ∥, 1GHM ∴∠=∠. GHM PHM ∠=∠, 21GHP ∴∠=∠.2123∴∠=∠+∠.…………………………………………………………………………………………5分②2180ENM HPD MFE ∠+∠-∠=︒. …………………………………………………………………7分28.(1)①点A ’(2,0) ;.………………………………………………………………………………1分 ②xy–1–2–3–4–512345–1–2–3123456A'AO.………………………………………………………4分(2)x y –1–2–3–4–5–6–7123456789–1–2–3123456G'H'F'G E'ED'FH OD. ………………………………………7分。

2023-2024学年北京市海淀区七年级(下)期末数学试卷及答案解析

2023-2024学年北京市海淀区七年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)1.(3分)16的算术平方根是()A.4B.±4C.8D.±82.(3分)在平面直角坐标系中,点P(﹣1,2)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)如图,若m∥n,∠1=105°,则∠2=()A.55°B.60°C.65°D.75°4.(3分)不等式x﹣3≥0的解集在数轴上可以表示为()A.B.C.D.5.(3分)下列调查方式中,你认为最合适的是()A.了解北京市每天的流动人口数量,采用全面调查B.旅客乘坐飞机前的安检,采用抽样调查C.搭载神舟十八号载人飞船的长征二号F遥十八运载火箭零部件检查,采用全面调查D.测试某型号汽车的抗撞击能力,采用全面调查6.(3分)已知,,是二元一次方程x+2y=5的三个解,是二元一次方程2x﹣y=0的三个解,则二元一次方程组的解是()A.B.C.D.7.(3分)若m<n,则下列不等式正确的是()A.2m>2n B.m﹣3>n﹣3C.6﹣m<6﹣n D.8.(3分)小华同学在做家庭暑期旅游攻略时,绘制了西安市周边部分城市位置的示意图,如图所示,分别以正东,正北方向为x轴,y轴的正方向建立平面直角坐标系.如果表示武汉市的点的坐标为(4,0),表示西安市的点的坐标为(2,2),则表示贵阳市的点的坐标是()A.(0,0)B.(1,﹣2)C.(3,1)D.(﹣2,1)9.(3分)如图,正方形ABCD的面积为3,顶点A在数轴上,且点A表示的数为1,数轴上有一点E在点A的左侧,若AD=AE,则点E表示的数为()A.B.﹣1C.D.010.(3分)近年来汽车工业不断进行技术改革和升级,新能源汽车走进千家万户,与之配套的充电设施也在不断建设中.从充电设施的应用场景看,充电设施可分为私人随车配建充电桩和公共充电桩.据新能源汽车国家大数据联盟统计,2018﹣2023年我国充电设施累计数量情况如图所示.根据上述信息,给出下列四个结论:①2018﹣2023年,每年充电设施累计数量呈上升趋势;②2023年新增公共充电桩数量超过90万台;③2018﹣2023年,每年新增的随车配建充电桩数量逐年上升;④2018﹣2023年,随车配建充电桩累计数量占充电设施累计数量的百分比最高的年份是2023年.其中所有正确的结论是()A.②③B.①②④C.①②③D.①③④二、填空题(本题共18分,每小题3分)11.(3分)如图,小明在长方形的篮球场上沿直线进行折返跑训练,他从场地一边的P点处出发,选择到对面的(填A,B或C)点处折返一次回到P点时,跑过的路程最短.12.(3分)如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠COB=度.13.(3分)已知是关于x,y的二元一次方程ax﹣y=1的一个解,那么a的值是.14.(3分)我们知道,由角的数量关系可得两条直线的位置关系.如图,为使AB∥DC成立,请写出一组角的数量关系作为条件:.15.(3分)几个人共同购买一件物品,若每人出9元,则多出3元;若每人出7元,则还差5元.设人数为x人,购买费用为y元,可列方程组为(只列不解).16.(3分)如图,在平面直角坐标系xOy中,已知点A(1,1),B(4,4),C(5,2),连接AB,BC,P (x,y)为折线段A﹣B﹣C上的动点(P不与点A,C重合),记t=|y+a|,其中a为实数.(1)当a=﹣2时,t的最大值为;(2)若t存在最大值,则a的取值范围为.三、解答题(本题共52分,第17-18题,每小题4分,第19-21题,每小题4分,第22题6分,第23-24题,每小题4分,第25题6分,第26题7分)解答应写出文字说明、演算步骤或证明过程.17.(4分)计算:.18.(4分)解方程组:.19.(5分)解不等式组:.20.(5分)如图,在平面直角坐标系xOy中,已知点A(﹣2,2),B(﹣3,1),将线段AB向右平移2个单位,再向上平移1个单位,得到线段A1B1.(1)在图中画出线段A1B1,并直接写出点B1的坐标;(2)点M在y轴上,若三角形A1B1M的面积为1,直接写出点M的坐标.21.(5分)如图,三角形ABC中,∠ACB=90°,过点C作AB的平行线l,在线段AB上任取一点D(不与点A,B重合),过点D作AC的垂线交AC于点E,交直线l于点F.(1)依题意补全图形;(2)求证:∠B=∠CFE.22.(6分)根据以下学习素材,完成下列两个任务:学习素材素材一某校组织学生去农场进行学农实践,体验草莓采摘、包装和销售.同学们了解到该农场在包装草莓时,通常会采用精包装和简包装两种包装方式.素材二精包装简包装每盒2斤,每盒售价25元每盒3斤,每盒售价35元问题解决任务一在活动中,学生共卖出了700斤草莓,销售总收入为8500元,请问精包装和简包装各销售了多少盒?任务二现在需要对75斤草莓进行分装,既有精包装也有简包装,且恰好将这75斤草莓整盒分装完.每个精包装盒的成本为1元,每个简包装盒的成本为0.5元.若要将购买包装盒的成本控制在18元以内,请你设计出一种符合要求的分装方案,并说明理由.23.(5分)为了解某长跑俱乐部成员的跑步成绩情况,某学校的长跑社团收集了该俱乐部2023年和2024年半程马拉松“大师赛”的比赛成绩,分为两个研究小组进行调查研究.