人工智能大作业实验
人工智能大作业心得体会

人工智能大作业心得体会在这次人工智能大作业中,我学到了很多关于人工智能的知识和技能,并且收获了很多心得体会。
首先,我意识到人工智能已经在我们生活的方方面面发挥了巨大的作用,从智能手机上的语音助手到智能家居设备的应用,人工智能已经悄然走进了我们的日常生活。
这次作业让我更加深入地了解了人工智能的原理和应用,使我对人工智能的重要性有了更深刻的认识。
其次,我在做大作业的过程中体会到了人工智能技术的复杂性和挑战性。
在设计和实现一个人工智能系统的过程中,需要考虑很多因素,包括数据的处理、算法的选择、模型的训练等等。
这需要我们具备扎实的编程和数学基础,以及对人工智能技术的深入理解。
最后,我也意识到人工智能的发展是一个持续不断的过程,需要我们不断地学习和探索。
在这个快速发展的领域,我们不能停留在已有的知识和技能上,而是要保持对新技术和新理论的关注,不断地提升自己的能力。
只有这样,我们才能在这个领域取得更大的成就。
总的来说,通过这次人工智能大作业,我不仅学到了很多关于人工智能的知识和技能,也收获了很多关于学习和成长的体会。
我相信,随着人工智能技术的不断发展,我会继续努力,为这个领域的发展做出自己的贡献。
对于接下来人工智能的发展,我对于这个领域的未来充满着期待。
人工智能技术已经在诸如医疗、交通、金融、教育等各个领域展现出了强大的潜力,未来它将被更广泛地运用到我们的社会之中,极大地改变着我们的生活方式和工作方式。
首先,人工智能的技术将会继续进步,带来更加智能化的产品和服务。
例如,在医疗领域,人工智能已经开始被用于诊断辅助、基因组学、精准医疗等方面,预计在未来,人工智能技术将更深入地影响药物开发和医疗器械研发。
在交通领域,自动驾驶技术的发展将会大大提高交通安全性和效率。
另外,在金融领域,人工智能将会被用于更智能化的风险管理和投资决策。
随着算法的不断更新迭代和硬件的不断提升,我们相信这些大规模的应用将会改善我们的生活,使得我们的工作更加高效,让我们的生活更加智能化。
人工智能实验报告1

南京信息工程大学 实验(实习)报告 实验(实习)名称 MATLAB 编程 实验日期得分 指导教师 系 计科 专业 年级 班次 <> 姓名 学号一、实验目的:(1)通过学习MA TLAB 编程来进一步了解人工智能; (2)通过上机实习编写MATLAB 程序,从而对MA TLAB 有所基本了解。
为更好地学习人工智能知识打下基础。
二、实验内容:(1)编写程序,计算1+3+5+7+…+(2n+1)的值(用input 语句输入n 值)。
(2)编写分段函数⎪⎩⎪⎨⎧≤≤-<≤=)(0)21(2)10()(其他x x x x x f 的函数文件,存放于文件ff.m 中,计算出)3(-f 、)2(f 、)(∞f 的值。
三、实验步骤:(1)打开MATLAB 软件,首先在D 盘下新建一个MATLAB 文件夹,然后把工作路径设置到这个文件夹,如所示。
(2)在菜单栏选择【File 】>>【New 】>>【M-File 】新建*.M 的文件,然后在新建的文件中进行程序的编写。
(3)第1题的实验代码如下:实验结果如下:(4)第2题实验代码如下:实验结果如下:四、实验结论:(1)存在问题一开始对MATLAB语言还不是很熟悉,但通过上级实习遇到的一些问题帮助我们更好的学习了MATLAB,而且它与C语言虽然在思想上差不多但语法实现上还是有区别的。
(2)认识体会MATLAB 作为一种高级科学计算软件,是进行算法开发、数据可视化、数据分析以及数值计算的交互式应用开发环境,并且是一门实践性非常强的课程。
要学好MATLAB程序设计,上机实践是十分重要的环节,只有通过大量的上机实验,才能真正掌握MA TLAB程序设计。
人工智能大作业

大作业1、引言
1.1 背景
1.2 目的
1.3 范围
1.4 定义
2、文献综述
2.1 关于的研究历史
2.2 相关研究成果与应用领域
3、问题陈述
3.1 问题描述
3.2 研究的动机和意义
3.3 研究的目标和假设
4、方法ology
4.1 数据收集
4.2 数据处理与清洗
4.3 特征选择与提取
