【人教B版】2021年数学选修2-1(全集)精品同步练习汇总

合集下载

高二数学(人教B版)选修2-1全册同步练习:3-1-1空间向量的线性运算

高二数学(人教B版)选修2-1全册同步练习:3-1-1空间向量的线性运算

3.1.1空间向量的线性运算一、选择题1.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,AB →=a ,AD →=b ,AA 1→=c ,则D 1B →等于( )A .a +b +cB .a +b +cC .a -b -cD .-a +b +c [答案] C[解析] D 1B →=D 1A 1→+A 1A →+AB →=-b +(-c )+a =a -b -c .故选C2.在平行六面体ABCD -A ′B ′C ′D ′中,向量AB ′→、AD ′→、BD →是( ) A .有相同起点的向量 B .是等长的向量 C .是共面向量D .是不共面向量[答案] C[解析] ∵AB 1→-AD 1→=D 1B 1→=BD →,∴共面.故选C.3.如图所示在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算结果为向量AC 1→的共有( )(1)(AB →+BC →)+CC 1→ (2)(AA 1→+A 1D 1→)+D 1C 1→ (3)(AB →+BB 1→)+B 1C 1→ (4)(AA 1→+A 1B 1→)+B 1C 1→. A .1个 B .2个 C .3个D .4个[答案] D[解析] 代入检验知选D.4.在平行六面体ABCD -A 1B 1C 1D 1中,有以下等式,其中不正确的是( ) A.D 1B →=D 1D →+D 1A 1→+D 1C 1→ B.D 1B →=D 1C 1→+B 1B →+CB → C.D 1B →=D 1A 1→+A 1B →+A 1A →D.D 1B →=D 1C 1→+C 1D →+DB → [答案] C[解析] D 1A 1→+A 1B →+A 1A →=D 1B →+A 1A →≠D 1B →. 故选C.5.如图所示的空间四边形ABCD 中,M ,G 分别是BC ,CD 的中点,则MG →-AB →+AD →等于( )A.32DB →B .3MG →C .3GM →D .2MG →[答案] B[解析] MG →-AB →+AD →=MG →+BD →=MG →+2MG →=3MG →.6.平行六面体ABCD -A 1B 1C 1D 中,O 为BD 1与AC 1的交点,下列说法正确的是( ) A.AO →=12AB →+AD →+AA 1→)B.AO →=13AC 1→C.BO →=12(BA →+BC →+BD →1)D.BO →=14AC 1→+BD 1→)[答案] A[解析] AB →+AD →+AA 1→=AC →+AA 1→=AC 1→. 故选A.7.如图所示,空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c, 点M 在OA 上,且OM →=2MA →,N 为BC 中点,则MN →等于( )A.12a -23b +12c B .-23 a +12b +12cC.12a +12 b -23cD.23a +23b -12c [答案] B[解析] MN →=ON →-OM →=12(OB →+OC →)-23OA →=12×(b +c )-23a =-23a +12b +12c .∴应选B. 8.已知G 是正方形ABCD 的中心,点P 为正方形ABCD 所在平面外一点,则PA →+PB →+PC →+PD →=( )A .4PG →B .3PG →C .2PG →D.PG →[答案] A[解析] PA →+PB →+PC →+PD →=PG →+GA →+PG →+GB →+PG →+GC →+PG →+GD →=4PG →+(GA →+GC →)+(GB →+GD →),∵ABCD 是正方形,G 是它的中心, ∴GA →+GC →=GB →+GD →=0,故原式=4PG →.9.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( )A .空间四边形B .平行四边形C .等腰梯形D .矩形[答案] B[解析] 画图利用空间向量的运算法则首尾相接 AO →+OB →=AB →,DO →+OC →=DC →, ∴AB →=DC →.故选B.10.已知正方体ABCD -A ′B ′C ′D ′ ,点E 是A ′C ′的中点,点F 是AE 的三等分点,且AF =12,则AF →等于( )A.AA ′→+12AB →+12AD →B.12AA ′→+12AB →+12AD →C.12AA ′→+16AB →+16AD →D.13AA ′→+16AB →+16AD → [答案] D[解析] AF →=13AE →=13(AA ′→+A ′E →)=13AA ′→+13×12A ′C ′→ =13AA ′→+16(A ′B ′→+A ′D ′→) =13AA ′→+16A ′B ′→+16A ′D ′→. 故选D. 二、填空题11.设A ,B ,C ,D 为空间任意四点,则AC →-BC →+BD →=________. [答案] AD →[解析] AC →-BC →+BD →=AC →+CB →+BD →=AD →。

高二数学(人教B版)选修2-1全册同步练习:1-3-1推出与充分条件、必要条件

高二数学(人教B版)选修2-1全册同步练习:1-3-1推出与充分条件、必要条件

1.3.1推出与充分条件、必要条件一、选择题1.(2009·北京)“α=π6+2k π(k ∈Z )”是“cos2α=12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 [答案] A[解析] 考查任意角的三角函数值. “α=π6+2k π(k ∈Z )”⇒“cos2α=12,“cos2α=12”“α=π6+2k π”(k ∈Z )因为α还可以等于2k π-π6(k ∈Z ),∴选A.2.(2009·湖南)对于非零向量a 、b ,“a +b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件 [答案] A[解析] 考查平面向量平行的条件. ∵a +b =0,∴a =-b .∴a ∥b .反之,a =3b 时也有a ∥b ,但a +b ≠0.故选A.3.(2009·福建,7)设m ,n 是平面α内的两条不同直线,l 1,l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A .m ∥β且l 1∥αB .m ∥l 1且n ∥l 2C .m ∥β且n ∥βD .m ∥β且n ∥l 2[答案] B[解析] 本小题主要考查线面平行、面面平行、充要条件等基础知识.易知选项A 、C 、D 推不出α∥β,只有B 可推出α∥β,且α∥β不一定推出B , B 项为α∥β的一个充分而不必要条件,选B.4.(2009·浙江,2)已知a ,b 是实数,则“a >0且b >0”是“a +b >0且ab >0”的( ) A .充分而不必要条件C .充分必要条件D .既不充分也不必要条件 [答案] C[解析] 本小题主要考查不等式的性质及充要条件. 当a >0且b >0时, a +b >0且ab >0; 当ab >0时,a ,b 同号,又a +b >0, ∴a >0,且b >0.故选C.5.若集合P ={1,2,3,4},Q ={x |0<x <5,x ∈R },则( ) A .“x ∈P ”是“x ∈Q ”的充分条件但不是必要条件 B .“x ∈P ”是“x ∈Q ”的必要条件但不是充分条件 C .“x ∈P ”是“x ∈Q ”的充要条件D .“x ∈P ”既不是“x ∈Q ”的充分条件也不是“x ∈Q ”的必要条件 [答案] A[解析] P ={1,2,3,4},Q ={x |0<x <5,x ∈R }, x ∈P ⇒x ∈Q .但x ∈Qx ∈p ,∴x ∈P 是x ∈Q 的充分不必要条件.故选A.6..(2010·福建文,8)若向量a =(x,3)(x ∈R ),则“x =4”是“|a |=5”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分又不必要条件[答案] A[解析] 本题主要考查充分必要条件问题. 当x =4时,|a |=42+32=5 当|a |=x 2+9=5时,解得x =±4.所以“x =4”是“|a |=5”的充分而不必要条件.7.(2010·广东理,5)“m <14”是“一元二次方程x 2+x +m =0有实数解”的( )A .充分非必要条件B .充分必要条件C .必要非充分条件D .非充分非必要条件[答案] A[解析] 一元二次方程式x 2+x +m =0有实数解,则Δ=1-4m ≥0,∴m ≤14,故“m <14”是“一元二次方程x 2+x +m =0”有实数解的充分不必要条件.8.a <0是方程ax 2+1=0有一个负数根的( )B .充分必要条件C .充分不必要条件D .既不充分也不必要条件 [答案] B[解析] ①∵a <0,ax 2+1=0⇒x 2=-1a >0.∴ax 2+1=0有一个负根. ∴充分性成立.②若ax 2+1=0有一个负根, 那么x 2=-1a >0,可是a <0.∴必要性成立.故选B.9.“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件 [答案] C[解析] 充分性:当a =1时,直线x +y =0和直线x -y =0垂直;必要性:若直线x +y =0和x -ay =0垂直,由-1·1a=-1,∴a =1,故选C.10.(2009·山东)已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“α⊥β”是“m ⊥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 [答案] B[解析] 本小题主要考查空间线面的垂直关系和应用充要条件解题的能力. 由已知m ⊂α,若α⊥β则有m ⊥β,或m ∥β或m 与β相交;反之,若m ⊥β, ∵m ⊂α,∴由面面垂直的判定定理知α⊥β. ∴α⊥β是l ⊥β的必要不充分条件.故选B. 二、填空题11.条件甲:“a >1”是条件乙:“a >a ”的__________条件.[答案] 充要[解析] a >1⇒a >a 成立反之:a >a 时即a 2-a >0解得a >1.12.“lg x >lg y ”是“x >y ”的______________条件. [答案] 充分不必要[解析] 由lgx >lgy ⇒x >y >0⇒x >y 充分条件成立.又由x >y 成立,当y =0时,lgx >lgy 不成立,必要条件不成立.13.不等式ax 2+ax +a +3>0对一切实数x 恒成立的充要条件是________. [答案] a ≥0[解析] ①当a =0时,原不等式为3>0,恒成立; ②当a ≠0时,用数形结合的方法则有⎩⎨⎧a >0Δ=a 2-4a (a +3)<0⇒a >0. ∴由①②得a ≥0.14.函数y =x 2+bx +c ,x ∈[0,+∞)是单调函数的充要条件为________. [答案] b ≥0[解析] 对称轴为x =-b2,要使y =x 2+bx +c 在x ∈[0,+∞)上单调, 只需满足-b2≤0,即b ≥0.三、解答题15.是否存在实数p ,使“4x +p <0”是“x 2-x -2>0”的充分条件?如果存在,求出p 的取值范围.[解析] x 2-x -2>0的解是x >2或x <-1,由4x +p <0得x <-p4.要想使x <-p 4时x >2或x <-1成立,必须有-p 4≤-1,即p ≥4,所以当p ≥4时,-p4≤-1⇒x <-1⇒x 2-x -2>0.所以p ≥4时,“4x +p <0”是“x 2-x -2>0”的充分条件.16.已知p :x 2-8x -20>0,q :x 2-2x +1-a 2>0.若p 是q 的充分不必要条件,求正实数a 的取值范围.[解析] 解不等式x 2-8x -20>0,得p :A ={x |x >10或x <-2}. 解不等式x 2-2x +1-a 2>0得 q :B ={x |x >1+a 或x <1-a ,a >0}依题意:p ⇒q ,但是q 不能推出p ,说明A B .于是有⎩⎪⎨⎪⎧a >01+a ≤101-a ≥-2(说明“1+a ≤10”与“1-a ≥-2”中等号不能同时取到)解得0<a ≤3.∴正实数a 的取值范围是0<a ≤3.17.设a ,b ,c 为△ABC 的三边,求证:x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°.[解析] 充分性:∵∠A =90°,∴a 2=b 2+c 2,于是方程x 2+2ax +b 2=0可化为x 2+2ax +a 2-c 2=0, 即x 2+2ax +(a +c )(a -c )=0, ∴[x +(a +c )][x +(a -c )]=0,∴该方程有两个根x 1=-(a +c ),x 2=-(a -c ), 同样,另一方程x 2+2cx -b 2=0也可化为 x 2+2cx -(a 2-c 2)=0, 即x 2+2cx -(a -c )(a +c )=0, ∴[x +(c +a )][x +(c -a )]=0,∴该方程有两个根x 3=-(a +c ),x 4=-(c -a ), 可以发现x 1=x 3, ∴这两个方程有公共根.必要性:设β是两方程的公共根,则⎩⎪⎨⎪⎧β2+2aβ+b 2=0 ①β2+2cβ-b 2=0 ②, 由①+②得:β=-(a +c )或β=0(舍去), 将β=-(a +c )代入①并整理可得:a 2=b 2+c 2, ∴∠A =90°.18.求ax 2+2x +1=0至少有一个负实根的充要条件.[解析] 由于二次项系数是字母,因此,首先要对方程ax 2+2x +1=0判定是一元一次方程还是一元二次方程.(1)当a =0时,为一元一次方程,其根为x =-12,符合要求;(2)当a ≠0时,为一元二次方程,它有实根的充要条件是判别式Δ≥0即4-4a ≥0从而a ≤1;又设方程ax 2+2x +1=0的根为x 1·x 2,则x 1+x 2=-2a x 1·x 2=1a.①因而方程ax 2+2x +1=0有一个正根、一个负根的充要条件是⎩⎪⎨⎪⎧a ≤11a <0⇒a <0;②方程ax 2+2x +1=0有两个负根的充要条件是⎩⎪⎨⎪⎧a ≤1-2a1a >0⇒0<a ≤1,综上所述,ax 2+2x +1=0至少有一个负根的充要条件是a ≤1.。

