非线性椭圆型方程(王明新著)思维导图

合集下载

高二数学第2章21-2.11《椭圆及其标准方程》(新人教B版选修11)PPT课件

高二数学第2章21-2.11《椭圆及其标准方程》(新人教B版选修11)PPT课件

学 教 法 分 析
当 堂 双 基
































2.1 椭圆 2.1.1 椭圆及其标准方程
●三维目标 1.知识与技能
(1)了解椭圆的实际背景,经历从具体情景中抽象出椭圆模型 的过程.
(2)使学生理解椭圆的定义,掌握椭圆的标准方程及其推导过 程.
2.过程与方法 (1)让学生亲身经历椭圆定义和标准方程的获取过程,掌握求 曲线方程的方法和数形结合的思想. (2)学会用运动变化的观点研究问题,提高运用坐标法解决几 何问题的能力.
1.求椭圆的标准方程的常用方法是待定系数法,即先由条件 确定焦点位置,设出方程,再设法求出 a2,b2 代入所设方程,也可 以简记为:先定位,再定量.
之和等于 8 的点的轨迹是________;
(2)已知 F1、F2 分别为椭圆1x62 +y92=1 的左、右焦点,椭圆的弦
DE 过焦点 F1,若直线 DE 的倾斜角为 α(α≠0),则△DEF2 的周长
为( )
A.64
B.20
C.16
D.随 α 变化而变化
【思路探究】 (1)动点的轨迹是椭圆吗?(2)怎样用椭圆的定 义求△DEF2 的周长?
1.定义是判断点的轨迹是否为椭圆的重要依据,根据椭圆的 定义可知,集合 P={M||MF1|+|MF2|=2a},|F1F2|=2c,a>0,c >0,且 a,c 为常数.
当 a>c 时,集合 P 为椭圆上点的集合; 当 a=c 时,集合 P 为线段上点的集合; 当 a<c 时,集合 P 为空集. 因此,只有|F1F2|<2a 时,动点 M 的轨迹才是椭圆.

人教A版高中数学选修2-1课件2.2.1《椭圆的标准方程》(新).pptx

人教A版高中数学选修2-1课件2.2.1《椭圆的标准方程》(新).pptx
两边再平方,得
a4-2a2cx+c2x2 = a2x2-2a2cx+a2c2+a2y2 ,
整理得
(a2-c2)x2+a2y2 = a2(a2-c2) .
令a2 c2 b2
(1)(a2 c2 )(x c )2 a2 y2 2
两边同除以a
a
2b
2 (a2
2,
c2 )得b2
36 16
36 16
x2 y2
2.已知椭圆 a2
b2
1, (a b 0), F1, F2为
焦点, 过F1的直线与椭圆交于A、 、 B两点,
则ABF2的周长为 4a
操作型:
线段AB的两端点A、B分别在x轴、y 轴上滑动,|AB|=8,点M是AB上一 点,且|AM|=3,点M随线段AB的运 动而变化,求点M的轨迹方程。
A 5 B 7 C 8 D 10
C x2
2.椭圆

y2
1的焦距为2,则m的值等于

m4
A 5 B 3 C 3或5 D 以上都不对
二、填空题:
1.已知a+b=10,c= 2 5 ,则椭圆的标准 方程为_x__2_____y__2_____1_或 _____y__2_____x__2_____1____
两边同除以a 2b 2,
x2 得

y2
1
a2 b2
x2 y2 (1)焦点在x轴上 : 1(a b 0)
a2 b2 y2 x2 (2)焦点在y轴上 : 1 (a b 0)
椭圆方程a2有b2特点 系数为正加相连 分母较大焦点定 右边数“1”记心间
例1 求适合下列条件的椭圆的标