(1)第一个研究小组随机抽取了该俱乐部2023年一些成员的比赛成绩,部分统计结果如下:成绩x(分钟)频数(人)频率80<x≤8520.0485<x≤900.0890<x≤95895<x≤100170.34100<x≤105100.20105<x≤11030.06110<x≤11550.10115<x≤12010.02合计1①请把上面的频数分布直方图补充完整;②在2023年,该俱乐部共有280名成员,根据上面的统计结果估计该年俱乐部中成绩x满足90<x≤95的人数为(结果精确到个位);(2)第二个研究小组从该俱乐部2023年和2024年均参加了半程马拉松“大师赛”的选手中抽取了30名选手的跑步成绩,绘制了统计图(如图所示).请根据如图解答下面的问题:①小赵2024年的比赛用时比2023年的比赛用时(填“多”“少”);②将这30名选手中2024年成绩优于2023年成绩的人数记为m,其余选手人数记为n,则m n(填“>”“=”“<”).24.(5分)甲、乙两位同学玩填数游戏,每人各自从左到右依次填写四个实数x1,x2,x3,x4,如表所示.x1x2x3x4所填的四个数满足:从第二个数开始,每一个数都大于或等于前面填写的任意一个数的2倍.(1)若甲同学填写的四个数中,x1=2,x2=4,,请写出一个符合要求的x3的值:;(2)若乙同学填写的前两个数满足x1=﹣2,x1+x2<﹣3,求x2的取值范围;(3)若甲、乙两位同学各自填写的四个数都是非零整数,且他们所填写的第一个数互为相反数,则这两位同学填写的这八个数之和的最小值为.25.(6分)已知C为射线AB上方一点,过点C作AB的平行线MN,点O在射线AC上运动(不与点A,C重合),点D在射线CM上,连接OD,满足∠COD=m∠BAC(0<m<1).(1)如图1,点O在线段AC上,∠BAC=60°,若,依题意补全图形,并直接写出∠MDO的度数;(2)点E,F在射线CN上,连接AE,OF,满足∠COF=(1﹣m)∠CAE.①如图2,点O在线段AC上,AE⊥AB,写出一个m的值,使得∠MDO+∠NFO恒为定值,并求出此定值;②如图3,∠BAC=70°,∠CAE=50°,若直线OD和直线OF中至少有一条与直线AE平行或垂直,直接写出m的值.26.(7分)在平面直角坐标系xOy中,对于点A(x1,y1),B(x2,y2),令m=x1+x2,n=y1+y2,将|m﹣n|称为点A与点B的特征值.对于图形M和图形N,若点A为图形M上的任意一点,点B为图形N上的任意一点,且点A与点B的特征值存在最大值,则将该最大值称为图形M与图形N的特征值.(1)已知点A(3,2),B(2,﹣4).①点A与点B的特征值为;②已知点C在y轴上,若点A与点C的特征值为5,则点C的坐标为;(2)已知点D(6,0),E(4,0),将线段DE以每秒1个单位的速度向左平移,经过t(t>0)秒后得到线段D1E1.①已知点F(2,4),0<t≤8,求点F与线段D1E1的特征值h的取值范围;②已知面积为2的正方形的对角线交点为G(2t,2t),且该正方形至少有一条边与坐标轴平行,记该正方形与线段D1E1的特征值为k,则k的最小值为;当k≤6时,t的取值范围为.2023-2024学年北京市海淀区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)1.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,直接利用此定义即可解决问题.【解答】解:∵4的平方是16,∴16的算术平方根是4.故选:A.【点评】此题主要考查了算术平方根的定义,此题要注意平方根、算术平方根的联系和区别.2.【分析】应先判断出所求点P的横坐标、纵坐标的符号,进而判断其所在的象限.【解答】解:∵点P(﹣1,2)的横坐标﹣1<0,纵坐标2>0,∴点P在第二象限.故选:B.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.【分析】由m∥n,根据“两直线平行,同旁内角互补”得到∠1+∠2=180°,然后把∠1=105°代入计算即可得到∠2的度数.【解答】解:∵m∥n,∴∠1+∠2=180°(两直线平行,同旁内角互补),而∠1=105°,∴∠2=180°﹣105°=75°.故选:D.【点评】本题考查了平行线的性质:两直线平行,同旁内角互补.4.【分析】按照解一元一次不等式的步骤进行计算,即可解答.【解答】解:x﹣3≥0,x≥3,∴该不等式的解集在数轴上表示如图所示:,故选:C.【点评】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的步骤是解题的关键.5.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A.了解北京市每天的流动人口数量,适合采用抽样调查的方式,故该项不符合题意;B.旅客乘坐飞机前的安检,适合采用全面调查的方式,故该项不符合题意;C.搭载神舟十八号载人飞船的长征二号F遥十八运载火箭零部件检查,适合采用全面调查的方式,故该项符合题意;D.测试某型号汽车的抗撞击能力,适合采用抽样调查的方式,故该项不符合题意;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破,坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.【分析】找出两个方程的公共解,即为这两个方程组成方程组的解.【解答】解:根据题意得:二元一次方程组的解是.故选:D.【点评】此题考查了解二元一次方程组,以及二元一次方程的解,弄清方程组解的定义是解本题的关键.7.【分析】根据不等式的基本性质逐项判断即可得到答案.【解答】解:A、∵m<n,∴2m<2n,故A不符合题意;B、∵m<n,∴m﹣3<n﹣3,故B不符合题意;C、∵m<n,∴﹣m>﹣n,∴6﹣m>6﹣n,故C不符合题意;D、∵m<n,∴,故D符合题意;故选:D.【点评】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.8.【分析】根据题意建立正确的直角坐标系,即可得出答案.【解答】解:如图,建立直角坐标系,则贵阳市的点的坐标是(1,﹣2).故选:B.