手把手教你数据分析全流程
手把手教你使用SAS进行数据分析

手把手教你使用SAS进行数据分析SAS(Statistical Analysis System)是一款强大的数据分析和统计软件,广泛应用于学术研究、商业分析、医学统计等领域。
本篇文章旨在手把手教读者如何使用SAS进行数据分析,并将内容按照类别划分成不同章节,以便提供更具体且丰富的内容。
第一章:SAS基础本章将介绍SAS的安装和基本设置,帮助读者快速上手。
首先,读者需要从SAS官方网站下载并安装SAS软件。
安装完成后,可以根据需要进行个性化设置,例如选择语言和界面风格等。
此外,还将介绍SAS的基本语法和常见命令,让读者了解如何打开、保存和导入数据集。
第二章:数据处理与清洗数据处理是数据分析的首要步骤,本章将详细介绍如何使用SAS进行数据处理和清洗。
首先,会介绍如何检查数据集的完整性,包括数据类型、缺失值和异常值等。
然后,会讲解如何进行数据变换,例如数据排序、合并和拆分等。
最后,会介绍如何处理缺失值,包括插补和删除处理。
第三章:数据探索和可视化数据探索和可视化是数据分析的关键环节,本章将重点介绍如何使用SAS进行数据探索和可视化。
首先,会介绍如何计算和描述性统计量,例如均值、中位数和标准差等。
然后,会讲解如何绘制常见的数据图表,例如直方图、散点图和箱线图等。
此外,还将介绍如何使用SAS进行数据透视和交叉分析,以便更深入地挖掘数据关系。
第四章:统计分析统计分析是数据分析的核心步骤,本章将介绍如何使用SAS进行常见的统计分析。
首先,会介绍基本的假设检验,例如t检验和方差分析等。
然后,会讲解回归分析的基本原理和应用,包括线性回归和逻辑回归等。
此外,还将介绍如何使用SAS进行聚类分析和因子分析等高级统计技术。
第五章:预测建模预测建模是数据分析的高级技术,本章将介绍如何使用SAS进行预测建模。
首先,会讲解时间序列分析的基本原理和应用,包括趋势分析和季节性分析等。
然后,会介绍如何使用SAS进行机器学习建模,例如决策树和随机森林等。
QC七大手法-数据分析之品质改善_手把手教你绘制柏拉图,一起学起来吧

4.4鼠标右键单击红色“累计百分比”折线图,并在弹出的快捷菜单中选择“设置数据系统格式”;5.3鼠标左键单击“图形工具--布局--次坐标轴水平(类别)轴--设置所选内容格式”5.4在弹出的“设置坐标轴格式”对话框中,选择“坐标轴选项--位置坐标轴--在刻度线上”;5.5“累计百分比”系列折线将以0刻度线开始;5.6鼠标左键单击“图形工具--布局--垂直(值)轴--设置所选内容格式”;5.7在弹出的“设置坐标轴格式”对话框中,设置“坐标轴选项--最大值--固定:2413”(频次总数),设置“坐标轴选项--最小值--固定:0”;5.8重复“方法/步骤5:柏拉图制作第6-7步”设置“次坐标轴水平(值)轴”的最大值为100%(1.0),最小值为0;5.9增加数据标签:鼠标左键单击“图形工具--布局--其他数据标签选项”,并在弹出的5.10取消网格线:鼠标左键单击“图形工具--布局--网格线--主要横--无”,绘图区横网5.11增加坐标轴标题:鼠标左键单击“图形工具--布局--坐标轴标题”,分别设置主要横坐标轴标题、主要纵坐标标题和次要纵坐标标题,6.2增加80-20分割线:点击“插入--形状--直线”,按住【Shift】从80%累计百分比位置从右到左画一条直线与红色直线相交时停止,然后按住【Shift】从交点处从上到下划到柱子边框时停止;6.3 80-20分割线增粗、变虚线、变色:右键鼠标分别点击横向和纵向两条分割线,并且在弹出的快捷菜单中点击“设置对象格式”,然后在弹出的“设置形状格式”对话框中将线型“宽度”更改为2.25磅,将“短划线类型”更改为虚线,将“线型颜色”变为红色;6.4增加图表标题:鼠标左键单击“图形工具--布局--图表标题--图表上方”,为柏拉图增加图表标题,同时更改字体为隶书,字号20,颜色红色。
手把手教你用PoroWin分析压汞法测试数据【孔径及其分布】