人教版B版高中数学选修2-1(B版)直线的方向向量与直线的向量方程

人教版B版高中数学选修2-1(B版)直线的方向向量与直线的向量方程

[答案] B
3.已知 A、B、C 三点的坐标分别为 A(4,1,3),B(2, -5,1),C(3,7,λ),若A→B⊥A→C,则 λ 等于( )
A.λ=28 C.λ=14 [答案] D
B.λ=-28 D.λ=-14
[解析] 由A→B⊥A→C⇔A→B·A→C=0 可求得.
二、填空题
4.已知a=(2,-2,3),b=(4,2,x),且a⊥b,则x=
求角或距离等有关问题时要用到,希望注意.
l,m是两条直线,方向向量分别是a=(x1,y1,z1),b
=(x2,y2,z2),若l∥m,则
()
A.x1=x2,y1=y2,z1=z2
B.x1=kx2,y1=py2,z=qz2
C.x1x2+y1y2+z1z2=0
D.x1=λx2,y1=λy2,z1=λz2
5.设两条直线所成角为θ(锐角),则直线方向向量的 夹角与θ相等或互补,设直线l1和l2的方向向量分别为v1和
v2,则l1⊥l2⇔_v__1_⊥__v_2_,___c_o_s_θ_=___c_o_s_<__v_1_,_v_2_>__.
[例1] 设a,b分别是直线l1、l2的方向向量,根据下列 条件判断l1、l2的位置关系.
∴l1∥l2(或l1与l2重合). (2)观察知a≠b,又a·b=1×(-2)+2×3+(-2)×2=-2 +6-4=0,
∴a⊥b,∴l1⊥l2. (3)显然b=-3a,即a∥b,故l1∥l2(或l1与l2重合).
[说明] 首先根据a,b的坐标,对a,b的关系(平行、垂直 或其他情况)作出初步判断,然后再用有关知识给予验证,从 而得到相关结论.直线的方向向量在研究线线、线面位置关系,
() B.(9,1,1) D.(-9,-1,-1)

高二数学(人教B版)选修2-1全册同步练习:3-2-4二面角及其度量

高二数学(人教B版)选修2-1全册同步练习:3-2-4二面角及其度量

3.2.4二面角及其度量一、选择题1.如果一个二面角的两个半平面分别平行于另一个二面角的两个半平面,则这两个二面角的大小关系是( )A .相等B .互补C .相等或互补D .不能确定[答案] C[解析] 二面角的两个面对应平行,当方向相同时,两个二面角大小相等,当方向不同时,两个二面角大小互补.2.已知平面α内有一个以AB 为直径的圆,PA ⊥α,点C 在圆周上(异于点A ,B ),点D 、E 分别是点A 在PC 、PB 上的射影,则( )A .∠ADE 是二面角A —PC —B 的平面角B .∠AED 是二面角A —PB —C 的平面角C .∠DAE 是二面角B —P A —C 的平面角D .∠ACB 是二面角A —PC —B 的平面角[答案] B[解析] 由二面角定义及三垂线定理知选B.3.如图所示,M ,N 是直角梯形ABCD 两腰的中点,DE ⊥AB于E ,现将△ADE 沿DE 折起,使二面角A —DE —B 为45°,此时点A 在平面BCDE 内的射影恰为点B ,则M ,N 的连线与AE 所成的角的大小为( )A .45°B .90°C .135°D .180°[答案] B[解析] 建系如图所示,由题意知△ABE 为等腰直角三角形,设CD =1,则BE =1,AB =1,AE =2,设BC =DE =2a ,则E (0,0,0),A (1,0,1),N (1,a,0),D (0,2a,0),M (12,a ,12),所以MN →=(12,0,-12),AE →=(-1,0,-1),所以MN →·AE →=(12,0,-12)·(-1,0,-1)=0.故AE →⊥MN →,从而MN 与AE 所成的角为90°.4.如图所示,在边长为a 的正△ABC 中,AD ⊥BC ,沿AD 将△ABC 折起,若折起后B 、C 两点间距离为12a ,则二面角B -AD -C 的大小为( ) A .30°B .45°C .60°D .90° [答案] C5.将正方形ABCD 沿对角线折成直二面角,则二面角A —BC —D 的平面角的余弦值是( )A.12B.22C.33D.55 [答案] C6.正四棱锥P —ABCD 的两相对侧面P AB 与PCD 互相垂直,则相邻两个侧面所成二面角的大小为( ) A.π4B.π3C.π2D.2π3[答案] D7.在矩形ABCD 中,AB =3,AD =4,P A ⊥平面ABCD ,PA =435,那么二面角A —BD —P 的度数是( )A .30°B .45°C .60°D .75°[答案] A8.如图所示,已知点P 为菱形ABCD 外一点,且PA ⊥面ABCD ,PA =AD =AC ,点F 为PC 中点,则二面角C —BF —D 的正切值为( )A.36 B.34 C.33 D.233 [答案] D[解析] 如右图所示,连接AC ,AC ∩BD =O ,连接OF ,以O 为原点,OB ,OC ,OF 所在直线分别为x ,y ,z 轴建立空间直角坐标系O —xyz ,设PA =AD =AC =1,则BD =3,∴B ⎝⎛⎭⎫32,0,0,F ⎝⎛⎭⎫0,0,12,C ⎝⎛⎭⎫0,12,0,D (-32,0,0),结合图形可知,OC →=⎝⎛⎭⎫0,12,0且OC →为面BOF 的一个法向量,由BC →=⎝⎛⎭⎫-32,12,0,FB →=(32,0,-12),可求得面BCF 的一个法向量n =(1,3,3).∴cos 〈n ,OC →〉=217,sin 〈n ,OC →〉=277, ∴tan 〈n ,OC →〉=233. 9.已知ABCD 是正方形,E 是AB 的中点,将△DAE 和△CBE 分别沿DE 、CE 折起,使AE 与BE 重合,A 、B 两点重合后记为点P ,那么二面角P -CD -E 的大小为( )A .30°B .45°C .60°D .90°[答案] A[解析] 取CD 中点F ,由二面角定义知∠PFE 为其平面角,设PE =a ,则EF =2a ,∴sin θ=a 2a =12, ∴二面角P —CD —E 为30°.10.二面角的棱上有A 、B 两点,直线AC 、BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( )A .150°B .45°C .60°D .120°[答案] C[解析] 由条件,知CA →·AB →=0,AB →·BD →=0,CD →=CA →+AB →+BD →.∴|CD →|2=|CA →|2+|AB →|2+|BD →|2+2CA →·AB →+2AB →·BD →+2CA →·BD →=62+42+82+2×6×8cos 〈CA →,BD →〉=(217)2,∴cos 〈CA →,BD →〉=-12即〈CA →,BD →〉=120°,∴二面角的大小为60°,故选C.二、填空题11.如图所示,将边长为a 的正三角形ABC ,沿BC 边上的高线AD 将△ABC 折起,若折起后B 、C 间距离为a 2,则二面角B —AD —C 的大小为________.[答案] 60°12.若P 是△ABC 所在平面外一点,且△PBC 和△ABC 都是边长为2的正三角形,PA =6,那么二面角P —BC —A 的大小为________.[答案] 90°13.正方体ABCD -A 1B 1C 1D 1中,截面A 1BD 和截面C 1BD 所成的二面角大小的余弦值为________.[答案] 1314.在正方体AC 1中,E 、F 分别是B 1C 1、C 1D 1的中点,若截面EFDB 与侧面BCC 1B 1所成的锐二面角为θ,则cos θ=________.[答案] 23三、解答题15.如图,四棱锥P —ABCD 中,PB ⊥底面ABCD ,CD ⊥PD ,底面ABCD为直角梯形,AD ∥BC ,AB ⊥BC ,AB =AD =PB =3.点E 在棱P A 上,且PE=2EA .求二面角A —BE —D 的大小.[解析] 以B 为原点,以BC 、BA 、BP 分别为x ,y ,z 轴建立如图所示的空间直角坐标系.设平面EBD 的一个法向量为n 1=(x ,y,1),因为BE →=(0,2,1),BD →=(3,3,0),由⎩⎪⎨⎪⎧ n 1·BE →=0n 1·BD →=0得⎩⎪⎨⎪⎧2y +1=0,3x +3y =0. 所以⎩⎨⎧ x =12,y =-12.于是n 1=⎝⎛⎭⎫12,-12,1.又因为平面ABE 的一个法向量为n 2=(1,0,0), 所以,cos 〈n 1,n 2〉=16=66. 所以,二面角A —BE —D 的大小为arccos66. 16.如图所示,在棱长为1的正方体ABCD —A 1B 1C 1D 1中,P 是棱CC 1上的一点,CP=m ,试确定m ,使直线AP 与平面BDD 1B 1所成角的正弦值为33819.[解析] 如图,以D 为原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系D —xyz ,则A (1,0,0),P (0,1,m ),C (0,1,0),D (0,0,0).∴AP →=(-1,1,m ),AC →=(-1,1,0),又AC →·BD →=0,AC →·BB 1→=0, ∴AC →是平面BDD 1B 1的一个法向量.设AP 与平面BDD 1B 1所成的角为θ,则sin θ=cos ⎝⎛⎭⎫π2-θ=|AP →·AC →||AP →||AC →|=22×2+m 2=33819,∴m =13. 17.(2009·上海)如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=BC =AB =2,AB ⊥BC ,求二面角B 1-A 1C -C 1的大小.[解析] 如图,建立空间直角坐标系.则A (2,0,0),C (0,2,0),A 1(2,0,2),B 1(0,0,2),C 1(0,2,2),设AC 的中点为M ,∵BM ⊥AC ,BM ⊥CC 1,∴BM ⊥平面A 1C 1C ,即BM →=(1,1,0)是平面A 1C 1C 的一个法向量.设平面A 1B 1C 的一个法向量是n =(x ,y ,z ),A 1C →=(-2,2,-2),A 1B 1→=(-2,0,0),∴n ·A 1B 1→=-2x =0,n ·A 1C →=-2x +2y -2z =0,令z =1,解得x =0,y =1. ∴n =(0,1,1),设法向量n 与BM →的夹角为φ,二面角B 1-A 1C -C 1的大小为θ,显然θ为锐角.∵cos θ=|cos φ|=|n ·BM →||n |·|BM →|=12,解得θ=π3, ∴二面角B 1-A 1C -C 1的大小为π3. 18.(2007·陕西)如图,在底面为直角梯形的四棱锥P —ABCD 中,AD ∥BC ,∠ABC =90°,PA ⊥平面ABCD ,P A =4,AD =2,AB =23,BC =6.(1)求证:BD ⊥平面PAC ;(2)求二面角A —PC —D 的大小.[解析] (1)如图,建立坐标系,则A (0,0,0),B (23,0,0),C (23,6,0),D (0,2,0),P (0,0,4),∴AP →=(0,0,4),AC →=(23,6,0),BD →=(-23,2,0),∴BD →·AP →=0,BD →·AC →=0.∴BD ⊥AP ,BD ⊥AC ,又PA ∩AC =A ,∴BD ⊥平面PAC .(2)设平面PCD 的法向量为n =(x ,y,1),则CD →·n =0,PD →·n =0,又CD →=(-23,-4,0),PD →=(0,2,-4),∴⎩⎨⎧ -23x -4y =0,2y -4=0,解得⎩⎪⎨⎪⎧x =-433,y =2,∴n =⎝⎛⎭⎫-433,2,1 平面PAC 的法向量取为m =BD →=(-23,2,0),则cos 〈m ,n 〉=m·n |m ||n |=39331. ∴二面角A —PC —D 的大小为arccos 39331.。