【点评】本题主要考查坐标确定位置,建立正确的直角坐标系是解题的关键.9.【分析】根据题意可得:AD=,当点A表示的数为1,数轴上有一点E在点A的左侧,且AD=AE,因此点E表示的数为:1﹣.【解答】解:∵正方形ABCD的面积为3,∴AD=,∵点A表示的数为1,数轴上有一点E在点A的左侧,且AD=AE,∴点E表示的数为:1﹣,故选:A.【点评】本题考查的是实数与数轴,熟练掌握数轴上各点的分布特点是解题的关键.10.【分析】根据形统计图和折线统计图和百分比的应用解答即可.【解答】解:由题意得:①2018﹣2023年,每年充电设施累计数量呈上升趋势,说法正确;②2023年新增公共充电桩数量=272.6﹣179.7=92.9超过90万台,说法正确;③2018﹣2023年,每年新增的随车配建充电桩数量逐年上升,说法错误;④2018﹣2023年,随车配建充电桩累计数量占充电设施累计数量的百分比最高的年份是2023年,说法正确.所以正确结论的序号是①②④.故选:B.【点评】本题考查了条形统计图和折线统计图的综合运用,百分比的应用,能弄清各个统计图之间的关系是解题的关键.二、填空题(本题共18分,每小题3分)11.【分析】根据垂线的性质即可得到结论.【解答】解:∵PB⊥AC,∴PA>PB,PC>PB,∴他从场地一边的P点处出发,选择到对面的B(填A,B或C)点处折返一次回到P点时,跑过的路程最短.故答案为:B.【点评】本题考查了矩形到现在,垂线段最短,熟练掌握垂线段最短是解题的关键.12.【分析】根据垂线、角之间的和与差,即可解答.【解答】解:∵OE⊥AB,∴∠AOE=∠EOB=90°,∵∠EOD=38°,∴∠BOD=∠EOB﹣∠EOD=90°﹣38°=52°,∴∠BOC=180°﹣∠DOB=180°﹣52°=128°,故答案为:128.【点评】本题考查了垂线,解决本题的关键是利用角之间的关系解答.13.【分析】根据二元一次方程的解的定义,将代入关于x,y的二元一次方程ax﹣y=1即可求出a 的值.【解答】解:∵是关于x,y的二元一次方程ax﹣y=1的解,∴a﹣2=1,解得a=3,故答案为:3.【点评】本题考查二元一次方程的解,掌握二元一次方程解的定义是正确解答的关键.14.【分析】根据平行线的判定定理即可得到结论.【解答】解:∵∠1=∠5或∠1+∠2=180°或∠3+∠4=180°,∴AB∥DC,故答案为:∠1=∠5或∠1+∠2=180°或∠3+∠4=180°(答案不唯一).【点评】本题考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.15.【分析】根据“每人出9元,则多出3元;若每人出7元,则还差5元”找到等量关系,可得方程组.【解答】解:根据题意,列方程组为:.故答案为:.【点评】本题主要考查由实际问题抽象出二元一次方程组,由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.16.【分析】(1)当a=﹣2时,t=|y﹣2|,根据绝对值的几何意义,可知t表示P(x,y)与直线y=2之间的距离,当点P在点B(4,4)时,距离最大,由此得解;(2)先求出当点A和B到直线y=﹣a距离相等时,此时a=﹣2.5,t有最大值,然后画图分析可知,当直线y=﹣a在直线l1:y=2.5上方时,点A距离直线y=﹣a距离最大,由于点P不与点A重合,此时t=|y+al取不到最大值,当直线y=﹣a在直线l1:y=2.5下方时,当P与点B重合时可以取到最大值,由此得解.【解答】解:(1)当a=﹣2时,t=|y﹣2|,根据绝对值的意义,可知t表示P(x,y)与直线y=2之间的距离,∴当点P与点B(4.4)重合时,距离最大,此时t=y B﹣2=4﹣2=2.故答案为:2;(2)如图,直线l1:y=2.5,此时,折线段A﹣B﹣C上,点A、B距离直线l1:y=2.5的距离最大,都是1.5,当a=﹣2.5时,t=|y﹣2.5|,表示P(x,y)与直线l1:y=2.5之间的距离,∴当点P与点B(4,4)重合时,t取得最大值为4﹣2.5=1.5,如图:当直线l2:y=﹣a,在直线l1:y=2.5上方,即﹣a>2.5,a<2.5时,此时,折线段A﹣B﹣C上,点A距离直线l2距离最大,∴若a<﹣2.5,t=|y+a|,t表示P(x,y)与直线l2:y=﹣a之间的距离,由于P不与点A重合,∴此时t不存在最大值.当直线l2:y=﹣a,在直线l1:y=2.5下方,即﹣a<2.5,a>2.5时,此时,折线段A﹣B﹣C上,点B 距离直线距离最大,∴若a>﹣2.5,t=|y+a|,t表示P(x,y)与直线:y=﹣a之间的距离,此时t存在最大值,即当p在点B处时取得最大值.综上所述,当a≥﹣2.5时,t存在最大值.故答案为:a≥﹣2.5.【点评】本题考查了平面直角坐标系中点与直线间的距离,以及绝对值的几何意义,理解并掌握绝对值的几何意义是解题的关键.三、解答题(本题共52分,第17-18题,每小题4分,第19-21题,每小题4分,第22题6分,第23-24题,每小题4分,第25题6分,第26题7分)解答应写出文字说明、演算步骤或证明过程.17.【分析】先计算二次根式、立方根和绝对值,再计算加减.【解答】解:=3+2+﹣1=4+.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法,并能进行正确地计算.18.【分析】方程组利用代入消元法求出解即可.【解答】解:,由①得:y=2x﹣4③,把③代入②得:x+2(2x﹣4)=﹣3,解得:x=1,把x=1代入③得:y=2﹣4=﹣2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.【分析】分别求出每个不等式的解集,再求其解集的公共部分即可.【解答】解:,解①得x<2.5;解②得x≥﹣1;所以,原不等式组的解集为﹣1≤x<2.5.【点评】此题考查了解一元一次不等式组,求不等式组的解集要根据以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.20.【分析】(1)根据平移的性质作图,即可得出答案.(2)设点M的坐标为(0,m),根据题意可列方程为=1,求出m的值,即可得出答案.【解答】解:(1)如图,线段A1B1即为所求.由图可得,点B1的坐标为(﹣1,2).