⼿把⼿教你⽤PoroWin分析压汞法测试数据【孔径及其分布】⼿把⼿教你⽤PoroWin分析压汞法测试数据【以孔径及其分布为例】本教程以PoroWin软件对康塔压汞仪所测试的孔径及其分布数据进⾏了提取和分析,并⽤Origin进⾏了作图。
本教程特点是图⽂并茂,解说详细,便于⾃学。
0 概述 ....................................................................................................................... - 1 -1 PoroWin软件安装................................................................................................... - 1 -2 ⽤PoroWin提取测试数据........................................................................................ - 2 -3 Origin数据处理与作图............................................................................................ - 5 - 0 概述压汞法是测定部分中孔和⼤孔孔径分布的⽅法。
压汞仪常在材料科学与⼯程中使⽤,⽤来检测多孔材料的孔径及其分布,孔隙率等指标,另外还可以测试出⽐表⾯积、真密度等参数。
压汞法的测试国家标准为《GBT 21650.1-2008 压汞法和⽓体吸附法测定固体材料孔径分布和孔隙度第1部分:压汞法》。
⽬前压汞仪的主流设备有:康塔(Quantachro me)的PoreMaster系列和麦克(Micromeritics)的AutoPore系列。
三张表格走天下:菜鸟也会Excel数据分析(第2版)

妙招技法
C
职场感悟 Excel只 是工具
D
3 正确做好基础表
3.1.1 练好内功,天 下无敌
A
3.1.2 基础表的必备 条件
B
3.1.3 思路有了,问 题没了
C
3.1 基础表才是“王道”
3 正确做好基础表
3.2.1 “一表多 名”累不累
3.2.3 字段也有 “先来后到”
3.2.2 “画蛇添 足”的合计行
7.4.2 一步生成 汇总表
7.4.4 汇总完了 还能还原
7.4 做个简单汇总
7 Excel数据分析的好帮手
01
1.一键排序 小技巧
02
2.根据数值 区间进行筛
选
03
3.只复制汇 总项数据
04
4.按颜色筛 选数据
05
5.筛选结果 也能放在其 他工作表中
妙招技法
PART ONE
08 8 突 破 表 格 , 用 图 表 “ 说 话 ”
9 图表虽形象,但 还要专业
9.2 制作高级图表
9.2.1 将精美小 图应用到图表
9.2.2 制作 甘特图
9.2.3 制作金 字塔分布图
9 图表虽形象,但还要专业
壹
9.3.1 图表类型越简 单越好
ห้องสมุดไป่ตู้
9.3.2 用好双轴复合
贰 图表
9.3.3 处理过长的分
叁 类标签
肆
9.3.4 形成自己的图 表风格
7.2 红豆黑豆
挑出来
01
7.1 让数据重
新“站”个队
7.1.1 单一排序最简单 7.1.3 编个序列排排看
7.1.2 加个条件一样排
7.1.4 数据也能倒着排(辅 助列)
PowerBI技巧之手把手教你学PowerBI数据分析:制作客户分析报告

客户分析就是根据客户信息数据来分析客户特征,评估客户价值,从而为客户制订相应的营销策略与资源配置。
通过合理、系统的客户分析,企业可以知道不同的客户有着什么样的需求,分析客户消费特征与商务效益的关系,使运营策略得到最优的规划;更为重要的是可以发现潜在客户,从而进一步扩大商业规模,使企业得到快速的发展。
企业客户分析可以从以下几个方面入手,对客户数据信息展开分析: 1、分析客户个性化需求 “以客户为中心”的个性化服务越来越受到重视。
实施CRM的一个重要目标就是能够分析出客户的个性化需求,并对这种需求采取相应措施,同时分析不同客户对企业效益的不同影响,以便做出正确的决策。
这些都使得客户分析成为企业实施CRM时不可缺少的组成部分。
2、分析客户行为 企业可以利用收集到的信息,跟踪并分析每一个客户的信息,不仅知道什么样的客户有什么样的需求,同时还能观察和分析客户行为对企业收益的影响,使企业与客户的关系及企业利润得到最优化。
3、分析有价值的信息 利用客户分析系统,企业不再只依靠经验来推测,而是利用科学的手段和方法,收集、分析和利用各种客户信息,从而轻松的获得有价值的信息。
如企业的哪些产品最受欢迎,原因是什么,有什么回头客,哪些客户是最赚钱的客户,售后服务有哪些问题等。
客户分析将帮助企业充分利用其客户关系资源,在新经济时代从容自由地面对客户。
目前国内企业对客户的分析还很欠缺,分析手段较为简单,而简单的统计方法虽然可以在一定程度上得出分析结果,但因为不同企业发展中存在一定的不平衡性,利用简单的统计模式得出的结论容易有较大的误差,难以满足企业的特殊需求。
因而企业需要有更加完善、合理的客户分析方案,进一步提高客户分析的合理性、一致性,并能在对潜在客户的培养和发现中提供更多的决策支持。
本文将使用客户RFM模型来衡量客户价值,当然仅一个模型也无法完整并系统的分析客户,还是需要结合CRM 系统中的数据,切勿过度依赖该模型来分析客户价值。
手把手教你SPSS二分类Logistic回归分析