4.4 算法选择与实现
4.5 模型训练与优化
5、实验结果与分析
5.1 数据集描述
5.2 实验设置
5.3 结果分析与讨论
5.4 实验效果评估
6、结论与展望
6.1 主要研究结果总结 6.2 讨论与不足之处
6.3 对未来工作的展望附件:
附件1:数据集来源信息附件2:代码仓库
附件3:实验结果数据表格法律名词及注释:
1、:指通过模拟和模仿人类智能的方法和技术,使计算机系统能够自动执行任务、学习、适应和改进。
2、数据处理与清洗:指对原始数据进行筛选、过滤、去除噪声以及修复缺失值等操作,以提高数据的质量和可用性。
3、特征选择与提取:指从原始数据中选择最相关或最具代表性的特征,或通过计算、变换等方法提取出更具信息量的特征。
4、算法选择与实现:指根据问题的特点和要求,选择合适的算法,并通过编程实现。
5、模型训练与优化:指使用训练数据对选定的算法模型进行训练,并通过调整参数、改进算法等方式优化模型性能。
【内容详尽-格式完美 5000字+】人工智能大作业任务书实验报告

大作业任务书课程名称:人工智能题目:人工智能:生成智能专业:自动化班级:学号:学生姓名:任课教师:人工智能:生成智能摘要:人工智能在许多领域取得了空前的发展,对抗与博弈的思想也逐渐被应用于许多真实场景,如围棋,对抗游戏等。
不过,这篇文章所探讨的是基于博弈思想的深度学习鉴别生成模型—生成对抗网络(Generative Adversarial Nets,以下简称GANs)的前沿进展。
本文从生成模型的角度出发,针对GANs,使用了交叉熵作为生成器与判别器的损失函数,在基于Tensorflow的深度学习平台应用数字手写数据库MNIST证明了GANs的实用性与收敛性,此外,还综述了近期许多改进的GANs,探讨了其不同应用数据库场景的结果。
关键词:人工智能;博弈;深度学习;生成对抗网络;交叉熵一、引言深度学习旨在发掘在人工智能具有丰富的,分级的能够表征各种数据分布的模型,比如自然界的图像,语音,和自然语言处理等[1]。
深度学习隶属于人工智能的一个重要分支,其与机器学习具有交叉互容的关系,2012年ImageNet挑战赛正式拉开深度学习的序幕,或者说是深层神经网络。
深层神经网络由传统的单层感知机,多层感知机,神经网络发展而来,其为了解决高维数据的维度灾难,模型训练难以泛化,标准解难以收敛等诸多难题。
后续许多研究者投身深度学习领域,并将其应用于各个行业领域,如医疗图像诊断,无人驾驶,语义识别,场景识别等等,取得了不俗的效果。
到目前为止,在深度学习中最引人注目的成就包括了鉴别模型,通常是那些将高维、丰富的特征输入映射到类属标签的模型。
这些显著的成功主要基于反向传播和Dropout算法,使用具有特别良好性能的梯度的分段线性单元。
由于难以去逼近极大似然估计和相关策略中出现的许多难以处理的概率计算问题,以及由于在生成上下文中难以利用分段线性单元的优点,深度生成模型的影响较小。
深度生成模型的成功为深度学习打开了一扇新的大门,之后有许多研究取得了显著的效果。
人工智能《启发式搜索》实验大作业

《人工智能》实验大作业实验题目:启发式搜索一、实验目的:熟悉和掌握启发式搜索的定义、估价函数和算法过程,并利用A算法求解九宫问题,理解求解流程和搜索顺序。
二、实验方法:1.先熟悉启发式搜索算法;2.用C、C++或JA V A 语言编程实现实验内容。
三、实验背景知识:1.估价函数在对问题的状态空间进行搜索时,为提高搜索效率需要和被解问题的解有关的大量控制性知识作为搜索的辅助性策略。
这些控制信息反映在估价函数中。
估价函数的任务就是估计待搜索节点的重要程度,给这些节点排定次序。
估价函数可以是任意一种函数,如有的定义它是节点x处于最佳路径的概率上,或是x节点和目标节点之间的距离等等。
在此,我们把估价函数f(n)定义为从初始节点经过n节点到达目标节点的最小代价路径的代价估计值,它的一般形式是:f(n) = g(n) + h(n)其中g(n)是从初始节点到节点n的实际代价,g(n)可以根据生成的搜索树实际计算出来;h(n)是从n到目标节点的最佳路径的代价估计,h(n)主要体现了搜索的启发信息。