(2)设点M的坐标为(0,m),∵三角形A1B1M的面积为1,∴=1,解得m=5或1,∴点M的坐标为(0,5)或(0,1).【点评】本题考查作图﹣平移变换,熟练掌握平移的性质是解答本题的关键.21.【分析】(1)根据几何语言画出对应的几何图形即可;(2)先证明DF∥BC,再根据平行线的性质得到∠B=∠ADF,∠ADF=∠CFE,所以∠B=∠CFE.【解答】(1)解:如图,(2)证明:∵∠ACB=90°,∴AC⊥BC,∵DF⊥AC,∴DF∥BC,∴∠B=∠ADF,∵AB∥l,∴∠ADF=∠CFE,∴∠B=∠CFE.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质和直角三角形的性质.22.【分析】任务一:设精包装销售了x盒,简包装销售了y盒,根据“在活动中,学生共卖出了700斤草莓,销售总收入为8500元”,可列出关于x,y的二元一次方程组,解之即可得出结论;任务二:设可以分装成m盒精包装,则分装成盒简包装,根据购买包装盒的成本控制在18元以内,可列出关于m的一元一次不等式,解之可得出m的取值范围,再结合m,均为正整数,即可得出结论.【解答】解:任务一:设精包装销售了x盒,简包装销售了y盒,根据题意得:,解得:.答:精包装销售了200盒,简包装销售了100盒;任务二:分装成3盒精包装,23盒简包装(或分装成6盒精包装,21盒简包装),理由如下:设可以分装成m盒精包装,则分装成盒简包装,根据题意得:m+0.5×≤18,解得:m≤,又∵m,均为正整数,∴m可以为3,6,∴共有2种分装方案,方案1:分装成3盒精包装,23盒简包装;方案2:分装成6盒精包装,21盒简包装.答:分装成3盒精包装,23盒简包装(或分装成6盒精包装,21盒简包装).【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:任务一:找准等量关系,正确列出二元一次方程组;任务二:根据各数量之间的关系,正确列出一元一次不等式.23.【分析】(1)①用成绩为80<x≤85频数除以频率得到参与调查的人数,再乘以成绩在85<x≤90分钟的频率,即可求出成绩在85<x≤90分钟的频数,进而补全统计图即可;②用280乘以样本中成绩在90<x≤95频率即可得到答案;(2)①根据统计图读出数据即可得到答案;②根据统计图比较m和n的多少即可得到答案.【解答】解:(1)①被调查的人数为:2÷0.04=50(人),成绩在“85<x≤90”组的人数为50×0.08=4(人),成绩在“90<x≤95”组的频率为8÷50=0.16,补全频数分布直方图如下:②成绩x满足90<x≤95的人数为:280×0.16≈45(人),故答案为:45人;(2)①由统计图可知,小赵2024年的比赛用时为80分钟,小赵2023年的比赛用时大于90分钟,∴小赵2024年的比赛用时比2023年的比赛用时少,故答案为:少;②如图所示,由统计图可知在AB左上方的点少于右下方的点,即2024年成绩比2023年成绩好的人数多于不好的人数,∴m>n,故答案为:>.【点评】本题主要考查了频数分布直方图,频数分布表,频数分布折线图等知识,能从图表中获取有用信息是解题的关键.24.【分析】(1)依据题意,可得,从而x3≥8,且2x3≤,故8≤x3≤,进而可以判断得解;(2)依据题意,由x2≥2x1,则x2≥﹣4,又x1+x2<﹣3,从而﹣2+x2<﹣3,可得x2<﹣1,进而可以判断得解;(3)依据题意,设甲填写的四个数为x1,x2,x3,x4,乙填写的四个数为y1,y2,y3,y4,再设x1=a,则x2≥2a,x3≥4a,x4≥8a,又x1与y1互为相反数,则y1=﹣a,则y2≥﹣2a,y3≥﹣2a,y4≥﹣2a,结合x1+y1=0,x2+y2≥2a+(﹣2a),即x2+y2≥0,同理,x3+y3≥2a,x4+y4≥6a,进而可得x1+x2+x3+x4+y1+y2+y3+y4≥8a,故可判断得解.【解答】解:(1)由题意,,∴x3≥8,且2x3≤.∴8≤x3≤.∴x3可以取此范围内的任一值,如x3=10.故答案为:10(答案不唯一).(2)由题意,∵x2≥2x1,∴x2≥﹣4.又∵x1+x2<﹣3,∴﹣2+x2<﹣3.∴x2<﹣1.综上,﹣4≤x2<﹣1.(3)由题意,设甲填写的四个数为x1,x2,x3,x4,乙填写的四个数为y1,y2,y3,y4,设x1=a(a>0),则x2≥2a,x3≥4a,x4≥8a.∵x1与y1互为相反数,∴y1=﹣a,则y2≥﹣2a,y3≥﹣2a,y4≥﹣2a.又∵x1+y1=0,x2+y2≥2a+(﹣2a),即x2+y2≥0,同理,x3+y3≥2a,x4+y4≥6a,∴x1+x2+x3+x4+y1+y2+y3+y4≥8a.∵x1,x2,x3,x4,y1,y2,y3,y4,都是非零整数,当a=1时,8a=8为最小值,∴这八个数之和的最小值为8.故答案为:8.【点评】本题主要考查了实数的性质及数字变化规律,解题时要熟练掌握并能灵活运用是关键.25.【分析】(1)当m=时,∠COD=∠BAC=30°,MN∥AB,得∠ACM=180°﹣∠BAC=120°,即可求解.(2)①根据平行线的定理得∠CAE=90°﹣∠BAC,∠MDO=∠DCO+∠COD,即可求解.②分情况讨论,当直线OD⊥AE时,设直线AE与直线OD交于I,当OF⊥AE时,设设直线AE与直线OF交于R,根据平行线的定理即可求解.【解答】解:(1)当m=时,∠COD=∠BAC=30°,∵MN∥AB,∴∠ACM=180°﹣∠BAC=120°,∴∠MDO=∠ACM+∠COD=150°,故∠MDO的度数为150°.(2)①∵AE⊥AB,∴∠EAB=90°,∵MN∥AB,∴AE⊥MN,∴∠AEM=90°,∴∠CAE=90°﹣∠BAC,∵∠MDO=∠DCO+∠COD,∠NFO=∠NCO+∠COF,∠MDO+∠NFO=∠DCO+∠NCO+∠DOC+∠COF=180°+m∠BAC+(1﹣m)∠CAE=270°﹣m×90°+(1﹣2m)∠BAC,上述∠BAC无关,∴1﹣2m=0,∴m=.当m=时,∠MDO+∠NFO=225°,故m为时,使得∠MDO+∠NFO恒为定值,定值为:225°.