手把手教你SPSS二分类Logistic回归分析木教程手把手教您用SPSS做Logistic回归分析,目录如下:一、数据格式二、对数据的分析理解三、S PSS做Logistic回归分析操作步骤3. 1线性关系检验假设3.2多重共线检验假设3.3离群值、杠杆点和强影响点的识别3. 4 Logistic回归分析四、S PSS计算结果的解释五、结果结论的撰写一、数据格式某研究者想了解年龄、性别、BMI和总胆固醇(TC)预测患心脏病(CVD)的能力,招募了100例研究对象,记录了年龄(age)、性别(gender)、BMI,测量血中总胆固醇水平(TC),并评估研究对象目前是否患有心脏病(CVD)o部分数据如图1。
二、对问题分析使用Logistic模型前,需判断是否满足以下7项假设。
假设1:因变量(结局)是二分类变量。
假设2:有至少1个自变量,自变量可以是连续变量,也可以是分类变量。
假设3:每条观测间相互独立。
分类变量(包括因变量和自变量)的分类必须全而且每一个分类间互斥。
假设4:最小样本量要求为自变量数目的15倍,但一些研究者认为样木量应达到自变量数目的50倍。
假设5:连续的自变量与因变量的logit转换值之间存在线性关系。
假设6:自变量之间无多重共线性。
假设7:没有明显的离群点、杠杆点和强影响点。
假设1-4取决于研究设计和数据类型,本研究数据满足假设1- 4o 那么应该如何检验假设5-7,并进行Logistic回归呢?三、SPSS操作3. 1检验假设5:连续的自变量与因变量的logit转换值之间存在线性关系。
连续的自变量与因变量的logit转换值之间是否存在线性关系,可以通过多种方法检验。
这里主要介绍Box-Tidwell方法, 即将连续自变量与其自然对数值的交互项纳入回归方程。
本研究中,连续的自变量包括age、BMI、TCo使用Box-Tidwell 方法时,需要先计算age、BMI、TC的自然对数值,并命名为ln_age> ln_BMI> ln_TCo(1)计算连续自变量的自然对数值以age 为例,计算age 的自然对数值ln_age 的SPSS 操作如下。
数据分析的万能公式

数据分析的万能公式本文作者从自己多年的实践经验中,总结了一套简单又能打的数据分析小白五步法,相信对你有用,一起来看看~不管是哪个行业,当前处于任何阶段的产品经理,躲不开的一个词便是:数据分析。
提到数据分析,它一般会出现在以下的场景中:做版本规划的时候,如何设立指标来进行功能验证?功能上线后,如何做数据复盘?如何通过数据来快速定位问题?在众多的数据中如何识别哪些是需要呈现的重要数据?像大多人一样,几年前我也是试图寻求各种数据分析的书籍来找解决方案,在翻看了十几本数据分析的书后,结论如下:没想到这个行业发展之快,书籍的出版速度已经远远跟不上行业需要了!!就像是你手里拿着一个iPad在看windows 95视窗操作系统的使用手册一样难过~经过这几年的摸爬滚打,我的产品逐渐从0用户做到1300w+后,丽莎阿姨总结了一套简单又能打的数据分析小白五步法:第一步:弄清楚问题到底怎么样(给问题定性)?第二步:可能出了什么问题(提出假说)?第三步:有哪些证据可以证明以上问题(列出问题清单)?第四步:逐一找证据(把数据码出来)第五步:分析验证(用你仅有的小学数学知识来完成)产品团队实践了一年多以来,相信阿姨,只要跟着这个方式来做,再一穷二白的小白(前提是小学数学要及格)两到三次就能上道~手把手教学的之前,我们要达成共识的基础前提:你觉得数据分析是一种方法工具还是一种思维方式???如果你觉得数据分析就是一种方法工具,那从此我们江湖别过,后会无期。
数据分析的本质一定是一个思维方式!!!见过不少的产品经理的操作:首先把结论给下了,然后去找数据来证明自己的结论正确。
这种解应用题一般的令人窒息的操作请不要再发生了!!数据分析应该是站在毫无立场的客观数据前,找到核心的指标,来对比业务中的两组变量之间的关系,用来解释业务,并引领你前行,毕竟没有对比的数据就是耍流氓啊~~~你确保真的理解了丽莎阿姨这段话,那GMF,然后再继续进行接下来的手把手操作阶段吧。
手把手教你怎么用SPSS分析数据