2. 启发式搜索过程的特性(1)可采纳性当一个搜索算法在最短路径存在的时候能保证能找到它,我们就称该算法是可采纳的。
所有A*算法都是可采纳的。
(2)单调性一个启发函数h是单调的,如果a)对所有的状态n i和n j,其中n j是n i的子孙,h(n i )- h(n j )≤cost(n i,n j ),其中cost(n i,n j )是从n i到n j 实际代价。
b)目标状态的启发函数值为0,即h(Goal)=0.具有单调性的启发式搜索算法在对状态进行扩展时能保证所有被扩展的状态的f值是单调递增(不减)。
(3)信息性比较两个启发策略h1和h2,如果对搜索空间中的任何一个状态n都有h1(n) ≤h2(n),就说h2比h1具有更多的信息性。
一般而言,若搜索策略h2比h1有更多的信息性,则h2比h1考察的状态要少。
但必须注意的是更多信息性需要更多的计算时间,从而有可能抵消减少搜索空间所带来的益处。
人工智能大作业报告完整版

人工智能大作业报告 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】人工智能课程大作业——基于回溯搜索的地图着色班级:学号:姓名:曾江东2014年11月26号摘要:人工智能是20世纪50年代中期兴起的一门边缘学科。
人工智能领域中,地图着色问题是一典型的优化的问题。
由它引发的“四色猜想”是全世界的难题,直到1975年由三台超高速电子计算机,经过1200小时的计算才终于正明了“四色定理”。
这是世界上最长的证明。
本文并不是想证明,而只是想基于回溯法来给地图着色,求出最少用色。
本文着重介绍利用MFC设计界面来对中国省级地图着色进行演示。
计算机视觉是研究为完成在复杂的环境中运动和在复杂的场景中识别物体所需要哪些视觉信息,以及如何从图像中获取这些信息的科学领域。
关键词:地图着色;回溯搜索;MFC本组成员:曾江东,杨星,俞洋本人分工:本人主要基于回溯搜索算法的代码的编写。
1 引言人,现在社会的发展中心都离不开这个人字,人是发展的本体,人类的自然智能伴随到处都是,本次实验研究什么是人工智能,人工智能又能如何的运用在生活和学习中。
人工智能(ArtificialIntelligence),英文缩写为AI。
它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能(ArtificialIntelligence,AI)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,但没有一个统一的定义。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
本次实验研究的是关于人工智能中搜索的功能,实现用回溯法对地图不同地区的着色问题,地图上有不同国家(不同区域),每个国家都与其他一些国家邻接。
人工智能大作业(二)2024

人工智能大作业(二)引言概述:本文旨在深入探讨人工智能大作业的相关内容。
人工智能作为一门快速发展的学科,对于学习者而言,进行相关的大作业是加深理解和应用该领域知识的重要方式之一。
本文将分析人工智能大作业的五个主要方面,包括数据集选择、算法设计、模型训练、结果分析以及展示与报告。
正文:1. 数据集选择:- 研究不同领域的数据集,并从中选择最适合研究课题的数据集。
- 评估数据集的规模、特征、质量等因素,并确保其能够支持后续的算法设计和模型训练过程。
- 如果需要,进行数据预处理操作,如去除噪声、处理缺失值等,以提高数据集的质量和可用性。
- 确保数据集的隐私和安全性,遵循相关法规和伦理原则。
2. 算法设计:- 了解和研究相关领域的常用算法,并选择适合问题的算法。
- 分析算法的优势和局限性,并根据研究课题的需要进行适当的修改和改进。
- 设计算法的流程和步骤,明确数据的输入和输出,以及各个阶段的处理过程。
- 考虑算法的效率和可扩展性,确保能够处理大规模的数据集和复杂的任务。
3. 模型训练:- 根据选定的算法,准备训练数据集和验证数据集,并进行数据集划分。
- 初始化模型参数,并进行模型训练和优化,以使模型能够更好地拟合训练数据。