②∠BAC=70°,∠CAE=50°,当直线OD⊥AE时,设直线AE与直线OD交于I,∴∠OIA=90°,∴∠IOA=40°,∴∠COD=∠AOI=40°,∵∠COD=m∠BAC,∴m=.当OF∥AE,∴∠COF=∠CAE=(1﹣m)∠CAE,∴1﹣m=1,∴m=0(舍去).当OF⊥AE时,设设直线AE与直线OF交于R,∴∠ARO=90°,∴∠AOR=∠COF=40°,∵∠COF=∠CAE=(1﹣m)∠CAE,∴m=,当OD∥AE,∴∠DOC=∠CAE=50°,∵MN∥AB,∴∠OCD=∠BAC=70°,∵∠COD=m∠BAC,∴m=.故m的值为:,,.【点评】本题考查了平行线的性质,解题关键在于熟练掌握平行线的定理.26.【分析】(1)①根据特征值的定义即可求解;②根据特征值的定义即可求解;(2)①线段DE经过t秒后得到线段D1E1,D1(6﹣t,0).E1(4﹣t,0),设点P(x,0)为线段D1E1上的任意一点,点P(x,0)与F(2,4)的特征值为:|x+2﹣4|=|x﹣2|,|x﹣2|的最大值为点F与线段D1E1的特征值h.|x﹣2|的几何意义为P(x,0)与点(2,0)之间的距离,故在运动过程中,特征值h 的最小值是当线段D1E1的中点在(2,0)时取得,而最大值是在线段D1E1的端点取得,可求得当t=8,P(x,0)在端点E1(﹣4,0)时,特征值h取得最大值,由此求得其取值范围;②先根据已知条件,得到正方形的边长为,当t变化时,该正方形ABMN的中心在一三象限角平分线l上运动,证明对于在正方形ABMN上(包含边和内部)的任意一点P(x,y),横纵坐标差的绝对值,且在点A和M取得最大值,得到,设线段D1E1上任意一点为Q(c,0),点P(x,y)与点Q(c,0)的特征值为:|m﹣n|=|x+c﹣y|=|x﹣y+c|,|x﹣y+c|的最大值为正方形与线段D1E1的特征值为k.当线段D1E1运动时,把|x﹣y+c|看成一个整体,则相当于在原来线段DE的基础上,点E向左平移个单位,点D向右平移个单位,即对应为端点,,经过时间t,,,长度为的线段D1E1在x轴上向左运动,|x﹣y+c|的几何意义则是线段D1E1在x轴上向左运动过程中,线段D1E1上点与原点O的距离,当线段D'E'的中点位置在原点O时,正方形与线段D1E1的特征值k取得最小值;当k≤6时,根据线段D1E1的运动过程可知,|x﹣y+c|的最大值是在线段的端点取得,当线段D1E1在y轴右侧时,|x﹣y+c|的最大值在点D1取得,当线段D1E1在y轴左侧时,|x﹣y+c|的最大值在点E1取得,将端点的坐标值代入,解不等式即可得解.【解答】解:(1)①∵点A(3,2),B(2,﹣4),∴m=3+2=5,n=2﹣4=﹣2,∴|m﹣n|=|5﹣(﹣2)|=7,∴点A与点B的特征值为7;故答案为7.②∵已知点C在y轴上,设C(0,y),又点A(3,2),∴m=3+0=3,n=y+2,∴|m﹣n|=|3﹣(y+2)|=|1﹣y|,∵点A与点C的特征值为5,∴|m﹣n|=|1﹣y|=5,∴1﹣y=5或﹣5,解得y=﹣4或6,∴点C的坐标为(0,﹣4)或(0,6).故答案为:(0,﹣4)或(0,6).(2)解:①∵D(6,0),E(4,0),线段DE经过t秒后得到线段D1E1,∴D1(6﹣t,0),E1(4﹣t,0),设点P(x,0)为线段D1E1上的任意一点,则4﹣t≤x≤6﹣t.∵F(2,4),∴点P(x,0)与F(2,4)的特征值为:|x+2﹣4|=|x﹣2|.∴|x﹣2|的最大值为点F与线段D1E1的特征值h.∵0<t≤8,∴﹣8≤﹣t<0,∴﹣6≤4﹣t﹣2<2,﹣4≤6﹣t﹣2<4.∴当t=8时,h取得最大值6.∵点P(x,0)为线段D1E1上的任意一点,且D1E1的长度为2.∴当点D1和点E1关于(2,0)对称时,即D1(3,0)、E1(1,0),此时h取得最小值1.∴点F与线段D1E1的特征值h的取值范围为:1≤h≤6.②∵已知面积为2的正方形的对角线交点为G(2t,2t),且该正方形至少有一条边与坐标轴平行,∴正方形的边长为,当t变化时,该正方形ABMN的中心在一三象限角平分线上运动,作一三象限角平分线l的平行线l2,当平行线l2在下方时,在直线l2上,且在正方形ABMN上(除点A 和M点外,包含正方形的边和正方形内部)任取点F、S,过F、S分别作x轴,y轴垂线,连接HF,如图所示,∵NF∥HS,HN∥SF,∴∠SHF=∠NFH,∠NHF=∠SFH,又HF=HF,∴△HNF≌△FSH,∴HS=NF,∵x F﹣y F=FL﹣FK=NF+NL﹣NP,又∵N在一三象限角平分线上,∴NL=NP,∴,同理可得,当平行线l2在一三象限角平分线l上方时,同理可证,,此时,当点在线段BN上时,有x﹣y=0,∴当正方形ABMN上(除点A和M点外,包含正方形的边和正方形内部)任意一点P(x,y),横纵坐标差的绝对值|x﹣y|小于正方形边长,即,当在A点时,有,当在M点时,有,综上所述,对于在正方形ABMN上的任意一点P(x,y),横纵坐标差的绝对值,且在点A和M取得最大值在线段BN上时取得最小值O,即,设线段D1E1上任意一点为Q(c,0),则m=x+c,n=y,∴点P(x,y)与点Q(c,0)的特征值为:|m﹣n|=|x+c﹣y|=|x﹣y+c|,∴|x﹣y+c|的最大值为正方形与线段D1E1的特征值为k.∵线段D1E1长度为2,当t=0时,即线段D1E1还未开始运动时,此时Q(c,0)在线段DE上,4≤c≤6,而,∴当线段D1E1运动时,把|x﹣y+c|看成一个整体,则相当于在原来线段DE的基础上,点E向左平移个单位,点D向右平移个单位,即对应的端点,E′(4﹣,0),经过时间t,,,长度为的线段D1E1在x轴上向左运动,如图所示,∴|x﹣y+c|的几何意义则是线段D1E1在x轴上向左运动过程中,线段D1E1上点与原点O的距离,在这个过程中,|x﹣y+c|的最大值中的最小值,即正方形与线段D1E1的特征值k的最小值,是当线段D1E1的中点位置在原点O时,此时端点D1、E1与原点O距离都是,∴正方形与线段D1E1的特征值为k最小值为,当k≤6时,根据线段D1E1的运动过程可知,|x﹣y+c|的最大值是在线段的端点取得,当线段D1E1在y轴右侧时,|x﹣y+c|的最大值在点D1取得,D1的坐标为,距离原点的距离为,此时,解得,当线段D1E1在y轴左侧时,|x﹣y+c|的最大值在点E1取得,,距离原点距离为,此时,解得t综上所示,当k≤6时,的取值范围为.故答案为:.。

