运筹学 单纯形法表格形式

合集下载

运筹学-单纯形法灵敏度对偶

运筹学-单纯形法灵敏度对偶

若新增约束如下:
max z 50x1 100x2 x1 x2 300 2x1 x2 400 x2 250 10x1 30x2 5000(电力约束) x1, x2 , 0
x1 x2 s1
把最优解x1=50,x2 =250代入电力约束 1050+30 250=80005000 新约束不满足,最优解变化
例题:已知某线性规划初始可行基是(S1 S2 S3 a1), 最终单纯形表如下,求对偶价格不变时的△bi变化范围
x1 x2 s1
50 100 0
X1 50
1
0
0
S3 0
0
0
0
X2 100 0
1
0
s1 0
0
0
1
Zj
50 100 0
δj
0
0
0
(1) △b1的变化范围: ?
(2) △b2的变化范围:?
(3) △b3的变化范围: ? (4) △b4的变化范围:?
1 0 1 2 0.5
B1 p6'
2
1
1
0.5
2
0 0 1 1.5 1.5
Z6' 50 0.5 0 (2) 100 1.5 175
' 6
C6
Z6'
150 175
25
δ6´<0,最优解不变,即仍生产Ⅰ50件,Ⅱ100件。
2、变量xk系数列由pk变为pk´,在最终单纯形表 上xk是基变量
x1 x2 s1
50 100 0
X1 50 1
0
0
S3 0
0
0
0
X2 100 0
1
0
s1 0
0

第四节 单纯形法的计算步骤

第四节 单纯形法的计算步骤

上表中由于所有σ 上表中由于所有 j>0 ,表明已求得最优解 x1=4, x2=2, x3=0, x4=0, x5=0, x6=4, , , , , , , Z=14。 。 当确定x 为换入变量计算θ值时 值时, ◆当确定 6为换入变量计算 值时,有两个相 同的最小值: 同的最小值:2/0.5=4,8/2=4。任选其中一 , 。 个作为换出变量时, 个作为换出变量时,则下面表中另一基变 量的值将等于0,这种现象称为退化 退化。 量的值将等于 ,这种现象称为退化。含有 一个或多个基变量为0的基可行解称为 的基可行解称为退化 一个或多个基变量为 的基可行解称为退化 的基可行解。 的基可行解。
18
迭代
xB
次数
cB
x1
x2
x3
x4
x5 bi
θi
50
x1
100
0
0
0
50 0 100
1 0 0
0
0 0 1
0
1 -2 0
- 50
0 1 0
0
-1 1 1
- 50
50 50 250 -27500
2
x4 x2
σj
2010年8月
管理工程学院
18
《运筹学》 运筹学》
19
所有的检验数 σ j ≤ 0, 此基本可行解: 此基本可行解:
2010年8月
管理工程学院
5
《运筹学》 运筹学》
6
c1 … cl b b1´

c j→ cB c1

… cm … xm …0 …⋮ 0 …1 …

…cj …xj …a1j´ …⋮ a2j´ …⋮ amj´
… ck … cn … xk …xn …0 …⋮ 1 …0

运筹学单纯形法的计算步骤

运筹学单纯形法的计算步骤

b2
0… 0
a2,m+1

a2n
2




cm xm
bm
0… 1
am,m+1

amn
m
-z -z 值 0 … 0
m+1

n
XB 列——基变量, CB 列——基变量的价值系数(目标函数系数) cj 行——价值系数,b 列——方程组右侧常数 列——确定换入变量时的比率计算值
下面一行——检验数, 中间主要部分——约束方程系数
(4).根据max(j > 0) =k,拟定xk为换入变量,按 规则计算 =min{bi/aik\aik>0}
可拟定第l行旳基变量为换出变量。转入下一步。
(5).以 alk 为主元素进行迭代(即用高斯消去法或称为旋转变 换),把 xk 所对应的列向量变换为(0,0,…,1,…,0)T,将
XB 列中的第 l 个基变量换为 xk,得到新的单纯形表,返回(2)。
b
x1
x2
x3
x4
x5
2 x1 2 0 x4 8 3 x2 3
1
0
1
0 -1/2 -
0 0 -4 1 (2 ) 4
0 1 0 0 1/4 12
-z
-13
0
0 -2
0 1/4
X(2)=(2,3,0,8,0)T, z2 =13
cj
2 30 0 0
CB XB
b
x1
x2
x3
x4
x5
2 x1 4 0 x5 4 3 x2 2
量,给出第一阶段的数学模型为:
min = x6+x7
x1-2x2+x3+x4