2020_2021学年高中数学第二章圆锥曲线与方程2.2椭圆2.2.2椭圆的简单几何性质课件新人教A版选修2_1

2020_2021学年高中数学第二章圆锥曲线与方程2.2椭圆2.2.2椭圆的简单几何性质课件新人教A版选修2_1
2.2.2 椭圆的简单几何性质
知识导图
学法指导 1.由椭圆的方程讨论椭圆的几何性质,经历由形到数、由数到形 的思想跨越,感知用代数的方法探究几何性质的过程,感受“数缺形 时少直观,形缺数时难入微”的数学真谛,进一步体会数形结合思想 在数学中的重要地位. 2.结合图形理解并熟记椭圆的几何性质. 3.本节的重点是椭圆离心率的求解及应用.
)
382 A. 3 B.2 C.3 D.3
解析:∵a2=2,b2=m,e=ac= 1-ba22= 1-m2 =21,∴m=23.
答案:B
4.离心率为23,长轴长为 6 的椭圆的标准方程是________.ቤተ መጻሕፍቲ ባይዱ
2a=6⇒a=3, 解析:由e=ac=32⇒c=2
⇒b= 5,当焦点在 x 轴上时,方程为x92+
y52=1;当焦点在 y 轴上时,方程为x52+y92=1.
答案:x92+y52=1 或y92+x52=1
顶点
轴长 焦点 焦距
A_1_(-__a_,_0_),__A__2(_a_,0_)_,_ _A_1_(0_,__-__a_)_,__A_2_(_0_,a), B_1_(0_,__-__b_)_,__B_2_(0_,__b) _B_1_(-__b_,_0_)_,__B_2(_b_,_0_) 短轴|B1B2|=__2_b___,长轴|A1A2|=_2_a____ _F__1(_-__c_,0_)_,__F_2_(c_,_0_) _F_1_(0_,__-__c_)_,__F_2_(0_,_ c)
2.椭圆x92+y42=1 的离心率是(
)
13 5 2 5 A. 3 B. 3 C.3 D.9
解析:由椭圆的标准方程x92+y42=1,可得 a2=9,b2=4,∴c2=a2- b2=5,∴e2=ac22=59,∴e= 35.

高中数学人教B版选修1-1 第二章2.1.1 椭圆及其标准方程(一)课件(共19张PPT)

高中数学人教B版选修1-1 第二章2.1.1 椭圆及其标准方程(一)课件(共19张PPT)