高二数学(人教B版)选修2-1全册同步练习:3章末

高二数学(人教B版)选修2-1全册同步练习:3章末

3章末一、选择题1.四棱锥P -ABCD 中,底面ABCD 是平行四边形,AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1),则P A 与底面ABCD 的关系是( )A .相交B .垂直C .不垂直D .成60°角 [答案] B[解析] ∵AP →·AB →=0,AP →·AC →=0,∴AP →⊥平面ABCD .2.在正三棱柱ABC -A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的角为( )A .60°B .90°C .105°D .75° [答案] B[解析] 如图,建立空间直角坐标系O -xyz ,设高为h ,则AB =2h ,可得A ⎝⎛⎭⎫0,-22h ,h ,B ⎝⎛⎭⎫0,22h ,h , B 1⎝⎛⎭⎫0,22h ,0,C 1⎝⎛⎭⎫62h ,0,0,这样AB 1→=(0,2h ,-h ), BC 1→=⎝⎛⎭⎫62h ,-22h ,-h ,由空间向量的夹角公式即可得到结果.3.在正三棱柱ABC -A 1B 1C 1中,已知AB =1,D 在BB 1棱上,且BD =1.若AD 与平面AA 1C 1C 所成角为α,则α等于( )A.π3B.π4 C .arcsin104D .arcsin 64 [答案] D[解析] 建立如图所示的直角坐标系,则A (12,0,0),B (0,32,0),D (0,32,1)∵OB ⊥平面AA 1C 1C ,∴平面AA 1C 1C 的法向量为OB →=(0,32,0),又AD → =(-12,32,1) ∴OB →·AD →=34,|OB →|=32,|AD →|=2, 由向量夹角公式知cos 〈OB →,AD →〉=3432·2=64, ∵α=π2-〈OB →,AD →〉, ∵sin α=sin(π2-〈OB →,AD →〉)=cos 〈OB →,AD →〉=64. ∴α=arcsin 64. 4.如图所示,平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱,两两夹角都为60°,且AB =2,AD =1,AA 1=3,M 、N 分别为BB 1、B 1C 1的中点,则MN 与AC 所成角的余弦值为( )A.1314B.9114C.9128D.7812[答案] B[解析] 如图,本题考查异面直线所成的角.易知∠D 1AC 即为所求,即为向量AD 1→与AC→所成的角.设AB →=a ,AD →=b ,AA 1→=c ,则由条件知|a |=2,|b |=1,|c |=3,b·c =2×1×12=1,a·c =2×3×12=3,b·c =1×3×12=32. ∵AD 1→=b +c ,AC →=a +b , ∴|AD 1→|2=12+32+2·32=13, |AC →|2=22+12+2·1=7.∴AD 1→·AC →=132, ∴cos 〈AD 1→,AC →〉=9114.故选B. 二、解答题5.如图所示,已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,∠DAB =90°,PA ⊥底面ABCD ,且PA =AD =DC =12AB =1,M 是PB 的中点.(1)证明:面P AD ⊥面PCD ;(2)求AC 与PB 所成角的余弦值;(3)求面AMC 与面BMC 所成二面角的余弦值.[解析] 因为P A ⊥AD ,P A ⊥AB ,AD ⊥AB ,以A 为坐标原点,AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0)、B (0,2,0)、C (1,1,0)、D (1,0,0)、P (0,0,1)、M ⎝⎛⎭⎫0,1,12.(1)证明:∵AP →=(0,0,1),DC →=(0,1,0),故AP →·DC →=0,∴AP ⊥DC .又由题设知:AD ⊥DC ,且AP 与AD 是平面P AD 内的两条相交直线,由此得DC ⊥面PAD .又DC 在面PCD 上,故面P AD ⊥面PCD .(2)解:∵AC →=(1,1,0),PB →=(0,2,-1),∴|AC →|=2,PB →=5,AC →·PB →=2,∴cos 〈AC →,PB →〉=AC →·PB →|AC →|·|PB →|=105. 由此得AC 与PB 所成角的余弦值为105. (3)解:在MC 上取一点N (x ,y ,z ),则存在λ∈R ,使NC →=λMC →,NC →=(1-x,1-y ,-z ),MC →=⎝⎛1,0,-12, ∴x =1-λ,y =1,z =12λ. 要使AN ⊥MC ,只需AN →·MC →=0,即x -12z =0, 解得λ=45. 可知当λ=45时,N 点坐标为⎝⎛⎭⎫15,1,25, 能使AN →·MC →=0.此时,AN →=⎝⎛⎭⎫15,1,25,BN →=⎝⎛⎭⎫15,-1,25, 有BN →·MC →=0.由AN →·MC →=0,BN →·MC →=0,得AN ⊥MC ,BN ⊥MC .∴∠ANB 为所求二面角的平面角.∵|AN →|=305,|BN →|=305.AN →·BN →=-45. ∴cos 〈AN →,BN →〉=AN →·BN →|AN →||BN →|=-23. 故所求的二面角的余弦值为-23. 6.已知正方体ABCD —A 1B 1C 1D 1,求证:(1)AD 1∥平面BDC 1;(2)A 1C ⊥平面BDC 1.[证明]以D 为坐标原点,建立如图所示空间直角坐标系D -xyz . 设正方体的棱长为1,则有D =(0,0,0),A (1,0,0),D 1(0,0,1),A 1(1,0,1),C (0,1,0),B (1,1,0),C1(0,1,1),AD 1→=(-1,0,1),A 1C →=(-1,1,-1).设n =(x ,y ,z )为平面BDC 1的法向量,则n ⊥DB →,n ⊥DC 1→.所以⎩⎪⎨⎪⎧ (x ,y ,z )·(1,1,0)=0(x ,y ,z )·(0,1,1)=0,所以⎩⎪⎨⎪⎧x +y =0y +z =0. 令x =1,则n =(1,-1,1).(1)n ·AD 1→=(1,-1,1)·(-1,0,1)=0,知n ⊥AD 1→.又AD 1⊄平面BDC 1,所以AD 1∥平面BDC 1.(2)因为n =(1,-1,1),A 1C →=(-1,1,-1),知A 1C →=-n ,即n ∥A 1C →,所以A 1C ⊥平面BDC 1.。