- 考虑使用交叉验证和调参等技术,来选择最优的模型参数和超参数。
- 监控训练过程,分析模型在训练集和验证集上的性能表现,并根据需要进行调整和改进。
4. 结果分析:- 对训练得到的模型进行性能评估,并使用不同的评测指标来衡量模型的好坏。
- 分析模型在不同类型数据上的表现差异,并探讨其原因和解决办法。
- 进行模型的可解释性分析,了解模型对于预测结果的依赖和影响因素。
- 与其他相关工作进行比较,评估自己的研究成果在同领域中的创新性和贡献度。
5. 展示与报告:- 将实现的算法和训练得到的模型进行演示和展示,以直观地呈现出其性能和效果。
- 准备详细的报告文档,清晰地描述整个研究过程,包括问题定义、方法设计、实验结果和分析等内容。
人工智能综合实践作业要求

人工智能综合实践大作业要求智能系统建模与仿真综合实践课程是一项综合性的课程设计,要求同学们将所学的知识运用到实际项目中,完成一个完整的综合项目。
具体要求如下:1.选题:选择一个实际应用场景,确定项目的功能需求和技术实现方案。
2.数据采集和数据预处理:对项目所需要的数据进行采集(比如爬虫)、清洗等处理等工作,可以使用之前课程中学习的pandas等相关技术。
3.技术实现:如果是一个可视化项目,需要使用Matplotlib、echarts等相关技术实现。
如果是一个算法模型,根据需求分析设计,选择合适的模型和算法,进行训练和优化。
(可以选择深度学习、机器学习等进行训练)4.模型应用和优化:将训练好的模型应用到实际场景中,对结果进行评估和优化。
(这里推荐使用Flask部署,或者GUI部署)5.项目演示:对项目进行演示,展示项目的功能和特点,并进行现场答辩。
6.项目总结:对项目的完成过程进行总结,包括遇到的问题和解决方案、项目的优缺点等。
在完成大作业时,需要注意以下几点:1.选题要具有实际应用价值,能够解决实际问题。
2.数据采集和预处理要充分考虑数据的质量和可用性,保证模型的训练和应用效果。
3.模型应用和优化要考虑实际场景中的各种因素,保证模型的实际效果。
4.项目演示要生动、形象、详细,能够展示项目的特点和优势。
6.项目总结要客观、全面、深入,能够对项目的完成过程进行全面的反思和总结。
题目范围:爬虫+可视化分析(可视化分析不能少于8个)数据预处理 + 机器学习算法 + 模型应用部署自然语言处理 + 应用部署计算机视觉(图像分类、目标检测、语义识别等等)+ 应用部署其他智能化相关的一些项目(比如推荐系统等等)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南中医药大学本科课程实验教学大纲《人工智能》计算机科学与技术专业执笔人:丁长松审定人:***学院负责人:***湖南中医药大学教务处二○一四年三月一、课程性质和教学目的《人工智能》是计算机专业本科生的一门专业必修课,适应于计算机科学与技术专业、医药信息工程专业。
本课程是关于人工智能领域的引导性课程,通过本课程的学习,是使学生了解和掌握人工智能的基本概念、原理和方法,培养学生在计算机领域中应用人工智能技术提高分析和解决较复杂问题的能力,启发学生对人工智能的兴趣,培养知识创新和技术创新能力。
《人工智能》主要研究智能信息处理技术、开发具有智能特性的各类应用系统的核心技术。
本课程主要介绍人工智能的基本理论、方法和技术,主要包括常用的知识表示、逻辑推理和问题求解方法、人工智能发展学派以及主要理论。
先修课程:高等数学、数据结构、数据库原理、算法设计与分析、数理逻辑二、课程目标人工智能实验应在一种为高效率开发专家系统而设计的高级程序系统或高级程序设计语言环境中进行。
在目前开来,专家系统开发工具和环境可分为5种主要类型:程序设计语言、知识工程语言、辅助型工具、支持工具及开发环境。
在这里主要是要求学生能用相关术语描述、表示一些问题;用程序设计语言如:C、C++、JA V A编程来实现一些基本的算法、推理、搜索等过程。
三、实验内容与要求实验一:谓词表示【实验内容】设农夫、狼、山羊、白菜都在河的左岸,现在要把它们运送到河的右岸去,农夫有条船,过河时,除农夫外船上至多能载狼、山羊、白菜中的一种。