运筹学第5章 单纯形法

运筹学第5章 单纯形法

0 0 1
在第一次找可行基时,所找到的基或为单位矩阵或为由单位矩阵的 各列向量所组成,称之为初始可行基,其相应的基本可行解叫初始基 本可行解。如果找不到单位矩阵或由单位矩阵的各列向量组成的基作 为初始可行基,我们将构造初始可行基,具体做法在以后详细讲述。
8Leabharlann §1 单纯形法的基本思路和原理
二、 最优性检验 所谓最优性检验就是判断已求得的基本可行解是否是最优解。
5
§1 单纯形法的基本思路和原理
线性规划解之间的关系:
1.可行解与最优解: 最优解一定是可行解,但可行解不一定是最优解。
2. 可行解与基本解: 基本解不一定是可行解,可行解也不一定是基本解。
3. 可行解与基本可行解: 基本可行解一定是可行解,但可行解不一定是基本可行解。
4. 基本解与基本可行解: 基本可行解一定是基本解, 但基本解不一定是基本可行解。
9
§1 单纯形法的基本思路和原理
2.最优解判别定理
对于求最大目标函数的问题中,对于某个基本可行解,如
果所有检验数 j≤0,则这个基本可行解是最优解。 下面我
们用通俗的说法来解释最优解判别定理。设用非基变量表示
的目标函数为: z z0 j xj jJ 由于所有的xj的取值范围为大于等于零,当所有的 j都小
由线性代数的知识知道,如果我们在约束方程组系数矩阵中找
到一个基,令这个基的非基变量为零,再求解这个m元线性方程组就
可得到唯一的解了,这个解我们称之为线性规划的基本解。
在此例中我们不妨找到
1 1 0 B3 1 0 0
为A的一个基,令这个基的非
1 0 1
基变量x1,s2为零。这时约束方程就变为基变量的约束方程:
第五章 单 纯 形 法

运筹学之线性规划的标准型及单纯形法

运筹学之线性规划的标准型及单纯形法
下步
• 4、根据max {σj } = σK 原则确定XK 进基变量;根
据θ规则 θ = min {b’i / a’ik a’ik >0} = b’l/ a’lk 确定XL出 基变量
• 5、以a’lk 为枢轴元素进行迭代
• 6、重复第二步到第五步
30
单纯形法的进一步探讨
• 极小化问题直接求解:检验数的判别由σj ≤0
……
am1x1+am2x2+…amnxn=bm x1,x2,…,xn≥0 (xj ≥0 j=1,2,…,n)
5
线性规划的标准型
• 和式:
Obj : S.T .
n
MaxZ c j x j j1
n
aij x j bi
j 1
i 1,2,, m
x j 0 j 1,2,, n
6
线性规划的标准型
70 120 0 0 0
X1 X2 X3 X4 X5
94 1 0 0 45 0 1 0 3 10 0 0 1
70 120 0 7.8 0 1 2.5 0 0 0.3 1 0
34 0 0
00 0 -0.4 1 -0.5 0 0.1
0 -12
0 0 1 -3.12 1.16 1 0 0 0.4 -0.2 0 1 0 -0.12 0.16
• 相应的基为可行基。 • 退化的基可行解:若某个基变量取值为零,
则称之为退化的基可行解。 • 基解的数目:最多Cmn=n!/m!(n-m)!
18
例题6 基可行解说明
maxZ=70X1+120X2
P1 P2 P3 P4 P5
9X1+4X2+X3=360
94100
4X1+5X2 +x4=200

单纯形表例题详解易懂

单纯形表例题详解易懂

单纯形法(Simplex Method)是线性规划问题的一种求解方法。

下面我将以一个简单的线性规划问题为例,详细解释如何使用单纯形法求解。

例题:假设我们有一个简单的线性规划问题,目标是最小化目标函数 z = 3x + 2y,约束条件是 x + y <= 10, x >= 0, y >= 0。

首先,我们需要构建问题的数学模型。

数学模型可以表示为以下形式:z = 3x + 2yx + y <= 10x >= 0y >= 0然后,我们可以将这个线性规划问题表示为一个单纯形表。

单纯形表的形式如下:| c | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ||---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---||x | y | z | u | v | w | x1 | x2 | x3 | ... | xn | s.x | s.y | s.z | c.val | b.x | b.y | b.z | dual.val | dual.x1 | dual.x2 | ... | dual.xn ||在这个表中,c 是目标函数的系数,b 是约束条件的系数,s 是松弛变量的系数,dual 是对偶问题的系数,c.val 是当前解的目标函数值,b.x, b.y, b.z 是约束条件的边界值,s.x, s.y, s.z 是松弛变量的值。

现在,我们可以将例题中的数据填入单纯形表:c = [3, 2, 1]b = [1, 0, -10]s = [1, 1, 0]dual = []然后,我们可以开始迭代求解。

在每一次迭代中,我们首先找到进入变量和离开变量,然后更新单纯形表中的数据。

运筹学教程 第五章 单纯形法(2表格形式)