两个方程
椭圆标准方程: (1). 椭圆焦点在x轴上
(2). 椭圆焦点在y轴上
两种方法
待定系数法、公式法
x2 a2
y2 b2
1(a
b 0).
y2 a2
x2 b2
1(a
b 0).
挑战自我
已知椭圆的两个焦点分别为F1(-4,0)和 F2(4,0),再添加什么条件,可得椭 圆方程为
不知道自己缺点的人,一辈子都不会想要改善。成功的花,人们只惊慕她现时的明艳!然而当初她的芽儿,浸透了奋斗的泪泉,洒遍了牺牲的血雨。成功的条件在于勇气和 信乃是由健全的思想和健康的体魄而来。成功了自己笑一辈子,不成功被人笑一辈子。成功只有一个理由,失败却有一千种理由。从胜利学得少,从失败学得多。你生而有 前进,形如蝼蚁。你一天的爱心可能带来别人一生的感谢。逆风的方向,更适合飞翔。只有承担起旅途风雨,才能最终守得住彩虹满天只有创造,才是真正的享受,只有拚 活。知识玩转财富。志不立,天下无可成之事。竹笋虽然柔嫩,但它不怕重压,敢于奋斗、敢于冒尖。阻止你前行的,不是人生道路上的一百块石头,而是你鞋子里的那一 爱,不必呼天抢地,只是相顾无言。最值得欣赏的风景,是自己奋斗的足迹。爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。生活不可能像你想 不会像你想的那么糟。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。实现梦想往往是一个艰苦的坚持的 到位,立竿见影。那些成就卓越的人,几乎都在追求梦想的过程中表现出一种顽强的毅力。世界上唯一不变的字就是“变”字。事实胜于雄辩,百闻不如一见。思路决定出路 细节决定成败,性格决定命运虽然你的思维相对于宇宙智慧来说只不过是汪洋中的一滴水,但这滴水却凝聚着海洋的全部财富;是质量上的一而非数量上的一;你的思维拥 所有过不去的都会过去,要对时间有耐心。人总会遇到挫折,总会有低潮,会有不被人理解的时候。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希 个人不知道他要驶向哪个码头,那么任何风都不会是顺风。沙漠里的脚印很快就消逝了。一支支奋进歌却在跋涉者的心中长久激荡。上天完全是为了坚强你的意志,才在道 碍。拥有资源不能成功,善用资源才能成功。小成功靠自己,大成功靠团队。炫耀什么,缺少什么;掩饰什么,自卑什么。所谓正常人,只是自我防御比较好的人。真正的 防而又不受害。学习必须如蜜蜂一样,采过许多花,这才能酿出蜜来态度决定高度。外在压力增加时,就应增强内在的动力。我不是富二代,不能拼爹,但为了成功,我可 站在万人中央成为别人的光。人一辈子不长不短,走着走着,就进了坟墓,你是要轰轰烈烈地风光下葬,还是一把骨灰撒向河流山川。严于自律:不能成为自己本身之主人 他周围任何事物的主人。自律是完全拥有自己的内心并将其导向他所希望的目标的惟一正确的途径。生活对于智者永远是一首昂扬的歌,它的主旋律永远是奋斗。眼泪的存 伤不是一场幻觉。要不断提高自身的能力,才能益己及他。有能力办实事才不会毕竟空谈何益。故事的结束总是满载而归,就是金榜题名。一个人失败的最大原因,是对自 的信心,甚至以为自己必将失败无疑。一个人炫耀什么,说明内心缺少什么。一个人只有在全力以赴的时候才能发挥最大的潜能。我们的能力是有限的,有很多东西飘然于 之外。过去再优美,我们不能住进去;现在再艰险,我们也要走过去!即使行动导致错误,却也带来了学习与成长;不行动则是停滞与萎缩。你的所有不甘和怨气来源于你 你可以平凡,但不能平庸。懦弱的人只会裹足不前,莽撞的人只能引为烧身,只有真正勇敢的人才能所向披靡。平凡的脚步也可以走完伟大的行程。平静的湖面锻炼不出精 生活打造不出生活的强者。人的生命似洪水在奔流,不遇着岛屿、暗礁,难以激起美丽的浪花人生不怕重来,就怕没有将来。人生的成败往往就在于一念之差。人生就像一 为你在看别人耍猴的时候,却不知自己也是猴子中的一员!人生如天气,可预料,但往往出乎意料。人生最大的改变就是去做自己害怕的事情。如果不想被打倒,只有增加 你向神求助,说明你相信神的能力;如果神没有帮助你,说明神相信你的能力。善待自己,不被别人左右,也不去左右别人,自信优雅。活是欺骗不了的,一个人要生活得 象这杯浓酒,不经三番五次的提炼呵,就不会这样一来可口!生命不止需要长度,更需要宽度。时间就像一张网,你撒在哪里,你的收获就在哪里。世上最累人的事,莫过于 你感到痛苦时,就去学习点什么吧,学习可以使我们减缓痛苦。当世界都在说放弃的时候,轻轻的告诉自己:再试一次。过错是暂时的遗憾,而错过则是永远的遗憾!很多 结果,但是不努力却什么改变也没有。后悔是一种耗费精神的情绪后悔是比损失更大的损失,比错误更大的错误所以不要后悔。环境不会改变,解决之道在于改变自己。积 成功者的最基本要素。激情,这是鼓满船帆的风。风有时会把船帆吹断;但没有风,帆船就不能航行。即使道路坎坷不平,车轮也要前进;即使江河波涛汹涌,船只也航行 粹取出来的。浪费时间等于浪费生命。老要靠别人的鼓励才去奋斗的人不算强者;有别人的鼓励还不去奋斗的人简直就是懦夫。不要问别人为你做了什么,而要问你为别人 遥远的梦想和最朴素的生活,即使明天天寒地冻,金钱没有高贵,低贱之分。金钱在高尚人的手中,就会变得高尚;金钱在庸俗人手中,就会变得低级庸俗。涓涓细流一旦 大海也就终止了呼吸。漫无目的的生活就像出海航行而没有指南针。如果我没有,我就一定要,我一定要,就一定能。上一秒已成过去,曾经的辉煌,仅仅是是曾经。其实 在昨天,而是失败在没有很好利用今天。千万人的失败,都有是失败在做事不彻底,往往做到离成功只差一步就终止不做了。强者征服今天,懦夫哀叹昨天,懒汉坐等明天 只是不来的人,要来,千军万马也是挡不住的。求人不如求己;贫穷志不移;吃得苦中苦;方为人上人;失意不灰心;得意莫忘形。人们总是在努力珍惜未得到的,而遗忘 告诉我,无理取闹的年龄过了,该懂事了。时间是个常数,但也是��

非线性各向异性椭圆方程的均匀化

非线性各向异性椭圆方程的均匀化

¿³²· Y -
u ∈ W 1,pl (Y ).
1
|u|pl dx
pl
+
Ω
. C0∞(Ω)
1 pl
+
1 pl
= 1,
∂u pl
1 pl
dx ,
Ω ∂xl
u W 1,pl (Ω) u
(2.2)
W01,pl (Ω),
Wp1e,prl (Y ),
u
3 ÞÂ Ë É
­ ¥ · 2 Ó² Ö ß Sobolev ¢ É Á ¨, ¡ » ² (1.1) ÆÕ, ¬
Ð ∇ω = ∇u0 − χη, ∇ω
(3.21) χ ¹ 0, Ý ω ²­ ß, ¡±
½¾¯² (a0 − A(∇u0))ηψdxdt ≥ 0,
ψ ∈ D(Ω).
Ω
, a0 = A(∇u0) a.e. Ω.
« ­ (P0) ²ÕÞ ß, Ç
(3.21)
χ > 0, »
(3.22)
u = u0 a.e. Ω.
N
µ© ª Wp1e,prl(Y ) Æ Ó ² . Ê
A(y, ξ + ∇Φξ(y)) · ∇ϕdy = 0, ∀ ϕ ∈ Wp1e,prl (Y ),
Y
l=1
© Ç W 1,pl(μ, Y ) Å ²¢ . » Φξ, ±
È ² , Wp1e,prl (Y ) Y
(3.6)
Þ
¿ Á Φξ
y
Y
³².
⎪⎪⎪⎪⎨
N

l=1
∂ ∂xl
∂u pl−2 ∂u
βl ∂xl
∂xl
⎪⎪⎪⎪⎩
= f (x), u(x) = 0,

数学:2.2.1《椭圆的标准方程》PPT课件(新人教A版选修2-1)

数学:2.2.1《椭圆的标准方程》PPT课件(新人教A版选修2-1)

自己动手试试看: 自己动手试试看 取一条定
长为6cm的细绳,把它的两 的细绳, 长为 的细绳 端固定在画板上的F 端固定在画板上的 1 和F 2 两点,用铅笔尖把细绳拉紧, 两点,用铅笔尖把细绳拉紧 使铅笔尖在图板上缓慢移动, 使铅笔尖在图板上缓慢移动 仔细观察,你画出的是一个 仔细观察 你画出的是一个 什么样的图形呢? 什么样的图形呢
√(x+c)2+y2 +√(x-c)2+y2 =2a
将这个方程移项,两边平方,得 (x+c)2 + y2=4a2-4a √(x - c)2+y2 +(x - c)2+y2 , a2-cx = a √(x-c)2+y2 . 两边再平方,得 4-2a2cx+c2x2 = a2x2-2a2cx+a2c2+a2y2 , a 整理得 2-c2)x2+a2y2 = a2(a2-c2) . (a
2 2
2 2 2 2
2
2
2 2
x y 两 同 以 b , 得 2 + 2 =1 边 除 a a b
x y (1)焦 在 上: 2 + 2 =1(a > b > 0) 点 x轴 a2 b2 y x (2)焦 在 上: 2 + 2 =1(a > b > 0) 点 y轴 a b
2
2
椭圆方程有特点 系数为正加相连 分母较大焦点定 右边数“ 记心间 右边数“1”记心间
x y ( 2.椭 圆 + =1 焦距为 ,则m的值 C) 的 2 等于 m 4
2 2
A 5 B 3 C 3或5 D 以上都不对
二、填空题: 填空题: 1.已知 2 已知a+b=10,c= 2 5 ,则椭圆的标准 已知 则椭圆的标准 2 2 2 x y y x 方程为_______________________________________ + =1 或 + =1 36 16 36 16