2024北京海淀区初一(下)期末数学试题及答案

七年级期末练习数学参考答案一、选择题二、填空题 11. B 12. 128 13. 314. ∠1=∠5(答案不唯一) 15. 93,75x y y x −=⎧⎨−=⎩ 16. 2;52a ≥− 说明:第16题第一空2分,第二空1分.三、解答题17. 解:原式3(2)1)=−−+4=18. 解:2⨯−②①得,510y =−.得,2y =−.入②,得1x =. 以原方程组的为1,2.x y =⎧⎨=−⎩19. 解:解不等式①,得52x <.不等式②去分母,得2(2)3(13)x x −≤+. 去括号得2439x x −≤+.解得1x ≥−. 所以原不等式组的解为512x −≤<.20. 解:(1)画出线段11A B 如图.点1B 的坐标为(1,2)−. (2)点M 的坐标为(0,1)或(0,5).21. 解:(1)补全图形如下图.(2)证明:∵DE ⊥AC ,∴∠DEA =90°.∵∠ACB =90°,∴∠DEA =∠ACB .∴DE ∥BC .∴∠ADE =∠B .∵l ∥AB ,∴∠ADE =∠CFE .∴∠B =∠CFE .22.任务一:解:设精包装销售了x 盒,简包装销售了y 盒.2370025358500x y x y +=⎧⎨+=⎩①② 解这个方程组,得100,200.x y =⎧⎨=⎩答:精包装销售了100盒,简包装销售了200盒.任务二:解:设分装时使用精包装m 个,简包装n 个(m ,n 为正整数).依题意可列出下列方程和不等式:7532=+n m , ①.182<+n m ② 由①得.2375n m −= 将2375n m −=带入 ②,得519.n >因为m ,n 为正整数,所以n =21,m =6或n =23,m =3.分装方案1:精包装6个,简包装21个分装方案2:精包装3个,简包装23个 说明:写出任意一个正确的分装方案,同时有合理的理由即可. 23. 解:(1)①如图② 45.注:答44或45均可(2) ① 多; ② >.24. 解:(1) 8(答案不唯一);(2)∵12x =−,123x x +<−,∴21x −<.∵21122x x x ≥=−,,∴24x ≥−∴241x −≤−<.(3)8.25.解:(1)如图1所示,即为所求.图1150MDO ∠=︒.(2)①12m =.理由如下.如图2,过O 作射线AB 的平行线GH ,满足点G 在O 左侧, 点H 在O 右侧.当12m =时, ∵COD m BAC ∠=∠,()1COF m CAE ∠=−∠, ∴12COD BAC ∠=∠,12COF CAE ∠=∠, ∴DOF COD COF ∠=∠+∠ 11221.2BAC CAE BAE =∠+∠=∠ ∵AE AB ⊥,∴90BAE ∠=︒,∴45DOF ∠=︒,∴180135DOG FOH DOF ∠+∠=︒−∠=︒.∵AB MN ∥,B 图 2∴GH MN ∥,∴ 180MDO DOG ∠=︒−∠, 180NFO FOH ∠=︒−∠, ∴180180MDO NFO DOG FOH ∠+∠=︒−∠+︒−∠()360DOG FOH =︒−∠+∠ 225=︒② m 的值为15或47或57. 26. (1)① 7;② (0,6)或(0,4)−.(2)①依题意,(6,0),(4,0)D E ,线段DE 经过t 秒后得到线段D 1E 1. 可知 11(6,0),(4,0)D t E t −−.设点(,0)P x 为线段D 1E 1上的任意一点,得 46t x t −≤≤−.由 F (2,4),得242x x +−=−. 所以2x −的最大值为点F 与线段D 1E 1的特征值h . 由于08t <≤,所以6422t −≤−−<, 4624t −≤−−<.所以,当t =8时,h 取得最大值6.点(,0)P x 为线段D 1E 1上的任意一点,且D 1E 1的长度为2. 所以,当点D 1和点E 1关于(2, 0)对称时,即D 1(3,0),E 1(1,0). 此时h 取得最小值1. 所以点F 与线段D 1E 1的特征值h 的取值范围为:16h ≤≤.② k 1;t 10t ≤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一年级期末测试题全套(有答案) (满分:100分时问:120分钟) 一、选择题(本题共10小题,每题2分,共20分)注意:请把选择题的答案填入答题 卷的表格中. 1.下列电视台台标中,是轴对称图形的是 2.下列计算正确的是A. 3x 2 4x 2 7x 4B.() xx 15 C. x 4 x x 3 D. x5个黄球和7个绿球,它们除颜色外都相同.搅拌均 匀后,从中任意摸出一个球是红球的概率是 ( A 1 C 1 1 A. _ B. - C. 3 5 7 4. 已知等腰三角形的两边长分别为 2cm 和4cm, A . 1cm B . 8cmC . 8cm 或 10cmD . 10cm 5. 下列都是无理数的是 () A.0.07, 2, 百 B. 0.7, 75, 74 33.在一个暗箱里装有 3个红球、B. C. D. 则它的周长为 15 () C. 2,6 D.3.14, 3 , 22 6. A B C D F 列说法正确的是() .将5. 647精确到0..将6. 95精确到十分位是 .近似数5. 2x103与近似数5200的精确度相同 5. 7 7. 0 .近似数4. 8x104与近似数4. 80万的有效数字相同2 b 2 一 ab 的值为 ()4 B . 8 C . 10 D . --10 7.已知 a+b=1, ab=3,则 a A .&如图,将图中的正方形沿其中一条对角线对折后,再沿原正方形的另一条对角线对折,最后将得到的三角形剪去一片后展开,得到的图形为() B. D. “健康重庆”就是要让孩子长得壮,老人寿命更长,全民生活得更健康.为了响 “健康重庆”的号召,小明的爷爷经常坚持饭后走一走.某天晚饭后他慢步到附近的融 9 . 应 侨公园,在湖边亭子里休息了一会后,因家中有事,快步赶回家.下面能反映当天小明 的爷爷所走的路程 y 与时间x 的关系的大致图象是 ()PB= 5 ;.