运筹学教程 第五章 单纯形法(2表格形式)
0 5 1 0 0 6 2 0 1 0 1 1 0 0 1
r2 ÷ 6
b
15 24 5
x1 = 4 x2 = 0 x3 = 15 x4 = 0 x5 = 1
P P P P P 1 2 3 4 5
b
P 1
P2
P3
P4
P5
b
0 5 1 0 0 1 1/ 3 0 1 / 6 0 1 1 0 0 1
元数a 元数a21决定了从一个基可行解到相邻基可行解 的转移去向,取名主元 的转移去向,取名主元
§5.2单纯形法的表格形式
第3步:迭代。 步
1.确定入基变量 确定入基变量 2.确定出基变量 确定出基变量 3.用入基变量替换出基变量,得到一个新的基; 用入基变量替换出基变量, 用入基变量替换出基变量 得到一个新的基; 对应这个基可以找到一个新的基可行解; 对应这个基可以找到一个新的基可行解; 并画出一个新的单纯形表。 并画出一个新的单纯形表。
§5.2单纯形法的表格形式
迭代 次数 基 x3 x4 0 x5 CB 0 0 0 x1 2 0 6 1 x2 1 5 2 1 0 1 x3 0 1 0 0 0 0 x4 0 0 1 0 0 0 x5 0 0 0 1 0 0 b 15 24 5 Z=0 比值 24/6 5
zj σj= cj -zj
? 0
z = c 3 × b1 + c 4 × b2 + c 5 × b3 = 0 × 15 + 0 × 24 + 0 × 5 = 0
§5.2单纯形法的表格形式
迭代 次数 基 x3 x4 0 x5 CB 0 0 0 x1 2 0 6 1 0 2 x2 1 5 2 1 0 1 x3 0 1 0 0 0 0 x4 0 0 1 0 0 0 x5 0 0 0 1 0 0 b 15 24 5 Z=0 比值 24/6 5

(完整word版)运筹学单纯形法

(完整word版)运筹学单纯形法
0*10+0*20
=0
σj=Cj- Zj
2
-1
1
0
0
0
1
S1
0
0
4
-5
1
-3
0
30
30/4
X1
2
1
-1
2
0
1
0
10
10/-1
S3
0
0
2
-3
0
-1
1
10
10/2
Zj
2
-2
4
0
2
0
Z=Z0=0*30+
2*10+0*10
=20
σj=Cj- Zj
0
1
-3
0
-2
0
2
S1
0
0
0
1
1
-1
-2
10
X1
2
1
0
1/2
0
s.t.
5x1+6x2-4x3-4x4+S1=20
3x1-3x2+2x3+8x4+S2=25
4x1-2x2+x3+3x4+S3=10
x1,x2,x3,x4,S1,S2,S3>=0
迭代次数
基变量
CB
(Ci)
X1
X2
X3
X4
S1
S2
S3
b
比值
bi/aij
6
2
10
8
0
0
0
0
S1
0
5
6
-4
-4
1
0
0
20
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P79,用单纯形法的表格形式求解第二章例1 1:
在上表中有一个m*m 的单位矩阵,对应的基变量为s 1,s 2,s 3;

在s 1,s 2,s 3右边的C B 列中填入这些基变量的目标函数中相应的系数。


2:
← 在z j 行中填入第j 列与c B 列中对应的元素相乘相加所得的值,如z 2=0*1+0*1+0*1=0,所在z i 行中的第2位数填入0;
← 在 j j j z c -=σ 行中填入c j -z j 所得的值,如 050c 111-=-=z σ,01002-=σ,003-=σ,004-=σ,005-=σ
← z 表示把初始基本可行解代入目标函数求得的目标函数值,即b 列*c B 列;
3:
4.
5.
6.
初始基本可行解为s1=300,s2=400,s3=250,x1=0,x2=0;
←由于250/1最小,因此确定s3为出基变量;
σ>2σ,因此确定x2为←由于1
入基变量。

出基变量所在行,入基变量所在列的交汇处为主元,这里是a32=1,在表中画圈以示区别.
7:
●第一次迭代,其变量为x2,s1,s2,通过矩阵行的初等变换,求出一个新的基本可行解。

●具体的做法:用行的初等变换使得x2的系数向量p2变换成单位向量,
由于主元在p2的第3 分量上,所以这个单位向量是()T
e1,
=,也就是主元
0,
3
素变成1。

在上表中第3个基变量s3已被x2代替,故基变量列中的第3个基变量应变为x2。

由于第0次迭代表中的主元a32已经为1,因此第3行不变。

为了使第1行的a12为0,只需把第3行*(-1)加到第1行即可。

同样可以求得第2行。

8:
求得第1次迭代的基本可行解为
s 1=50,s 2=150,x 2=250,x 1=0,s 3=0, z=25000.
● 从上表可以看出,第一次迭的501=σ>0 ,因此不是最优解。

设x 1为入基变量,从此值可知b 1/a 11=50为最小正数,因此,s 1为出基变量,a 11为主元,继续迭代如下表所示。

●。

相关文档
最新文档