高二数学(人教B版)选修2-1全册同步练习:2-5直线与圆锥曲线

高二数学(人教B版)选修2-1全册同步练习:2-5直线与圆锥曲线

2.5直线与圆锥曲线一、选择题1.若不论k 为何值,直线y =k (x -2)+b 与曲线x 2-y 2=1总有公共点,则b 的取值范围是( )A .(-3,3)B .[-3,3]C .(-2,2)D .[-2,2][答案] B[解析] 由题意可知,直线所过的定点(2,b )应在双曲线上或内部,即y 2≤x 2-1,∴b 2≤3,∴-3≤b ≤ 3.2.过抛物线y 2=4x 的焦点F 作倾斜角为π3的弦AB ,则|AB |的值为( ) A.837 B.163 C.83 D.1637 [答案] B[解析] 抛物线y 2=4x 的焦点F 为(1,0),过F 且倾斜角为π3的直线方程为y =3(x -1),联立得方程组⎩⎨⎧y =3(x -1)y 2=4x得关于x 的一元二次方程3x 2-10x +3=0.①设交于A (x 1,y 1)B (x 2,y 2)两点.则x 1x 2是①的两根.有x 1+x 2=103.|AB |=|AF |+|BF |=x 1+x 2+p =103+2=163.故选B.3.已知过抛物线y 2=6x 焦点的弦长为12,则此弦所在直线的倾斜角是( ) A.π6或5π6 B.π4或3π4 C.π3或2π3 D.π2[答案] B[解析] 由焦点弦长公式|AB |=2p sin 2θ得 6sin 2θ=12,∴sin θ=22. ∴θ=π4或34π.故选B. 4.(2009·山东烟台4月)已知抛物线y 2=4x 上一点P (x 0,y 0),若y 0∈[1,2],则|PF |的范围是( )A.⎣⎡⎦⎤14,1B.⎣⎡⎦⎤54,2C .[1,2]D .[2,3][答案] B[解析] ∵y 0∈[1,2],∴x 0∈⎣⎡⎦⎤14,1,由定义|PF |=1+x 0∈⎣⎡⎦⎤54,2.故选B.5.直线y =x +m 与椭圆x 24+y 2=1有两个不同的交点,则m 的范围是() A .-5<m <5 B .m <-5,或m > 5C .m < 5D .-5<m < 5[答案] D[解析] 将y =x +m 代入x 24+y 2=1,有5x 2+8mx +4m 2-4=0,Δ=64m 2-80(m 2-1)>0,得m 2<5,∴-5<m < 5.6.直线y =x +1被椭圆x 24+y 22=1所截得的弦的中点坐标是( )A .(23,43)B .(43,73)C .(-23,13D .(-43,-13)[答案] C[解析] 设直线与椭圆交点为A (x 1,y 1),B (x 2,y 2).则⎩⎨⎧ x 214+y 212=1x 224+y 222=1,两式相减得14(x 1-x 2)(x 1+x 2)+12(y 1-y 2)(y 1+y 2)=0y 1-y 2x 1-x 2=-14(x 1+x 2)12(y 1+y 2)=k∴-x 02y 01,又y 0=x 0+1∴x 0=-23,y 0=13. 7.以双曲线y 2-x 23=1的一个焦点为圆心,离心率为半径的圆的方程是( ) A .(x -2)2+y 2=4B .x 2+(y -2)2=2C .(x -2)2+y 2=2D .x 2+(y -2)2=4[答案] D[解析] 双曲线焦点在y 轴上,离心率e =2,∴圆心在y 轴上,半径R =2.故选D.8.(2009·浙江)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右顶点A 作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B ,C .若AB →=12BC →,则双曲线的离心率是( ) A.2 B.3 C.5 D.10 [答案] C[解析] 由已知,直线方程为x +y -a =0,两渐近线为x a ±y b=0. 由⎩⎪⎨⎪⎧ x +y -a =0bx -ay =0得x B =a 2a +b . 由⎩⎪⎨⎪⎧x +y -a =0bx +ay =0得x C =a 2a -b . ∵AB →=12BC →,∴2(x B -x A )=x C -x B , ∴3x B =2x A +x C ,∴3a 2a +b =a 2a -b+2a ,解得b =2a , ∴c 2=a 2+b 2a 2=5,∴e = 5. 故选C.9.已知a >b >0,e 1与e 2分别为圆锥曲线x 2a 2+y 2b 2=1和x 2a 2-y 2b 2=1的离心率,则lg e 1+lg e 2的值( )A .一定是正值B .一定是零C .一定是负值D .符号不确定[答案] C[解析] ∵e 1=a 2-b 2a ,e 2=a 2+b 2a, ∴e 1e 2=a 4-b 4a 2=1-⎝⎛⎭⎫b 2a 22<1. ∴lg e 1+lg e 2=lg(e 1·e 2)<0.故选C.10.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 21的离心率为( ) A.54B.52C.32D.54[答案] B[解析] 椭圆离心率e =32,即c a =32⇒a 2-b 2a 2=34,∴b 2a 2=14,则1+b 2a 2=54. ∴双曲线的离心率为e ′=52.故选B. 二、填空题 11.若抛物线y 2=2px 的焦点与双曲线x 23-y 2=1的右焦点重合,则p 的值等于______. [答案] 4[解析] 由已知F ⎝⎛⎭⎫p 2,0与F 2(2,0)重合, ∴p 2=2,∴p =4. 12.点M (5,3)到抛物线x 2=ay (a >0)的准线的距离为6,那么抛物线的方程是______.[答案] x 2=12y[解析] ∵抛物线x 2=ay (a >0)的准线方程为y =-a 4,∴a 4+3=6,∴a =12, ∴抛物线方程为x 2=12y .13.双曲线x 2-y 2=9被直线x -2y +1=0截得的弦长为________.[答案] 4335 [解析] ⎩⎪⎨⎪⎧x 2-y 2=9x -2y +1=0,3y 2-4y -8=0 y 1·y 2=-83,y 1+y 2=43. l =1+1k 2·(y 1+y 2)2-4y 1·y 2=5·169+323=4335. 14.(2008·全国Ⅰ)已知抛物线y =ax 2-1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为________.[答案] 2[解析] 把抛物线方程改写为x 2=1a(y +1)得顶点(0,-1),又原点为焦点, ∴1a=4, ∴抛物线x 2=4(y +1)与x 轴交于两点(2,0),(-2,0).∴所求面积为12×4×1=2. 三、解答题15.直线l :y =2x +1与抛物线y 2=12x 交于A (x 1,y 1),B (x 2,y 2)两点,求线段AB 的长.[解析] 由⎩⎪⎨⎪⎧y =2x +1,y 2=12x ,得4x 2-8x +1=0, 由韦达定理,得x 1+x 2=2,x 1x 2=14. ∴|AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+22)(22-4×14)=15. 16.过椭圆x 22+y 2=1的一个焦点F 作直线l 交椭圆于A ,B 两点,椭圆的中心为O ,当△AOB 的面积最大时,求直线l 的方程.[解析] 过椭圆焦点F (1,0)的直线l 垂直于x 轴时,可知此时△AOB 的面积等于22. 当l 不垂直x 轴时,可设直线l 的方程为y =k (x -1).因为|OF |是定值1,所以△AOB 的面积可以用12×1×|y 1-y 2|(其中y 1,y 2是A ,B 的纵坐标)来计算. 将y =kx -k 代入x 22+y 2=1,消去x ,得(1+2k 2)y 2+2ky -k 2=0. 由根与系数的关系可得(y 1-y 2)2=8k 4+8k 2(2k 2+1)2=2-2(2k 2-1)2<2. 可以看出|y 1-y 2|<2,此时△AOB 的面积小于22,所以直线l 的方程为x =1或x =-1. 17.(2010·湖北文,20)已知一条曲线C 在y 轴右边,C 上每一点到点F (1,0)的距离减去它到y 轴距离的差都是1.(1)求曲线C 的方程;(2)是否存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A ,B 的任一直线,都有FA →·FB →<0?若存在,求出m 的取值范围;若不存在,请说明理由.[分析] 本小题主要考查直线与抛物线的位置关系,抛物线的性质等基础知识,同时考查推理运算的能力.[解析] (1)设P (x ,y )是曲线C 上任意一点,那么点P (x ,y )满足:(x -1)2+y 2-x =1(x >0)化简得y 2=4x (x >0)(2)设过点M (m,0)(m >0)的直线l 与曲线C 的交点为A (x 1,y 1),B (x 2,y 2).设l 的方程为x =ty +m ,由⎩⎪⎨⎪⎧x =ty +m y 2=4x 得y 2-4ty -4m =0,此时Δ=16(t 2+m )>0.于是⎩⎪⎨⎪⎧y 1+y 2=4t y 1·y 2=-4m ① 又FA →=(x 1-1,y 1),FB →=(x 2-1,y 2)FA →·FB →<0⇔(x 1-1)(x 2-1)+y 1y 2=x 1·x 2-(x 1+x 2)+1+y 1y 2<0②又x =y 24,于是不等式②等价于y 214·y 224+y 1y 2-(y 214+y 224)+1<0⇔(y 1y 2)26+y 1y 2-14[(y 1+y 2)2-2y 1y 2]+1<0③由①式,不等式③等价于m 2-6m +1<4t 2④对任意实数t,4t 2的最小值为0,所以不等式④对于一切t 成立等价于m 2-6m +1<0, 即3-22<m <3+2 2由此可知,存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A ,B 的任意一直线,都有FA →·FB →<0,且m 的取值范围是(3-22,3+22).18.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0),(O 为原点)(1)求双曲线C 的方程.(2)若直线l 1:y =kx +2与双曲线恒有两个不同的交点A 和B ,且OA →·OB →>2,求k 的取值范围.[解析] (1)设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0). 由已知得a =3,c =2,再由a 2+b 2=22,得b 2=1.所以双曲线C 的方程为x 23-y 2=1. (2)将y =kx +2代入x 23-y 2=1得 (1-3k 2)x 2-62kx -9=0.由直线l 与双曲线交于不同的两点得⎩⎨⎧1-3k 2≠0Δ=(-62k )2+36(1-3k 2)=36(1-k 2)>0,即k 2≠13且k 2<1.① 设A (x A ,y A )、B (x B ,y B ),则x A +x B =62k 1-3k 2,x A x B =-91-3k 2, 由OA →·OB →>2得x A x B +y A y B >2,而x A x B +y A y B =x A x B +(kx A +2)(kx B +2)=(k 2+1)x A x B +2k (x A +x B )+2 =(k 2+1)·-91-3k 2+2k ·62k 1-3k 2+2=3k 2+73k 2-1. 于是3k 2+73k 2-1>2,即-3k 2+93k 2-1>0. 解此不等式得13<k 2<3.② 由①②得13<k 2<1. 故k 的取值范围为(-1,-33)∪(33,1).。