手把手教你怎么用SPSS分析数据SPSS(Statistical Package for the Social Sciences)是一种常用的统计分析软件,广泛应用于社会科学和商业领域。
本文将手把手教您如何使用SPSS分析数据,并提供一些实用的技巧和注意事项。
第一步:导入数据首先,打开SPSS软件并新建一个数据文件。
选择“文件”菜单中的“打开”选项,找到要导入的数据文件,如Excel或CSV文件。
选择正确的导入选项,确保数据被正确地导入SPSS。
导入数据后,您可以在数据视图中看到数据的表格形式。
第二步:检查数据在分析之前,您需要检查导入的数据,确保数据被正确导入且没有缺失值或异常数据。
您可以查看数据的统计特征,例如平均值、标准差、最小值和最大值。
此外,您还可以使用图表检查变量的分布情况。
第三步:数据清洗在分析之前,您可能需要对数据进行清洗。
这可能包括删除缺失值、处理异常值或填补缺失数据。
SPSS提供了一些功能来处理这些问题。
您可以使用“数据”菜单中的“选择”选项来创建一个子样本,仅包含没有缺失值的数据。
此外,还可以使用“变量”菜单中的“转换”选项来创建变量的复制品,并对这些副本进行值的修复。
第四步:描述性统计描述性统计是对数据进行初步分析的重要步骤。
它可以提供关于数据集的重要信息,如平均值、中位数、标准差和百分位数。
您可以使用“分析”菜单中的“描述统计”选项来计算描述性统计量。
选择要计算的变量并运行分析,将得到包含描述性统计结果的输出。
第五步:数据分析一旦清洗和描述性统计完成,您就可以进行更多复杂的分析。
SPSS提供了各种分析选项,包括t检验、方差分析、回归分析、聚类分析等。
选择适当的统计方法,并设置所需的参数,然后运行分析。
结果将显示在输出窗口中,您可以查看统计结果、显著性值以及图表。
第六步:结果解释结果解释是分析的最后一步。
根据分析的目的和使用的统计方法,您需要解释和报告结果。
确保以简洁明了的方式解释统计结果,并使用图表和图形来展示数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
/
手把手教你数据分析全流程
听到数据分析,很多竞价小编都会干到头很大有没有,正因为头大,所以我们才应该针对这方面去多种练习,一直练到什么时候拿到这个数据分析的任务感觉得心应手的时候正是我们成功的时候。
下图是某账户的营销数据。
从你的角度看,你会觉得是哪里出了问题?
分析好之后,你便可以带着自己的答案看下去。
确定目的
一般情况下,我们进行数据分析是为了什么?
降低成本,增加对话、增加流量质量...等等。
但其实,最终我们都可以归结为一个目的:增加转化。
/
那我们在分析时,便可以基于这个目的来出发。
发现问题
既然明确了目的,是增加转化,那便可先从结果出发。
从图中我们可以看出它的线索是逐步上升,但线索成本并没有下降。
那...从结果分析来看,我们的获客成本是较高的。
分析、确定问题
线索成本高,要么是因为我们的均价高,要么就是因为我们的对话率低。
但从对话率来看,它的数据我们可以接受,说明流量质量没问题;点击率略微下降,均价居高不下,所以导致对话成本也是处于一个较高的状态。
那,由此可以确定:对话成本高从而导致了一个线索成本的问题。
分解问题
确定了问题,我们就要分解问题。
建议像这种情况,我们可以在草稿或电脑上罗列出一个思维导图。
对话成本高,我们可以从两点来解决:
/
1. 降低对话成本
2. 增加对话量
降低对话成本
降低对话成本,要么降低整体点击均价从而降低成本,要么提高对话率,以量取胜。
降低整体点击均价:我们可通过筛掉那些均价高、转化低的词来达到这一目的。
提高对话率:对话率往往和一个流量质量、转化引导有关系。
那我们便可通过对以下四点进行分析,从而找到自身影响对话的一个薄弱之处。
抵达分析
承载分析
转化能力分析
流量质量分析
增加对话量
增加对话量,不过就是一个增加流量质量和流量数量的问题。
这就需要我们在增加流量数量的同时,筛选出垃圾流量。
同样,我们可以通过分词来达到这一目的。
我们最初的目的是增加转化,那么便可先筛选出转化较好的词,然后进行分类。
均价高转化好:先加词,拓量之后优化创意,来控制流量。
均价低转化好:利用提价和放匹配相结合。
操作执行
/
当确定好方案之后,我们便可以根据这个优化方案进行执行。
那根据上面的操作,我们基本可以分为三步:
1. 降低整体点击均价
2. 提高对话率
3. 增加对话量
那么,问题来了,我们应该先操作哪一步?
是123还是321,再或者213、231...
在数据分析中,先操作哪个或后操作哪个都有可能带来巨大的变化。
比如:当我们先进行降价处理时,那就有可能导致钱花不出去,这就需要我们先放量在收量。