下列结论:①V APD V AEB ②EB ED ③点B 到直线AE 的距离为,2 ;二、填空题(本题共10小题,每题2分, 共20分)注意:请把填空题的答案填入答题 卷的横线上.jii . .3 的相反数是 __________ .12•比较大小:4J3 ___________ 8(填“ >”,“ <”或“=”). 13 •小丽在镜子里看到对面墙上电子钟示数为區固,则此时实际时刻为 __________ .14•据市教委中招办介绍,今年全市高中阶段教育招生计划约为 382000人•将数38200017 •若VABC 的三边a 、b 、c 满足|a 5 (6 12)2 Jc 13 0,则△ ABC 勺面积为 __________18 .实数a 、b 在数轴上对应点的位置如图所示, 化简:7(a~疗 a b _________________.】I 一 L.« 0 b19. _______________________________ 如图,长方形纸片 ABCD 勺边长AB=4, AD=2将长方形纸片沿 EF 折叠,使点A 与点C 重合,则△ FEC 的面积为 .20. 如图,在长方形 ABCD 中, AB=4, AD=10,点Q 是BC 的中点,点 P 在AD 边上运 动,当VBPQ 是腰长为5的等腰三角形时,AP 的长度为 ____________ .三、计算题:(本大题5个小题,21--24题每小题4分,25题6分,22分)10•我们知道,正方形的四条边相等,四个角也都等于 90° •如图,在正方形 ABC [外 取一点E ,连接AE BE DE 过点A 作AE 的垂线交DE 于点P .若AE=AP=1 ④SVAPD SVAPB 冷6 •其中正确结论的序号是()保留2个有效数字,用科学记数法表示为 __________ •15 •如图是一个等边三角形的靶子,靶心为其三条对称轴的交点,飞镖随机地掷在靶上, 则投到区域 A (包含边界)的概率是 _________ •16.如图,在 VABC 中,AB=AC AD 是 BC 上的高,若 AB=5, BC=6 贝U AD=解答时每小题必须给出必要的演算过程或推理步骤221. 3 ( 1)2011 ( 3)° 3 27 122 . 2x 5 ( x)2224. (2n m)(2 n m) (m n)25.先化简,再求值: (a 2b)2 (a 4b)(3a b) (2a),其中 a 是 27 的立方根,6是4的算术平方根四、解答题: (本大题6个小题,26-30题每小题6分,31题8分,共38分)解答时 每小题必须给出必要的演算过程或推理步骤26.为促进“平安重庆”建设,市公安局交巡警总队拟在我市某“三角形”转盘区域内新 增一个交巡警平台,使交巡警平台到三个十字路口 A 、B 、C 三点的距离相等,试确定 交巡警平台P 的位置(要求:用尺规作图,保留作图痕迹,不写已知、求作、作法和 结论).27. 为了鼓励小强勤做家务, 培养劳动意识,小强每月的总费用等于基本生活费加上奖励(奖励由上个月他的家务劳动时间确定).已知小强4月份的家务劳动时间为 20小时,他5月份获得了 400元的总费用.小强每月可获得的总费用与他上月的家务劳动时间之 间的关系如图所示,请根据图象回答下列问题. (1) 上述变化过程中,自变量是 _________ , 因变量是 _______ ; (2) 小强每月的基本生活费为 ________ 元.⑶ 若小强6月份获得了 450元的总费用, 则他5月份做了 ___________ 小时的家务.⑷ 若小强希望下个月能得到 120元奖励, 则他这个月需做家务 _____________ 小时.28. 如图,点A 、F 、C 、D 在同一直线上,点 分别在直线 AD 的两侧,且AB=DE ,A= D, AF=DC 求证:BC// EF(2x 2)3 ( x) (8x 7)B 和点D29. 如图,在VABC 中,,B=45 0, C=30°, AD BC于D, BD=6,求DC的长和VABC 的面积(结果保留根号).30. 如图,在四边形ABCD中, AD// BC点E是DC的中点,BE DC点F在线段BE上,且满足BF=AB FC=AD 求证:⑴A= BFC(2) FBC= BCF31 .已知两个全等的等腰直角VABC、AD EF,其中ACB= DFE=9C°, E为AB中点,△ DEF可绕顶点E 旋转,线段DE EF分别交线段CA CB(或它们所在直线)于M N.(1) 如图I,当线段EF经过VABC的顶点C时,点N与点C重合,线段DE交AC 于M,求证:AM=MC(2) 如图2,当线段EF与线段BC边交于N点,线段DE与线段AC交于M点,连MN,EC,请探究AM MN,CN之间的等量关系,并说明理由;(3) 如图3,当线段EF与BC延长线交于N点,线段DE与线段AC交于M点,连MN EC,请猜想AM MN CN之间的等量关系,不必说明理由。

重庆南开中学初2013级七年级下期期末考试 数学试题参考答案一、选择题(每小题 2分,共20分)二、填空题(每小题 2分,共20分) 11. ___ . 3 _____ 12.< _____ 13.21:051 3516.417.3018.a19.—20.22或3或8三、计算题: (21 — 24题每小题4分, 25 题 6:分,共22分)21.32011130 3272 122.1 12亠5 2-23亠 72x x 2xx8x解:原式 =3(1) 1 3 4---------- 3分解:原 式5 2/2x x (8x 6) (X )(8x 7)—— —3分=3-----------4 分72x 1----------- 4分23. . 8181'、2.5024. (2nm)(2 n m) (m 2n)解:原式= 2.23225 2 -- ---------- 3 分 解:原式= 4n 22m 2 m 2mn 2 n2----------- 3分----------- 4分22-----------4 分=5n 2 2mn25.先化简,再求值: 2a 2ba 4b 3a b2a , 其中 a 是27的立方根, b 是4的算术平方根 解:原 式==[a 24ab 4b 23a 22ab 12ab 4b ](2a)=----------------- 2分2(4a 7ab)(2a)=----------------- 3 分2a Zb2当----------------- 4 分a 3 27 3,b 4 2时14. —3.8 105_ 15.