高二数学(人教B版)选修2-1全册同步练习:2-4-3抛物线习题课

高二数学(人教B版)选修2-1全册同步练习:2-4-3抛物线习题课

2.4.3抛物线习题课一、选择题1.P (x 0,y 0)是抛物线y 2=2px (p ≠0)上任一点,则P 到焦点的距离是( ) A .|x 0-p2|B .|x 0+p2|C .|x 0-p |D .|x 0+p |[答案] B[解析] 利用P 到焦点的距离等于到准线的距离,当p >0时,p 到准线的距离为d =x 0+p 2;当p <0时,p 到准线的距离为d =-p 2-x 0=|p2+x 0|. 2.已知抛物线的准线方程为x =-7,则抛物线的标准方程为( ) A .x 2=-28y B .y 2=28x C .y 2=-28x D .x 2=28y [答案] B[解析] 由题意,知抛物线的标准方程为:y 2=2px (p >0),又准线方程为x =-7,∴p =14.3.抛物线y 2=-4px (p >0)的焦点为F ,准线为l ,则p 表示( ) A .F 到l 的距离B .F 到y 轴的距离C .F 点的横坐标D .F 到l 的距离的14[答案] B[解析] 设y 2=-2p ′x (p ′>0),p ′表示焦点到准线的距离,又2p ′=4p ,p =p ′2,故P 表示焦点到y 轴的距离.4.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=8,那么|AB |等于( )A .10B .8C .6D .4[答案] A[解析] 设F 为抛物线y 2=4x 的焦点,则由抛物线的定义知|AF |=x 1+p 2=x 1+1,|BF |=x 2+p2=x 2+1,∴|AB |=|AF |+|BF |=x 1+x 2+2=10.5.已知抛物线y 2=2px (p >0)的焦点弦AB 的两端点分别为A (x 1,y 1),B (x 2,y 2),则一定有y 1y2x 1x 2等于( ) A .4 B .-4 C .p 2D .-p 2[答案] B[解析] 设过焦点的直线方程为x +ay -p 20(a ∈R ),则代入抛物线方程有y 2+2apy -p 2=0,故由根与系数的关系知y 1y 2=-p 2.又由y 21=2px 1,①y 22=2px 2,② ①②相乘得y 21y 22=4p 2x 1x 2,∴x 1x 2=p 24,∴y 1y 2x 1x 2=-4. 6.直线y =kx -2交抛物线y 2=8x 于A 、B 两点,若AB 中点的横坐标为2,则k =( ) A .2或-2 B .-1 C .2D .3[答案] C[解析] 由⎩⎪⎨⎪⎧y 2=8xy =kx -2得k 2x 2-4(k +2)x +4=0,则4(k +2)k 2=4,即k =2. 7.(2010·山东文,9)已知抛物线y 2=2px (p >0),过焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-2[答案] B[解析] 本题考查了抛物线的方程及中点弦问题,属圆锥曲线部分题型,可设A (x 1,y 1),B (x 2,y 2),则中点(x 1+x 22,y 1+y 22),∴y 1+y 22=2,⎩⎪⎨⎪⎧y 21=2px 1 ①y 22=2px 2 ②①-②得y 21-y 22=2p (x 1-x 2)⇒y 1-y 2x 1-x 2=2p y 1+y 2=p y 1+y 22,∴k AB =1=p 2⇒p =2,∴y 2=4x ,∴准线方程式为:x =-1,故选B.8.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若OA →·AF →=-4,则点A 的坐标为( )A .(2,±22)B .(1,±2)C .(1,2)D .(2,22)[答案] B[解析] 依题意F (1,0)设A 点坐标为(x ,y ),则OA →=(x ,y ),AF →=(1-x ,-y ), OA →·AF →=x (1-x )+y (-y )=x -x 2-y 2, x -x 2-4x ,=-x 2-3x =-4.即x 2+3x -4=0解之得x =1或x =-4 又∵x ≥0,∴x =1,y 2=4,y =±2. ∴A (1,±2).9.一动圆的圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆必过定点( )A .(4,0)B .(2,0)C .(0,2)D .(0,-2)[答案] B[解析] 由抛物线定义知,抛物线上的点到焦点的距离等于它到准线的距离,又动圆圆心在抛物线上且恒与x +2=0相切.∴动圆过定点F (2,0),故选B.10.(2008·宁夏、海南)已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A.⎝⎛⎭⎫14,-1B.⎝⎛⎭⎫14,1C .(1,2)D .(1,-2)[答案] A[解析] 依题意,抛物线的焦点F (1,0),准线为l x =-1.过Q 点作直线l 的垂线交抛物线于P 点,交准线l 于M 点,则|QP |+|PF |=|QP |+|PM |=|QM |=3为所求的最小值,此时P ⎝⎛⎭⎫14,-1.故选A. 二、填空题11.P 点是抛物线y 2=4x 上任一点,到直线x =-1的距离为d ,A (3,4),|PA |+d 的最小值为________.[答案] 2 5[解析] 设抛物线焦点为F (1,0)则d =|PF |,∴|AP |+d =|AP |+|PF |≥|AF |=(3-1)2+(4-0)2=2 5.12.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程是________.[答案] 2x -y +4=0[解析] 设y =3x 2-4x +2在M (1,1)处切线方程为y -1=k (x -1),联立得⎩⎪⎨⎪⎧y =3x 2-4x +2,y -1=k (x -1),∴3x 2-(k +4)x +(k +1)=0. ∵Δ=0,∴k =2.∴过P (-1,2)与切线平行的直线为2x -y +4=0.13.已知点P 在抛物线y 2=2x 上运动,点Q 与点P 关于(1,1)对称,则点Q 的轨迹方程是________.[答案] y 2-4y +2x =0[解析] 设P (x 0,y 0),Q (x ,y )由已知得⎩⎪⎨⎪⎧x 0+x =2,y 0+y =2∴x 0=2-x ,y 0=2-y ,又P (x 0,y 0)在y 2=2x 上, ∴(2-y )2=2(2-x ) 即y 2-4y +2x =0.14.(2010·全国Ⅱ理,15)已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)且斜率为3的直线与l 相交于点A ,与C 的一个交点为B .若AM →=MB →,则p =______.[答案] 2[解析] 如图,设B (x 0,y 0),则MK =12BH ,则x 0+p 2=2⎝⎛⎭⎫1+p 2有x 0=p2+2.可得y 0=p 2+4p ,又直线AB 方程为y =3(x -1),代入有p 2+4p =3⎝⎛⎭⎫p 2+2-1,解得p =2.三、解答题15.已知抛物线y 2=4x ,直线l 过定点P (-2,1),斜率为k ,k 为何值时,直线l 与抛物线满足下列条件:①只有一个公共点; ②有两个公共点; ③没有公共点.[解析] 由题意得直线l 的方程为y -1=k (x +2),由⎩⎪⎨⎪⎧y -1=k (x +2),y 2=4x ,消去x 得ky 2-4y +4(2k +1)=0①, 当k =0时,由方程①得y =1,把y =1代入y 2=4x ,得x =14,此时,直线l 与抛物线只有一个公共点(14,1).当k ≠0时,方程①的判别式为Δ=-16(2k 2+k -1).①当Δ=0,即2k 2+k -1=0,解得k =-1或k =12,此时方程①只有一解,方程组只有一个解,直线l 与抛物线只有一个公共点.②当Δ>0,即2k 2+k -1<0,解得-1<k <12,所以-1<k <12且k ≠0时,直线l 与抛物线有两个公共点.③当Δ<0,即2k 2+k -1>0,解得k >12或k <-1,此时,直线l 与抛物线没有公共点.综上所述可知当k =0或k =-1或k =12时,直线l 与抛物线只有一个公共点;当-1<k <12且k ≠0时,直线l 与抛物线有两个公共点;当k <-1或k >12时,直线l 与抛物线没有公共点.16.已知抛物线y 2=-x 与直线y =k (x +1)相交于A ,B 两点. (1)求证OA ⊥OB ;(2)当△AOB 的面积等于10时, 求k 的值.[解析] (1)证明:如图所示,由方程组⎩⎪⎨⎪⎧y 2=-xy =k (x +1)消去x 得ky 2+y -k =0,设A (x 1,y 1),B (x 2,y 2).由根与系数的关系知y 1y 2=-1.因为A ,B 在抛物线y 2=-x 上,所以y 21=-x 1,y 22=-x 2,y 21y 22=x 1x 2,因为k OA ·k OB =y 1x 1·y 2x 2=y 1y 2x 1x 2=1y 1y 2=-1,所以OA ⊥OB .(2)解:设直线AB 与x 轴交于点N ,显然k ≠0,所以点N 的坐标为(-1,0),因为S △OAB=S △OAN +S △OBN=12|ON ||y 1|+12|ON ||y 2|=12|ON ||y 1-y 2|,所以S △OAB =12·1·(y 1+y 2)2-4y 1y 2=12(1k)2+4,因为S △OAB =10,所以10=121k 2+4,解得k =±16. 17.设抛物线y 2=8x 的焦点是F ,有倾斜角为45°的弦AB ,|AB |=85,求△FAB 的面积.[解析] 设AB 方程为y =x +b , 由⎩⎪⎨⎪⎧y =x +b ,y 2=8x .消去y 得:x 2+(2b -8)x +b 2=0.设A (x 1,y 1),B (x 2,y 2),则 x 1+x 2=8-2b ,x 1·x 2=b 2. ∴|AB |=1+k 2·|x 1-x 2| =2×(x 1+x 2)2-4x 1·x 2 =2[(8-2b )2-4b 2]=85, 解得:b =-3.∴直线方程为y =x -3.即:x -y -3=0, ∴焦点F (2,0)到x -y -3=0的距离为 d =12=22.∴S △FAB =12×85×22=210. 18.已知抛物线y 2=x 上存在两点关于直线l :y =k (x -1)+1对称,求实数k 的取值范围.[解析] 设抛物线上的点A (y 21,y 1),B (y 22,y 2)关于直线l 对称.则⎩⎨⎧k ·y 1-y2y 21-y 22=-1y 1+y 22=k (y 21+y222-1)+1得⎩⎪⎨⎪⎧y 1+y 2=-k y 1y 2=k 22+1k -12,∴y 1、y 2是方程t 2+kt +k 22+1k -12=0的两个不同根.∴Δ=k 2-4(k 22+1k -12)>0得-2<k <0.。

