厦门市2019年中考数学试题及答案

合集下载

2019年厦门市中考数学试题及答案(word版)

2019年厦门市中考数学试题及答案(word版)

2019年厦门市初中毕业及高中阶段各类学校招生考试数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,26小题,试卷共4页,另有答题卡. 2.答案一律写在答题卡上,否则不能得分. 3.可直接用2B 铅笔画图.一、选择题(本大题有7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有一个选项正确) 1.下列计算正确的是A .-1+2=1.B .-1-1=0.C .(-1)2=-1.D .-12=1. 2.已知∠A =60°,则∠A 的补角是 A .160°. B .120°. C .60°. D .30°.3.图1是下列一个立体图形的三视图,则这个立体图形是 A .圆锥. B .球. C .圆柱. D .正方体. 4.掷一个质地均匀的正方体骰子,当骰子停止后,朝上 一面的点数为5的概率是 A .1. B .15. C .16. D .0.5.如图2,在⊙O 中,︵AB =︵AC ,∠A =30°,则∠B = A .150°. B .75°. C .60°. D .15°.6.方程2x -1=3x的解是A .3.B .2.C .1.D .0.7.在平面直角坐标系中,将线段OA 向左平移2个单位,平移后,点O ,A 的对应点分别为点O 1,A 1.若点O (0,0),A (1,4),则点O 1,A 1的坐标分别是 A .(0,0),(1,4). B .(0,0),(3,4). C .(-2,0),(1,4). D .(-2,0),(-1,4). 二、填空题(本大题有10小题,每小题4分,共40分)8.-6的相反数是 .图3ED CBACO 图2BA俯视图左视图主视图图19.计算:m 2·m 3= .10.式子x -3在实数范围内有意义,则实数x 的取值范围是 .11.如图3,在△ABC 中,DE ∥BC ,AD =1,AB =3,DE =2,则BC = .12.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80 人数233241则这些运动员成绩的中位数是 米. 13.x 2-4x +4= ( )2.14.已知反比例函数y =m -1x的图象的一支位于第一象限,则常数m 的取值范围是 . 15.如图4,□ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点.若AC +BD =24厘米, △OAB 的周长是18厘米,则EF = 厘米.16.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒, 步行的速度为1米/秒,骑车的速度为4米/秒.为了确保 甲工人的安全,则导火线的长要大于 米. 17.如图5,在平面直角坐标系中,点O 是原点,点B (0,3),点A 在第一象限且AB ⊥BO ,点E 是线段AO 的中点,点M 在线段AB 上.若点B 和点E 关于直线OM 对称,且则点M 的坐标是 ( , ) .三、解答题(本大题有9小题,共89分)18.(本题满分21分)(1)计算:5a +2b +(3a —2b );(2)在平面直角坐标系中,已知点A (-4,1),B (-2,0),C (-3, -1),请在图6上 画出△ABC ,并画出与△ABC 关于原点O 对称的图形;(3)如图7,已知∠ACD =70°,∠ACB =60°,∠ABC =50°. 求证:AB ∥CD .19.(本题满分21分)(1)甲市共有三个郊县,各郊县的人数及人均耕地面积如下表所示:郊县人数/万人均耕地面积/公顷D C BA图7图4F E O DCB AA 20 0.15B 5 0.20 C100.18求甲市郊县所有人口的人均耕地面积(精确到0.01公顷); (2)先化简下式,再求值:2x 2+y 2x +y - x 2+2y 2x +y ,其中x =2+1, y =22—2; (3)如图8,已知A ,B ,C ,D 是⊙O 上的四点, 延长DC ,AB 相交于点E .若BC =BE . 求证:△ADE 是等腰三角形.20.(本题满分6分)有一个质地均匀的正12面体,12个面上分别写有1~12这12个整数(每个面上只有一个整数且每个面上的整数互不相同).投掷这个正12面体一次,记事件A 为“向上一面的数字是2或3的整数倍”,记事件B 为 “向上一面的数字是3的整数倍”,请你判断等式“P(A)=12+P(B)”是否成立,并说明理由.21.(本题满分6分)如图9,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点E ,若AE =4,CE =8,DE =3,梯形ABCD 的高是365,面积是54.求证:AC ⊥BD .22.(本题满分6分)一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的 9分内既进水又出水,每分的进水量和出水量都是 常数.