------------------------------------------------- 6 分=13四、解答题:(26—30题每小题6分,31题8分,共38分)26. 为促进平安重庆”建设,市公安局交巡警总队拟在我市某三角形”转盘区域内新增一个交巡警平台,使交巡警平台到三个十字路口A、B、C三点的距离相等,试确定交巡警平台P的位置(要求:用尺规作图,保留作图痕迹,不写已知、求作、作法和结论)解:如图所示27. 为了鼓励小强勤做家务,培养劳动意识,小强每月的总费用等于基本生活费加上奖励 (奖励由上个月他的家务劳动时间确定) •已知小强4月份的家务劳动时间为20小时,他5月份获得了400元的总费用•小强每月可获得的总费用与他上月的家务劳动时间之间的关系如图所示,请根据图象回答下列问题.(1 )上述变化过程中,自变量是家务劳动时间因变量是总费用;---------- 2分(2) 小强每月的基本生活费为-- 350元. 3分(3) 若小强6月份获得了450元的总费用,则他5月份做了30 小时的家务. --------------------4分(4) 若小强希望下个月能得到120元奖励,28. 如图,点A、F、C D在同一直线上,点 /A=Z D, AF=DC.求证:BC// EF.证明:I AF CDAF FC CD FC即AC DF ---------------------在ABC与DEF中AB DEA DAC DFABC 也DEF --------------------------------------------------- 5 分BCA DFEBC/ EF ------------------------------------------------ 6 分(2)由(1 )知 ABD 也 FBCZ 1--------------------------------------------------------- 4 分•/ AD / BCZ 1= Z DBC•/ BD=BC 且 BE 丄 DC29.如图,在 从BC 中,/ B = 45° , / C = 30°, AD 丄BC 于D , BD = 6,求DC 的长和 从BC 的 面积(结果保留根号)• 解: •/ AD 丄 BCADB ADC 90在 Rt ADB 中, B BAD 90 又••• / B = 45°B BAD 45-------------------------------------------------------- 2 分在 Rt ADC 中,/ C = 30°-------------------------------------------------------- 3 分 -------------------------------------------------------- 4 分BC 6 6 3-------------------------------------------------------- 5 分 1 1 LLS ABC — BC AD — (6 6 3) 618 18 32 26分AD BD 6AC 2AD 12CD AC 2 AD 2122 62 6 330.如图,在四边形 ABCD 中,AD // BC ,点E 是DC 的中点, 且满足BF = AB , FC = AD .求证:(1) / A = Z BFC.1 (2) Z FBC=丄 Z BCF.2证 明: ( 1 )-------------------------------------------------------- 1 分•••点E 是DC 的中点,BE 丄DC BE 垂直平分DC-------------------------------------------------- 2 分在ABD 与FBC 中AB FBBD BCBD=BCABD 也 FBCZA--------------------------------------------------------- 3 分BFC连 接 BD31.已知两个全等的等腰直角 △ ABC △ DEF ,其中/ ACB= Z DFE = 90o , E 为AB 中点,△ DEF 可绕顶点E 旋转,线段DE, EF 分别交线段CA , CB (或它们所在直线)于 (1) 如图1,当线段EF 经过△ ABC 的顶点C 时,点 求证:AM=MC ; (2) 如图2, 请探究AM , (3) 如图3, 请猜想AM , 当线段EF 与线段BC 边交于N 点,线段 MN , CN 之间的等量关系,并说明理由; 当线段EF 与BC 延长线交于N 点,线段 MN ,CN 之间的等量关系,不必说明理由.N 与点C 重合,线段 M 、N . DE 交AC 于 DE 与线段 DE 与线段 AC 交于 AC 交于 Z AEC = 90°Z A=Z ACE=45°连MN , EC,EC, FBAE=CE•/ DF=EF, Z DFE = 90° Z FED=45°1Z FED=— Z AEC2又•/ AE=CEAM=MC------------------- 3 AM=MN+CN ------------------- 4在AM 截取AH ,使得 AH=CN,连接BH 由(1)知 AE=CE Z A=Z BCE=45°CNNCEAH 在AHE 与CNE 中: AAHE 也 CNEAECEHE=NE ,Z AEH =Z CEN/ HEM= / AEC- / AEH- MEC=Z AEC- / CEN- MEC=Z AEC- / MEF= 90 45 =45°Z HEM=Z NEM=45°AH CN在HEM 与NEM 中:A NCEAE CEHEM 也NEM HM=MNAM=AH+HM= CN +MN即 ---------------------------------------------------- 7 分( 3 )猜得MN --------------------------------------------------------- 8 分AMAM =MN+CN+CN。

相关文档
最新文档