高二数学(人教B版)选修2-1全册同步练习:2章末

高二数学(人教B版)选修2-1全册同步练习:2章末

2章末一、选择题 1.一动圆与两圆x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹是( )A .双曲线B .双曲线一支C .圆D .椭圆 [答案] B[解析] 动点到两定点距离之差为1.故选B.2.若双曲线C 以椭圆x 23+y 24=1的焦点为顶点,以椭圆长轴的端点为焦点,则C 的方程是( )A.x 23-y 2=1 B .-x 23y 2=1 C.x 23-y 24=1 D.y 23-x 24=1 [答案] B[解析] ∵F (0,±1),长轴端点(0,±2)∴双曲线中a =1,c =2,∴b 2=3,又焦点在y 轴上,故选B.3.已知AB 为经过椭圆x 2a 2+y 2b 2=1(a >b >0)的中心的弦,F (c,0)为椭圆的右焦点,则△AFB 的面积的最大值为( )A .b 2B .abC .acD .bc [答案] D[解析] 设AB 方程为ky =x ,代入椭圆方程得(b 2k 2+a 2)y 2=a 2b 2∴y 1=ab a 2+b 2k 2,y 2=-ab a 2+b 2k 2. ∴S =12|OF ||y 1-y 2|=abc a 2+b 2k2 ∴面积最大值为bc (k =0).4.(2008·四川)已知抛物线C :y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且|AK |=2|AF |,则△AFK 的面积为( )A .4B .8C .16D .32[答案] B [解析] 抛物线C :y 2=8x 的焦点为F (2,0),且准线为x =-2,∴K (-2,0),设A (x 0,y 0),如图,过点A 向准线作垂线,垂足为B ,则B (-2,y 0)∵|AK |=2|AF |,又|AF |=|AB |=x 0-(-2)=x 0+2,∴由|BK |2=|AK |2-|AB |2得y 20=(x 0+2)2,即8x 0=(x 0+2)2,解得x 0=2,y 0=±4.∴△AFK 的面积为12|KF |·|y 0|=12×4×4=18. 二、填空题5.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为________.[答案] 3[解析] 如图所示,设双曲线焦点在x 轴,顶点A 、焦点F 到渐近线的距离分别是AA ′,FF ′,则AA ′∥FF ′,∴△OAA ′∽△OFF ′,∴OA OF =AA ′FF ′ 即a c =26,则e =c a=3. 6.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1)、B (x 2,y 2)两点,则y 21+y 22的最小值是________.[答案] 32[解析] (1)当直线的斜率不存在时,直线方程为x =4,代入y 2=4x ,得交点为(4,4),(4,-4),∴y 21+y 22=16+16=32.(2)当直线的斜率存在时,设直线方程为y =k (x -4),与y 2=4x 联立,消去x 得ky 2-4y -16k =0,由题意知k ≠0,则y 1+y 2=4k,y 1y 2=-16. ∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16k 2+32>32. 综合(1)(2)知(y 21+y 22)min =32. 三、解答题7.如右图所示,直线y =12x 与抛物线y =18x 2-4交于A ,B 两点,线段AB 的垂直平分线与直线y =-5交于点Q .(1)求点Q 的坐标;(2)当P 为抛物线上位于线段AB 下方(含A ,B )的动点时,求△OPQ 面积的最大值.[解析] (1)解方程组⎩⎨⎧ y =12x ,y =18x 2-4,得⎩⎪⎨⎪⎧ x 1=-4,y 1=-2,⎩⎪⎨⎪⎧x 2=8,y 2=4, 即A (-4,-2),B (8,4),从而AB 的中点为M (2,1).由k AB =12,得线段AB 的垂直平分线方程为y -1=-2(x -2). 令y =-5,得x =5,∴Q (5,-5).(2)直线OQ 的方程为x +y =0,设P (x ,18x 2-4), ∵点P 到直线OQ 的距离d =|x +18x 2-4|2=182|x 2+8x -32|,|OQ |=5 2. S △OPQ =12|OQ |d =516|x 2+8x -32|, ∵P 为抛物线上位于线段AB 下方的点,且P 不在直线OQ 上, ∴-4≤x <43-4或43-4<x ≤8.∵函数y =x 2+8x -32在区间[-4,8]上单调递增,∴当x =8时,△OPQ 的面积取到最大值516×96=30.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(人教B版)数学选修2-1(全册)精品同步练习汇总1.1命题与量词课时过关·能力提升1.下列语句不是命题的是()A.一个正数不是质数就是合数B.大角所对的边较大,小角所对的边较小C.请把门关上∈R,则x2+x+2>0答案:C2.下列语句是命题的是()A.|x+a|大于0吗?B.{0}∈NC.判断元素与集合的关系D.求一个集合的真子集答案:B3.命题“存在实数x,使x+1<0”可写成()A.若x是实数,则x+1<0B.∃x∈R,x+1<0C.∀x∈R,x+1<0D.以上都不正确解析:由存在性命题的表示形式可知选项B正确.答案:B4.对命题“一次函数f(x)=ax+b是单调函数”改写错误的是()A.所有的一次函数f(x)=ax+b都是单调函数B.任意一个一次函数f(x)=ax+b都是单调函数C.任意一次函数f(x)=ax+b是单调函数D.有的一次函数f(x)不是单调函数解析:由全称命题的表示形式可知选项D错误.答案:D5.下列命题中的假命题是()A.∃x∈R,lg x=0B.∃x∈R,tan x=1C.∀x∈R,x3>0D.∀x∈R,2x>0解析:对于选项A,当x=1时,lg x=0,为真命题;对于选项B,当x,tan x=1,为真命题;对于选项C,当x<0时,x3<0,为假命题;对于选项D,由指数函数性质知,∀x∈R,2x>0,为真命题,故选C.答案:C6.下列语句是命题的是.(填序号)①地球上有四大洋;②-2∈N;③π∈R;④垂直于同一条直线的两个平面平行.解析:所给语句均能判断真假,故都是命题.答案:①②③④7.有下列命题:①奇函数的图象关于原点对称;②有些三角形是等腰三角形;③∀x∈R,2x+1是奇数;④至少有一个整数,它既不是合数也不是质数;⑤实数的平方大于零.其中是全称命题的为(填序号).解析:根据全称命题的定义知,①③⑤是全称命题.答案:①③⑤★8.下列命题是真命题的是(填序号).①5能整除15;②不存在实数x,使得x2-x+2<0;③对任意实数x,均有x-1<x;④方程x2+3x+3=0有两个不相等的实数根;⑤不等解析:对于①,由整数的整除性知该命题是真命题;对于②,因为Δ<0,所以x2-x+2<0无解,故该命题是真命题;对于③,因为任意一个数减去一个正数后都小于原数,所以该命题是真命题;对于④,因为Δ<0,所以方程x2+3x+3=0无解,所以该命题是假命题;对于⑤,因为分子恒为正,分母大于0,所以商不可能小于0,即解集为空集,故该命题是真命题.答案:①②③⑤9.判断下列命题的真假:(1)∀a∈R,函数y=log a x是单调函数;(2)∃a∈{向量},对任意向量b,有a·b=0.解:(1)由于1∈R,当a=1时,y=log a x无意义,因此命题“∀a∈R,函数y=log a x是单调函数”是假命题.(2)由于0∈{向量},当a=0时,能使a·b=0,因此命题“∃a∈{向量},对任意向量b,有a·b=0”是真命题.★10.求使命题p(x)≥0为真命题的x的取值范围.分析:要使命题p(x)≥0为真命题,就是要使x的取值满≥0,只需解不等≥0即可.解:≥0得x(2x+1)≥0,且2x+1≠0,解得x≥0或x<故x的取值范围1.2.1“且”与“或”课时过关·能力提升1.下列命题中不是“p∧q”形式的命题的是()A.函数y=a x(a>0,且a≠1)的图象一定过(0,1)点B.3和-3是方程x2-9=0的实数根C.1不是质数且不是合数答案:A2.下列命题中是“p∧q”形式的命题的是()A.28是5的倍数或是7的倍数B.2是方程x2-4=0的根又是方程x-2=0的根C.函数y=a x(a>1)是增函数y=ln x是减函数A是由“或”联结构成的新命题,是“p∨q”形式的命题;选项B可写成“2是方程x2-4=0的根且是方程x-2=0的根”,是由逻辑联结词“且”联结构成的新命题,故选项B是“p∧q”形式的命题;选项C,D不是由逻辑联结词联结形成的新命题,故不是“p∧q”形式的命题.3.下列说法与x2+y2=0含义相同的是()A.x=0,且y=0B.x=0或y=0且y≠0 D.x≠0或y≠00,故每个加数都为0,即x2=0,且y2=0,所以x=0,且y=0.4.以下判断正确的是()A.命题“p∨q”是真命题时,命题p一定是真命题B.命题p是假命题时,命题“p∧q”不一定是假命题C.命题“p∧q”是假命题时,命题p一定是假命题p是真命题时,命题“p∨q”一定是真命题Ⅰ、表Ⅱ进行判断可知选项D正确.★5.如果命题“p∨q”是真命题,命题“p∧q”是假命题,那么()A.命题p,q都是假命题B.命题p,q都是真命题C.命题p,q有且只有一个是真命题“p∨q”是真命题,所以p,q中至少有一个是真命题.因为命题“p∧q”是假命题,所以p,q中至少有一个假命题,故p,q中有且只有一个是真命题.“∀n∈R,n≤n”的构成形式是,该命题是命题(填“真”或“假”).∨q真7.命题“所有正多边形都有一个内切圆和一个外接圆”的构成形式是,组成该命题的两个命题分别是“”,∧q所有正多边形都有一个内切圆所有正多边形都有一个外接圆8.命题p:等腰三角形有两条边相等;q:等腰三角形有两个角相等.命题p,q构成的“且”命题是“”,该命题是命题(填“真”或真9.已知c>0,且c≠1,设命题p:函数y=x2+cx+1的图象与x轴有两个交点;q:当x>1时,函数x>0恒成立.如果p∨q为假,求c的取值范围.p,q为真,分别求出c的范围;再由p∨q为假知p,q都假;然后列出关于c的不等式组来解决.p为真,则Δ=c2-4>0(c>0,且c≠1),所以c>2.若q为真,则c>1.因为p∨q为假,所以p,q都为假.当p为假时,0<c≤2,且c≠1,当q为假时,0<c<1,所以当p,q都为假时,0<c<1,即c的取值范围为(0,1).★10.已知命题p:函数y=x2+mx+1在区间(-1,+∞)内是增函数;q:函数y=4x2+4(m-2)+1的函数值恒大于零.若p∧q为假,p∨q为真,求m的取值范围.分析:先由p,q为真,分别求出m的范围;再由p∧q为假,p∨q为真知,命题p,q一真一假;然后分“p真q假”和“p假q真”两种情况列出关于m的不等式组来解决.解:若p为真,≤-1,所以m≥2;若q为真,则Δ=16(m-2)2-16<0,解得1<m<3.因为p∧q为假,p∨q为真,所以p,q一真一假.当p真q假时,得解得m≥3;当p假q真时,得解得1<m<2.综上,m的取值范围是{m|m≥3或1<m<2}.1.2.2“非”(否定)课时过关·能力提升1.命题“2不是质数”的构成形式是()A.p∧qB.p∨qD.以上答案都不正确答案:C2.若命题“p”与“p∧q”都是假命题,则()A.命题p,q都是真命题B.命题p,q都是假命题C.命题p是真命题,命题q是假命题q是真命题,命题p是假命题答案:C3.a,b不全为0是指()A.a,b全不为0B.a,b中至多有一个为0C.a,b中只有一个不为0D.a,b中至少有一个为0答案:B★4.命题“∃x∈∁R Q,x3∈Q”的否定是()A.∃x∉∁R Q,x3∈QB.∃x∈∁R Q,x3∉QC.∀x∉∁R Q,x3∈QD.∀x∈∁R Q,x3∉Q答案:D5.命题“菱形的对角线互相垂直”的否定是.答案:有些菱形的对角线不互相垂直6.命题“所有人都晨练”的否定是.答案:有的人不晨练7.已知命题p“∃x∈R,x命题q是命题(填“真”或“假”).解析:利用存在性命题的否定形式写出p为:∀x∈R,x≤x>1时,x p为假命题.答案:∀x∈R,x≤8.已知命题p:0不是自然数,命题q∧q”;②“p∨q”;③“p”;④“q”中,真命题的序号是,假命题的序号是.解析:先判断命题p,q的真假,可知p假q真;再利用含有逻辑联结词的命题的真假判断方法进行判断,其中②③为真,①④为假.答案:②③①④9.写出下列命题的否定,并判断其真假:(1)集合A是集合A∪B的子集;(2)∀T=2kπ(k∈Z),sin(x+T)=sin x.分析:(1)利用命题的否定形式写出其否定,根据集合A∪B的定义可判断其真假;(2)利用全称命题的否定形式写出其否定,再利用正弦函数的周期判断其真假.