狼要吃山羊,山羊要吃白菜,除非农夫在那里。
试设计出一个确保全部都能过河的方案。
【实验目的】让学生加深对谓词逻辑和谓词知识表示的理解。
【实验要求】写出所用谓词的定义,并给出每个谓词的功能及变量的个体域,然后编程来实现。
【参考学时】1.定义状态的谓词2.定义变元的个体域3.描述问题的初始和目标状态4.定义动作5.解释过程解:(1) 先定义描述状态的谓词AL(x):x在左岸¬AL(x)表示x在右岸。
(2)定义个体域x的个体域:{农夫,船,狼,羊,白菜}。
(3)定义初始状态和目标状态问题的初始状态:AL(农夫),AL(船),AL(狼),AL(羊),AL(白菜),问题的目标状态:¬AL(农夫),¬AL(船),¬AL(狼),¬AL(羊),¬AL(白菜)(4) 定义动作4个动作:农夫不带来回农夫带来回L-R:农夫自己划船从左岸到右岸L-R(x):农夫带着x划船从左岸到右岸R-L:农夫自己划船从右岸到左岸R-L(x) :农夫带着x划船从右岸到左岸x的个体域是{狼,羊,白菜}。
L-R:农夫划船从左岸到右岸条件:AL(船),AL(农夫),¬AL(狼)∨¬AL(羊),¬AL(羊)∨¬AL(白菜)动作:删除表:AL(船),AL(农夫)添加表:¬AL(船),¬AL(农夫)L-R(狼):农夫带着狼划船从左岸到右岸条件:AL(船),AL(农夫),AL(狼),¬AL(羊)动作:删除表:AL(船),AL(农夫),AL(狼)添加表:¬AL(船),¬AL(农夫),¬AL(狼)L-R(羊):农夫带着羊划船从左岸到右岸条件:AL(船),AL(农夫),AL(羊),AL(狼),AL(白菜)或:AL(船),AL(农夫),AL(羊),¬AL(狼),¬AL(白菜) 动作:删除表:AL(船),AL(农夫),AL(羊)添加表:¬AL(船),¬AL(农夫),¬AL(羊)L-R(白菜):农夫带着白菜划船从左岸到右岸条件:AL(船),AL(农夫),AL(白菜),¬AL(狼)动作:删除表:AL(船),AL(农夫),AL(白菜)添加表:¬AL(船),¬AL(农夫),¬AL(白菜)R-L:农夫划船从右岸到左岸条件:¬AL(船),¬AL(农夫),AL(狼)∨AL(羊),AL(羊)∨AL(白菜) 或:¬AL(船),¬AL(农夫) ,¬AL(狼),¬AL(白菜),AL(羊) 动作:删除表:¬AL(船),¬AL(农夫)添加表:AL(船),AL(农夫)R-L(羊) :农夫带着羊划船从右岸到左岸条件:¬AL(船),¬AL(农夫),¬AL(羊) ,¬AL(狼),¬AL(羊),AL(白菜)动作:删除表:¬AL(船),¬AL(农夫),¬AL(羊)添加表:AL(船),AL(农夫),AL(羊)(3)问题求解过程代码如下#include<stdio.h>#include<malloc.h>typedef int datatype; //datatype定义struct seqque //队列结构体{int maxnum;int f,r; //存放头尾下标datatype *q;};typedef struct seqque *pseqque;/*创建一个新的队列*/pseqque createmptyqueue (int m){pseqque paqu=(pseqque)malloc(sizeof(struct seqque)); //申请结构体动态空间if (paqu!=NULL){paqu->q=(datatype*)malloc(sizeof(datatype)*m); //申请datatype动态空间if (paqu->q){paqu->maxnum=m;paqu->f=0; //置头下标为0paqu->r=0; //置尾下标为0return paqu;}else free(paqu);}printf("超出存储空间!");return NULL;}/*入队运算函数*/void enque(pseqque paqu,datatype x){if ((paqu->r+1)%(paqu->maxnum)==paqu->f)printf("队列已满!");else{paqu->q[paqu->r]=x;paqu->r=(paqu->r+1)%(paqu->maxnum);}}/*出队运算函数*/void