椭圆方程及几何性质PPT课件

椭圆方程及几何性质PPT课件

标准方 程及 图形
xa22+by22=1 (a>b>0)
xb22+ay22=1
(a>b>0)
顶点
ABB112(((-00,,a,b-0))b,),A2(a,0),AAB121(((-00, ,b-a,0)),a,),B2(b,0)

对称轴: x轴、y轴,长轴长: |A1A2|=2a , 短轴长: |B1B2|=2b
4(2010全国卷)已知F是椭圆C的一个焦
点,B是短轴的一个端点,线段BF的延长
线交C于点D, 且BF=2FD,则C的离心率

.
5(2010湖北):已知椭圆 c
:
x2 2
y2
1
的两焦点分别为 F 1 , F 2 , 点 P(x0 , y0 ) 满足
0___x_202___y,02 直 1,线则|xP0Fx1
(2)离心率:e=
c a

(0<e<1).
(3)焦点到相应准线的距离:p=
b2 c
.
(4)焦点在 x 轴上的椭圆焦点弦长 d
= a2-2ca2bc2os2θ(其中 θ 为倾斜角)

3.椭圆的几何性质
{M||MF1|+|MF2|=2a,(2a>|F1F2|)}
条件
{M|= |MdF1 1|=|MdF2 2| =e(0<e<1)}
2
|+|
PF
y0
2 |的取值范围为 y 1与椭圆C的公
共点个数_____。
考点一
椭圆的定义及应用
利用椭圆的定义可以将椭圆上的点到 两个焦点的距离进行转化,一般地,解决 与到焦点的距离有关的问题时,首先应考 虑用定义来解题.

偏微分方程的读书报告

偏微分方程的读书报告
, 并且所有的参数都是正常数。另一个是带有HollingⅡ型响应函数的捕食 模型: 其中都是正常数。
文中主要是讨论了上面两种捕食模型的共存解的存在性、多解性、 分支与稳定性。两种模型采用的都是正锥上的拓扑度理论和分支理论。 现在我自己对书中采用的方法做一下归纳:
要采用正锥拓扑度理论,必须要对所要讨论的问题做先验估计,估 计出上下界,这是此法的前提条件,这个决定想采用锥上拓扑度理论研 究问题时,在构造模型时必须注意,要使得所构造的模型有解的先验估 计。比方说是上述问题讨论的正解,总是要先对正解做先验估计,估计 出它的上下界,采用的方法是最大值原理、上下解方法和正解的唯一性 等等。做出先验估计之后,然后做正锥,在正锥上讨论问题,找出问题 的平凡正解和半平凡正解。将所要研究的问题转化为紧算子的不动点问 题,利用锥上的拓扑度理论,求出每个平凡正解和半平凡正解的不动点 指数(方法就是看看紧算子的导算子有没有性质,利用前面的定理即 可),然后利用拓扑度与不动点指数之间的关系(拓扑度等于不动点指 数之和),来探讨共存解的存在性以及多解性。分支理论是严格按照分 支定理来处理的,严格验证分支定理中的几条性质即可。正解的线性稳 定性也是严格按照定义来处理,就是要证明所研究问题的线性化特征值 问题的所有特征值的实部都是大于零即可。这里文章大部分采用的方法 都是反证法,因为直接证不好证,所以采用反证法会使得问题好处理, 并且中间的证明也多次用到第二章的特征值和特征函数的问题,这都是 我从这本书中学到的思想,受益匪浅!
第六章讲的是图灵(Turing)模式,结合两个具有代表性的例子,利 用抽象的拓扑度理论和先验估计,介绍Turing模式的研究内容和方法。
我们知道,在采用拓扑度理论研究问题时,需要计算不动点指数, 利用前面的结论,不动点指数的运算很麻烦,书中先给出一个简化不动 点指数的定理: (定理)假设对所有的,.那么 其中, 是 的正常数解,是上述问题的正解当且仅当是紧算子 的正解,,是 的全部特征值,是的重数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档