解:它们的否定及真假如下:(1)集合A不是集合A∪B的子集;(假)(2)∃T=2kπ (k∈Z),sin(x+T)≠sin x.(假)★10.指出下列命题的结构形式以及构成它们的简单命题,并判断它们的真假:(1)q:1-x2≤1;y=x2的图象不关于y轴对称.分析:可依据命题的几种结构形式(“p∨q”“p∧q”“p”)直接写出它们的结构形式以及构成它们的简单命题;然后根据表Ⅰ、表Ⅱ、表Ⅲ判断其真假.解:它们的结构形式依次为:(1)p∨q,(2)p.构成它们的简单命题依次为:(1)“1-x2<1”和“1-x2=1”.(2)函数y=x2的图象关于y轴对称.其真假依次为:(1)真;(2)假.1.3.1推出与充分条件、必要条件课时过关·能力提升1.若命题甲是命题乙的充分不必要条件,命题丙是命题乙的必要不充分条件,命题丁是命题丙的充要条件,则命题丁是命题甲的()A.充分不必要条件B.必要不充分条件C.充要条件⇒乙⇒丙⇔丁,故命题丁是命题甲的必要不充分条件.2.命题“∀x∈[1,2],x2-a≤0”为真命题的一个充分不必要条件是()B.a≤4C.a≥5D.a≤53.已知直线l1,l2的斜率分别为k1,k2,则“k1=k2”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件k1=k2时,直线l1,l2可能平行也可能重合;当l1∥l2时,k1,k2一定相等.故选B.4.“两三角形全等”是“两三角形对应角相等”的()A.充分不必要条件B.既不充分也不必要条件C.必要不充分条件5.已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件m为平面α内的一条直线,m⊥β,得α⊥β,必要性成立;由m为平面α内的一条直线,α⊥β,不能推出m⊥β,充分性不成立.故“α⊥β”是“m⊥β”的必要不充分条件.★6.设{a n}是首项大于零的等比数列,则“a1<a2”是“数列{a n}是递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:因为{a n}是首项大于零的等比数列,a1<a2⇒数列{a n}是递增数列,数列{a n}是递增数列,所以“a1<a2”是“数列{a n}是递增数列”的充要条件.2答案:CA为数集,则“A∩{0,1}={0}”是“A={0}”的条件.答案:必要不充分b,c为实数,“a>0,c<0”是“函数f(x)=ax2+bx+c有两个零点”的条件.解析:a>0,c<0⇒b2-4ac>0⇒函数f(x)有两个零点;函数f(x)有两个零点⇒b2-4ac>0a>0,c<0,故0”是“函数f(x)=ax2+bx+c有两个零点”的充分不必要条件.答案:充分不必要p:A={x|x2+4x+3>0},q:B={x||x|<a},若p是q的必要不充分条件,求a的取值范围.分析:先化简集合,然后把“p是q的必要不充分条件”转化为“B⫋A”,得关于a的不等式解决问题.解:p:A={x|x2+4x+3>0}={x|x>-1或x<-3},q:B={x||x|<a},因为p是q的必要不充分条件,所以B⫋A.当a≤0时,B=⌀,满足B⫋A;当a>0时,B={x|-a<x<a},要使B⫋A,只需-a≥-1,此时0<a≤1.综上,a的取值范围为(-∞,1].★10.已知m∈Z,关于x的一元二次方程x2-2x+m=0, ①x2+2mx+m2-m-1=0, ②求方程①和②的根都是整数的充要条件.分析:方程①和②的根都是整数,即方程①和②有实数根且为整数,因此先求出方程①和②有实数根的充要条件,得到m的取值范围,由m∈Z,再逐一验证.解:方程①有实根⇔Δ=4-4m≥0,即m≤1;方程②有实根⇔Δ=(2m)2-4(m2-m-1)=4m+4≥0,即m≥-1,所以方程①和②同时有实数根⇔-1≤m≤1.因为m∈Z,所以m=-1,0,1.当m=-1时,方程①无整数根;当m=0时,方程①和②都有整数根;当m=1时,方程②无整数根.综上所述,方程①和②的根都是整数的充要条件是m=0.1.3.2命题的四种形式课时过关·能力提升1.命题“在△ABC中,若∠C=90°,则∠A,∠B都是锐角”的否命题是()A.在△ABC中,若∠C≠90°,则∠A,∠B都不是锐角B.在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角C.在△ABC中,若∠C≠90°,则∠A,∠B必有一钝角ABC中,若∠A,∠B都是锐角,则∠C=90°答案:B2.命题“如果x≥a2+b2,那么x≥2ab”的逆否命题是()A.如果x<a2+b2,那么x<2abB.如果x≥2ab,那么x≥a2+b2C.如果x<2ab,那么x<a2+b2x≥a2+b2,那么x<2ab答案:C3.下列说法正确的是()A.一个命题的否命题为真,则它的逆命题为假B.一个命题的逆命题为真,则它的否命题为真C.一个命题的否命题为真,则它的逆否命题为真,则它的逆命题为真解析:由四种命题的关系可知,一个命题的否命题与它的逆命题是互为逆否关系,根据互为逆否命题的两个命题是等价的,可得选项B正确.答案:B4.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数-x)不是奇函数,则f(x)不是奇函数答案:B5.下列命题中,是真命题的为()A.“若关于x的一元二次方程ax2+bx+c=0有实根,则b2-4ac>0”的逆否命题B.“正方形的四条边相等”的逆命题C.“若x2-4=0,则x=2”的否命题”的逆命题解析:对于A项,原命题是假命题,故其逆否命题也为假命题;对于B项,逆命题为“四条边相等的四边形是正方形”,是假命题;对于C项,否命题为“若x2-4≠0,则x≠2”,为真命题;对于D项,逆命题为“相等的角是对顶角”,为假命题.答案:C“到一个角的两边距离相等的点在该角的平分线上”的否命题是“”.答案:到一个角的两边距离不相等的点不在该角的平分线上7.命题“若x,y是偶数,则x+y是偶数(x∈Z,y∈Z)”的逆否命题是“”,它是命题(填“真”或“假”).答案:若x+y不是偶数,则x,y不都是偶数(x∈Z,y∈Z)真8.有下列四个命题:①如果xy=1,则lg x+lg y=0;②“如果sin α+cos α③“如果b≤0,则关于x的方程x2-2bx+b=0有实数根”的逆否命题;④“如果A∪B=B,则A⊆B”的逆命题.其中是真命题的有(填序号).解析:命题①显然错误,例如,x=-1,y=-1时,lg x+lg y无意义.对于②,其否命题为“如果sin α+cos α≠α不是第一象限角”,因为当α=60°时,sinα+cos α,故其否命题为假命题.对于命题③,因为当b≤0时,Δ=4b2-4b≥0恒成立,故关于x的方程x2-2bx+b=0有实数根,由原命题与其逆否命题等价,知命题③是真命题.对于④,其逆命题为“若A⊆B,则A∪B=B”,显然为真命题.答案:③④9.写出下列命题的逆命题、否命题、逆否命题,并分别判断其真假:(1)末尾数字是0或5的整数,能被5整除;2,则函数y=a x是增函数.分析:依据四种命题的定义分别写出原命题的逆命题、否命题、逆否命题.“0或5”的否定是“不是0且不是5”,“是”的否定词是“不是”,“等于”的否定词是“不等于”.解:(1)逆命题:能被5整除的整数,末尾数字是0或5;(真)否命题:末尾数字不是0且不是5的整数,不能被5整除;(真)逆否命题:不能被5整除的整数,末尾数字不是0且不是5.(真)(2)逆命题:若函数y=a x是增函数,则a=2;(假)否命题:若a≠2,则函数y=a x不是增函数;(假)逆否命题:若函数y=a x不是增函数,则a≠2.(真)2.1曲线与方程课时过关·能力提升1.已知动点A在圆x2+y2=1上移动,则点A与定点B(3,0)连线的中点的轨迹方程是()A.(x+3)2+y2=1B.(x-3)2+y2=1C.(2x-3)2+4y2=13)2+4y2=1解析:设A,B连线的中点的坐标为(x,y),则动点A为(2x-3,2y),因为动点A在圆x2+y2=1上,所以(2x-3)2+(2y)2=1,即(2x-3)2+4y2=1.答案:C2.“点M在曲线y2=8x上”是“点M的坐标满足方程y=-A.充分不必要条件B.必要不充分条件C.充要条件答案:B3.已知曲线y=x2-x+2和y=x+m有两个不同的交点,则()A.m∈RB.m∈(-∞,1)C.m=1D.m∈(1,+∞)解析:已知条件可转化为联立后的方程组有两个不同的解.答案:D4.下列方程中表示相同曲线的一对方程是()A.xB.y=xC.yD.y=x与x2-y2=0答案:C5.平面内与定点(-1,2)和直线3x+4y-5=0的距离相等的点的轨迹是.解析:因为(-1,2)在直线3x+4y-5=0上,所以满足条件的点的轨迹是过定点(-1,2)且垂直于3x+4y-5=0的直线.答案:直线6.方程(x+y-1解析:由方程(x+y-1x+y-1=0(x≥1)或x=1.答案:直线x=1或直线x+y-1=0(x≥1)7.(1)方程(x-1)2(2)方程(x-1)解析:(1)∵(x-1)2(1,0).(2)∵(x-1)∴x-1=0或x2+y2-1=0,即方程表示的图形是直线x-1=0或圆x2+y2-1=0.答案:(1)点(1,0)(2)直线x-1=0或圆x2+y2-1=0已知动点P在曲线2x2-y=0上移动,求点A(0,-1)与点P连线中点的轨迹方程.解:设AP的中点坐标为(x,y),则P(2x, 2y+1)在2x2-y=0上,即2(2x) 2-(2y+1)=0,整理,得2y=8x2-1.9.点A(3,0)为圆x2+y2=1外一点,P为圆上任意一点,若AP的中点为M,当P在圆上运动时,求点M的轨迹方程.分析:设点M的坐标为(x,y),点P的坐标为(x0,y0),由题意可所.解:由题意设点M(x,y),P(x0,y0),所又因为点P(x0,y0)在圆x2+y2=1上,所以(2x-3)2+4y2=1,所故点M的轨迹方程★10.若直线x+y-m=0被曲线y=x2所截得的线段长为分析:直线与曲线交于两点,可设出这两点的坐标,然后灵活应用根与系数的关系求解.解:设直线x+y-m=0与曲线y=x2相交于A(x1,y1),B(x2,y2)两点,联立直线与曲线方程,将②代入①,得x2+x-m=0,所所以|AB|·|x1-x2|所m的值为2.2.2.1椭圆的标准方程课时过关·能力提升1.椭B.( 0,±5)C.(0,±12)D.(±12,0)解析:易知焦点在y轴上,a2=169,b2=144.则c答案:B2.已知椭A.4B.5C.7D.8解析:因为焦点在y轴上,所⇒6<m<10.又焦距为4,所以m-2-10+m m=8.答案:D3.若F1,F2是椭△PF1F2的周长为()A.10B.12C.16D.不确定答案:B4.已知椭圆的焦距为ABCD解析:因为2c=c因为2a=8,所以a=4.所以b2=a2-c2=9.又因为焦点不知在哪个坐标轴上,所以标准方程有两个,故选D.答案:D★5.若椭A.2B.4C.8 D解析:设椭圆的右焦点为F2,则由|MF1|+|MF2|=10,知|MF2|=10-2=8.又因为点O为F1F2的中点,点N为MF1的中点,所以|ON|B.答案:B6.已知M是椭答案:67.已知椭圆的焦距|F1F2|=6,AB是过焦点F1的弦,且△ABF2的周长为20,则该椭圆的标准方程为.答案:8.已知椭圆C解:因为点P(x0,y0)满足0所以点P在椭圆内且不过原点,所以|F1F2|≤|PF1|+|PF2|<2a.又因为a2=2,b2=1,所以c2=a2-b2=1,即c=1.所以2≤|PF1|+|PF2|<9.已知圆A:(x+3)2+y2=1及圆B:(x-3)2+y2=81,动圆P与圆A外切,与圆B内切,求动圆圆心P 的轨迹方程.分析:利用椭圆定义先判断动圆圆心P的轨迹是椭圆,再求其方程.解:设动圆P的半径为r,由所给圆的方程知:A(-3,0),B(3,0).由题意可得,|P A|=r+1,|PB|=9-r,则|P A|+|PB|=10>|AB|=6.由椭圆定义知动点P的轨迹是椭圆.其中2a=10,2c=6,即a=5,c=3,所以b2=16,故动圆圆心P的轨迹方程★10.已知椭∠F1PF2=θ,求△F1PF2的面积.分析:计算三角形的面积有多种公式可供选择,其中与已知条件联系最密切的应·|PF2|·sin θ,所以应围绕|PF1|·|PF2|进行计算.解:如图,由椭圆定义知,|PF1|+|PF2|=2a,而在△F1PF2中,由余弦定理得|PF1|2+|PF2|2-2|PF1|·|PF2|cos θ=|F1F2|2=4c2,∴(|PF1|+|PF2|)2-2|PF1|·|PF2|-2|PF1|·|PF2|cos θ=4c2,即4(a2-c2)=2|PF1|·|PF2|(1+cos θ).∴|PF1||PF2|·|PF2|sin θ2.2.2椭圆的几何性质课时过关·能力提升1.如果一个椭圆的长轴长是短轴长的2倍,那么这个椭圆的离心率为()AC答案:B2.已知焦点在x轴上的椭圆的离心率AC解析:由x2+y2-2x-15=0,知圆的半径为4,故2a=4,即a=2.