deque(pseqque paqu){if (paqu->f==paqu->r)printf("空队列!");elsepaqu->f=(paqu->f+1)%(paqu->maxnum);}/*取队列头元素*/datatype frontque (pseqque paqu){if (paqu->f==paqu->r)printf("队列为空!");elsereturn (paqu->q[paqu->f]);}/*判断是否为空队列函数*/int isemptyque(pseqque paqu){if (paqu->f==paqu->r)return 1;elsereturn 0;}/*判断农夫位置*/int farmer(int location){return(0!=(location&0x08));}/*判断狼位置*/int wolf(int location){return(0!=(location&0x04));}/*判断白菜位置*/int cabbage(int location){return(0!=(location&0x02));}/*判断羊位置*/int goat(int location){return(0!=(location&0x01));}/*安全状态的判断函数*/int safe(int location){if ((goat(location)==cabbage(location))&&(goat(location)!=farmer(location))) return 0; //羊吃白菜if ((goat(location)==wolf(location))&&(wolf(location)!=farmer(location))) return 0; //狼吃羊return 1;}/*解决农夫问题函数*/void farmerproblem(void){int i,movers,location,newlocation;int route[16]; //记录已走过的步骤pseqque moveto; //存放安全的步骤moveto=createmptyqueue(16); //创建新队列enque(moveto,0x00); //置状态初值for (i=0;i<16;i++) //置已走过步骤初值route[i]=-1;route[0]=0;while(!isemptyque(moveto)&&(route[15]==-1)){location=frontque(moveto); //取头状态为当前状态deque(moveto); //删除队列头状态for (movers=1;movers<=8;movers<<=1) //依次考虑羊、白菜、狼、农夫的移动if ((0!=(location&0x08))==(0!=(location&movers))) //判断是否和农夫同边{newlocation=location^(0x08|movers); //移动后的状态if (safe(newlocation)&&(route[newlocation]==-1)) //判断是否为安全状态{route[newlocation]=location; //将新的安全状态赋给locationenque(moveto,newlocation); //新的状态入队列}}}if (route[15]!=-1) //到达最终状态{printf("过程是:\n"); //输出过程和位置for (location=15;location>=0;location=route[location]){printf("位置是:%d\n",location);if (location==0)exit(0);}}else printf("此问题无解!");}/*主函数*/void main(){farmerproblem();}实验二:一个用于动物识别的产生式系统【实验内容】设计该系统,让其实现可以识别老虎、金钱豹、斑马、长颈鹿、企鹅、信天翁这6种动物。