又e c=1.故b2=a2-c2=4-1=3.故选A.答案:A3.已知过椭∠F1PF2=60°,则椭圆的离心率为()AC解析:在Rt△PF1F2中,设|PF1|=m(m>0),由已知得|F1F2|e答案:C4.若方A.a<0B.-1<a<0C.a<1D.a>1解析:因为方y轴上的椭圆,所⇒-1<a<0.答案:B★5.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是()AC解析:设椭圆的长半轴长为a,短半轴长为b,焦距为2c,离心率为e.依题意有2×2b=2a+2c,即2b=a+c,∴4b2=a2+2ac+c2.∵b2=a2-c2,∴4a2-4c2=a2+2ac+c2,∴3a2-2ac-5c2=0.两边同除以a2,即有5e2+2e-3=0,解得e e=-1(舍去).故选B.答案:B6.若椭解析:当椭圆的焦点在x轴上,即k>1时,b=3,a∴ck=4.符合k>1,∴k=4;当椭圆的焦点在y轴上,即-8<k<1时,a=3,b∴ck=-8<k<1,∴k=k=4答案:4或7.椭△F AB的周长最大时,△F AB的面积是.解析:设椭圆的右焦点为F1,则|AF|=2a-|AF1|=4-|AF1|,所以△AFB的周长为2|AF|+2|AH|=2(4-|AF1|+|AH|).因为△AF1H为直角三角形,所以|AF1|>|AH|,仅当F1与H重合时,|AF1|=|AH|,所以当m=1时,△AFB的周长最大,此时S△F AB答案:38.已知直线x+2y-2=0经过椭解析:由题意知椭圆的焦点在x轴上,又直线x+2y-2=0与x轴、y轴的交点分别为(2,0),(0,1),它们分别是椭圆的焦点和顶点,所以b=1,c=2,从而a e答案:9.已知椭分析:由椭圆的离心率可得a,c的关系,从而知道b,c的关系,再由点在椭圆上,代入方程即可求得椭圆的标准方程.解:由题意知,椭圆的离心率e所a=2c,所以b2=a2-c2=3c2,所以椭圆的方程又因为,所所以c2=1,所以椭圆的方程★10.已知椭分析:由离心率e a2=b2+c2,可得a=2b.由菱形面积为4,可得ab=2.两式联立可求得a,b,从而得到椭圆的方程.解:由e3a2=4c2.再由c2=a2-b2,解得a=2b.由题意可ab=2.解方程所以椭圆的方程2.3.1双曲线的标准方程课时过关·能力提升1.若双曲线的方程A.(±2,0)B.(±4,0)C.(0,±2)D.(0,±4)解析:因为c2=a2+b2=10+6=16,焦点在x轴上,所以焦点坐标为(4,0),(-4,0).答案:B2.若方A.-1<k<1B.k>0C.k≤0D.k>1或k<-1解析:因为方,所以有(1+k)(1-k)>0,解得-1<k<1.答案:A3.若椭A. 1B.1或3C.1或3或-2D.3解析:由题意可知m>0,于是焦点都在x轴上,故m=1.答案:A4.已知方程ax2-ay2=b,且ab<0,则它表示的曲线是()A.焦点在x轴上的双曲线B.圆C.焦点在y轴上的双曲线D.椭圆解析:原方程可变形y轴上的双曲线.答案:C★5.与双曲AC.解析:由题意知,c2=16+4=20,设所求的双曲线方程a2+b2=20,a2=12,b2=8.所以双曲线的标准方程答案:D6.已知圆C:x2+y2-6x-4y+8=0,以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为.解析:令x=0,得y2-4y+8=0,方程无解,即该圆与y轴无交点.令y=0,得x2-6x+8=0,解得x=2或x=4,所以a=2,c=4,b2=c2-a2=16-4=12,且焦点在x轴上.故双曲线的标准方程答案:7.已知F是双曲解析:设右焦点为F1,依题意,有|PF|=|PF1|+4,∴|PF|+|P A|=|PF1|+4+|P A|=|PF1|+|P A|+4≥|AF1|+4=5+4=9,当A,P,F1三点共线时取等号.答案:9★8.已知双曲∠F1PF2△F1PF2的面积是.解析:不妨设P为双曲线左支上的点,F1为左焦点,|PF1|=r1,|PF2|=r2,②-①2,得r1r2=2.所答案:19.已知双曲线的焦点为F1(0,-6),F2(0,6),且经过点(2,-5),求该双曲线的标准方程.分析:由焦点坐标可知,焦点在y轴上,可设方程c=6,再把点代入即可求得.解:设所求的双曲线方程故所求的双曲线的标准方程,且双曲线经过M(1,1),N(-2,5)两点,求双曲线的标准方程.分析:此题由于不知道焦点在哪个坐标轴上,所以应先分两种情况来讨论,再把两点代入.此题还可以先设双曲线的方程为Ax2+By2=1(AB<0),再把两点代入求解.解法一当焦点在x轴上时,设所求的双曲线的标准方程M(1,1),N(-2,5)两点在双曲线上,所解得当焦点在y轴上时,设双曲线的标准方程同理,解得.故所求的双曲线的标准方程解法二设所求的双曲线的标准方程为Ax2+By2=1(AB<0).因为M(1,1),N(-2,5)两点在双曲线上,代入上述方程解得故所求的双曲线的标准方程2.3.2双曲线的几何性质课时过关·能力提升1.如果双曲线的实轴长、虚轴长、焦距成等差数列,那么它的离心率为()AC.2D.3解析:因为双曲线的实轴长、虚轴长、焦距成等差数列,所以4b=2a+2c,即a+c=2b,再由a2+b2=c2即可求得离心率e答案:B2.已知双曲线的实轴长与虚轴长之和等于其焦距AC解析:由方程得a=2,b=2.因为双曲线的焦点在y轴上,所以双曲线的标准方程答案:B3.过点(2,-2)且A.C.解析:由题意可设双曲线方程∈R,且k≠0),又双曲线过点(2,-2),代入即可求得k,从而求出双曲线方程答案:A4.已知F1,F2是双曲线C的两个焦点,P是双曲线右支上一点,且△F1PF2是等腰直角三角形,则双曲线C的离心率为()A.1C.3解析:因为△F1PF2为等腰直角三角形,又|PF1|≠|PF2|,故必有|F1F2|=|PF2|,即2c c2-2ac-a2=0,即e2-2e-1=0,解:之,得e=1e>1,∴e=1答案:A★5.已知双曲线9y2-m2x2=1(m>0)的一个顶点到它的一条渐近线的距离A.1B.2C.3D.4解析:双曲线9y2-m2x2=1(m>0),一个顶点3y-mx=0.由题意m=4.答案:D6.双曲解析:利用公式y=y=答案:y=7.已知双曲解析:因为椭(±4,0),所以双曲线的焦点坐标为(±4,0),即c=4.所以a=2,b2=12,所以双曲线方程所以渐近线方程为y=答案:(±4,0)8.若双曲解析:利用双曲线的定义及离心率公式,可求得k=-31.答案:-319.根据以下条件,分别求出双曲线的标准方程:(1)过点P(3,(2)焦点在x轴上,F1,F2是双曲线的左、右焦点,P是双曲线上的一点,∠F1PF2=60°解:(1)若双曲线的焦点在x轴上,.由e由点P(3,,又a2+b2=c2, ③由①②③,得a2=1,b2所求双曲线方程为x2若双曲线的焦点在y轴上,.同理解之,得b2=).故所求双曲线的标准方程为x2(2)设双曲线的标准方程为因为|F1F2|=2c,而e由双曲线的定义,得||PF1|-|PF2||=2a=c.由余弦定理,得(2c)2=|PF1|2+|PF2|2-2|PF1|·|PF2|·cos∠F1PF2=(|PF1|-|PF2|)2+2|PF1|·|PF2|·(1-cos 60°),所以4c2=c2+|PF1|·|PF2|.又因·|PF2|·sin 60°=1所以|PF1|·|PF2|=48.所以3c2=48,即c2=16,由此得a2=4,b2=12.故所求双曲线的标准方程★10.如图所示,已知F1,F2为双曲∠PF1F2=30°.求双曲线的渐近线方程.分析:由于双曲y=,可以通过已知解Rt△F1F2P求得.解法一设F2(c,0)(c>0),把P(c,y0)代入方程得y0=∴|PF2|Rt△F1F2P中,∠PF1F2=30°,∴|F1F2|2c∵c2=a2+b2,∴b2=2a2.y=解法二∵在Rt△PF1F2中,∠PF1F2=30°,∴|PF1|=2|PF2|.由双曲线的定义知|PF1|-|PF2|=2a,∴|PF2|=2a.∴|F1F2|∴2c=c2=3a2=a2+b2.∴2a2=b2.故所求双曲线的渐近线方程为y=2.4.1抛物线的标准方程课时过关·能力提升1.抛物线y2=12x的焦点坐标是()A.(12,0)B.(6,0)C.(3,0)D.(0,3)答案:C2.经过点(2,-3)且焦点在x轴正半轴上的抛物线的标准方程是()A.y2C.y2=答案:B3.抛物线y2A.xC.x=答案:D4.已知圆(x-a)2+(y-b)2=r2的圆心为抛物线y2=4x的焦点,且该圆与直线3x+4y+2=0相切,则该圆的方程为()A.(x-1)2+y2B.x2+(y-1)2C.(x-1)2+y2=12y-1)2=1答案:C★5.已知点P是抛物线y2=16x上的点,它到焦点的距离h=10,则它到y轴的距离d等于() A.3 B.6C.9D. 12解析:设点P到抛物线y2=16x的准线的距离为l.由抛物线y2=16x由抛物线定义知l=h,又l=d d=l答案:B6.抛物线x=2y2的焦点坐标是.答案:7.动点P到点F(2,0)的距离与它到直线x+2=0的距离相等,则点P的轨迹方程为.答案:y2=8x8.抛物线x-4y2=0的准线方程是.答案:x=9.若抛物线y2=2px(p>0)上有一点M,其横坐标为9,它到焦点的距离为10,求抛物线方程和点M 的坐标.解:由抛物线定义知,焦点x=由题意,设点M到准线的距离为d,则d=|MF|=10,即9p=2.故抛物线方程为y2=4x.将M(9,y)代入y2=4x,解得y=±6,则点M的坐标为(9,6)或(9,-6).★10.已知抛物线C的顶点在原点,焦点F在x轴的正半轴上,设A,B是抛物线C上的两个动点(AB不垂直于x轴),且|AF|+|BF|=8,线段AB的垂直平分线恒经过定点Q(6,0),求抛物线的方程.解:设抛物线的方程为y2=2px(p>0),则其准线为x=设A(x1,y1),B(x2,y2),因为|AF|+|BF|=8,所以x1x1+x2=8-p.因为Q(6,0)在线段AB的垂直平分线上,所以|QA|=|QB|,因所以(x1-x2)(x1+x2-12+2p)=0.因为AB与x轴不垂直,所以x1≠x2,则x1+x2-12+2p=8-p-12+2p=0,即p=4.故抛物线方程为y2=8x.2.4.2抛物线的几何性质课时过关·能力提升1.抛物线y=4x2的准线方程为()A.y=C.y解析:由题意知x2p y=答案:D2.已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y0).若点M到该抛物线焦点的距离为3,则|OM|=()A.C.4D.解析:由抛物线的定义,p=2,即抛物线方程为y2=4x.因为点M(2,y0)在抛物线上,所以y0=±|OM|答案:B3.如果点M (5,3)到抛物线y=ax2(a≠0)的准线的距离为6,那么抛物线的方程是()A.y=12x2B.y=-36x2C.y=12x2或y=-36x2D.y解析:分a>0,a<0两种情况,可得y y=答案:D★4.已知抛物线y2=2px(p>0)的准线与圆x2+y2-6x-7=0相切,则p的值为()A解析:圆x2+y2-6x-7=0的圆心坐标为(3,0),半径为4.y2=2px(p>0)的准线方程为x=∴3∴p=2.故选C.答案:C5.焦点在x轴的负半轴上,并且过点(-4,2)的抛物线的标准方程为.解析:设所求抛物线的标准方程为y2=-2px(p>0).因为抛物线过点(-4,2),所以22=-2p×(-4),即p故所求抛物线的标准方程为y2=-x.答案:y2=-x6.若抛物线y2=4x上一点到焦点的距离为5,则这点的坐标为.答案:(4,4)或(4,-4)7.设抛物线y2=2px(p>0)的焦点为F,已知点A(0,2).若线段F A的中点B在抛物线上,则点B到该抛物线准线的距离为.解析:由已知,∴2p p∴因此点B到该抛物线的准线的距离答案:8.已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点F的距离等于5,求抛物线的方程和m的值.分析:由题意可先设抛物线方程为y2=-2px(p>0),再求解.解:设抛物线方程为y2=-2px(p>0),则焦由题意可解得故所求的抛物线方程为y2=-8x,m的值为±★9.已知点A(2,1)和抛物线y2=x,F为抛物线的焦点,P是抛物线上任意一点.求:(1(2)点P到直线x+2y+4=0的距离的最小值.分析:利用抛物线的定义及平面几何知识求解.解: (1)设点P到准线x=d,则|AP|+|PF|=|AP|+d,当P A垂直于准线时,|P A|+d最小,最小值(2)设点P的坐标为(t2,t),则点P到直线x+2y+4=0的距离故当t=-1时,点P到直线x+2y+4=0的距离最小,最小值2.5直线与圆锥曲线课时过关·能力提升1.若椭A.2B.-2 C。

相关文档
最新文档