容器内的水量y (单位:升)与时间 x (单位:分)之间的关系如图10所示.当容器内的水量大于5升时,求时间x 的取值范围.23.(本题满分6分)如图11,在正方形ABCD 中,点G 是边BC 上的任意一点,DE ⊥AG ,垂足为E ,延长DE 交AB 于 点F .在线段AG 上取点H ,使得AG =DE +HG ,连接BH . 求证:∠ABH =∠CDE .图9E DC BAH G FE DCB图11AEDO图8CBA24.(本题满分6分)已知点O 是坐标系的原点,直线y =-x +m +n 与双曲线y =1x交于两个不同的点A (m ,n )(m ≥2)和B (p ,q ),直线y =-x +m +n 与y 轴交于点C ,求△OBC 的面积S 的取值范围.25.(本题满分6分)如图12,已知四边形OABC 是菱形,∠O =60°,点M 是OA 的中点.以点O 为圆心, r 为半径作⊙O 分别交OA ,OC 于点D ,E ,连接BM .若BM =7, ︵DE 的长是3π3.求证:直线BC 与⊙O 相切.26.(本题满分11分)若x 1,x 2是关于x 的方程x 2+bx +c =0的两个实数根,且x 1+x 2=2k (k 是整数),则称方程x 2+bx +c =0为“偶系二次方程”.如方程x 2-6x -27=0, x 2-2x -8=0,x 2+3x -274=0,x 2+6x -27=0, x 2+4x +4=0都是“偶系二次方程”.(1)判断方程x 2+x -12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b ,是否存在实数c ,使得关于x 的方程x 2+bx +c =0是“偶系二次方程”,并说明理由.2019年厦门市初中毕业及高中阶段各类学校招生考试数学参考答案及评分标准一、选择题(本大题共7小题,每小题3分,共21分)题号 1 2 3 4 5 6 7 选项ABCCBAD图12OA BCD EM二、填空题(本大题共10小题,每题4分,共40分)8. 6 9. m510.x≥3 11. 612. 1.6513. x—214.m>115. 3 16. 1.317.(1,3)三、解答题(本大题共9小题,共89分)18.(本题满分21分)(1)解:5a+2b+(3a—2b)=5a+2b+3a—2b……………………………3分=8a. ……………………………7分(2)解:正确画出△ABC……………………………10分正确画出△DEF ……………………………14分(3)证明1:∵∠ACD=70°,∠ACB=60°,∴∠BCD=130°. …………16分∵∠ABC=50°,∴∠BCD+∠ABC=180°. …………18分∴AB∥CD. …………21分证明2:∵∠ABC=50°,∠ACB=60°,∴∠CAB=180°—50°—60°=70°. ………………16分∵∠ACD=70°,∴∠CAB=∠ACD. ………………18分∴AB∥CD. ………………21分19.(本题满分21分)(1)解:20×0.15+5×0.20+10×0.1820+5+10……………………………5分≈0.17(公顷/人). ……………………………6分∴这个市郊县的人均耕地面积约为0.17公顷. ……………………7分(2)解:2x2+y2x+y—2y2+x2x+y=x2—y2x+y……………………………9分=x-y. ……………………………11分当 x =2+1, y =22—2时,原式= 2+1-(22—2) ……………………………12分=3—2. ……………………………14分(3)证明: ∵BC =BE ,∴∠E =∠BCE . ……………………………15分∵ 四边形ABCD 是圆内接四边形,∴∠A +∠DCB =180°. ……………17分∵∠BCE +∠DCB =180°,∴∠A =∠BCE . ………………18分 ∴∠A =∠E . ………………19分∴ AD =DE . ………………20分 ∴△ADE 是等腰三角形. ………………21分 20.(本题满分6分)解: 不成立 ……………………………1分 ∵ P(A)=812=23, ……………………………3分又∵P(B) =412=13, ……………………………5分而12+13=56≠23.∴ 等式不成立. ……………………………6分 21.(本题满分6分)证明1:∵AD ∥BC ,∴∠ADE =∠EBC ,∠DAE =∠ECB .∴△EDA ∽△EBC . ……………………………1分 ∴ AD BC =AE EC =12. ……………………………2分即:BC =2AD . ………………3分 ∴54=12×365( AD +2AD )∴AD =5. ………………4分 在△EDA 中,∵DE =3,AE =4,∴DE 2+AE 2=AD 2. ……………………………5分 ∴∠AED =90°.∴ AC ⊥BD . ……………………………6分证明2: ∵AD ∥BC ,∴∠ADE =∠EBC ,∠DAE =∠ECB .∴△EDA ∽△EBC . ……………………………1分 ∴DE BE =AEEC . ……………………………2分即3BE =48. ∴BE =6. ……………………………3分过点D 作DF ∥AC 交BC 的延长线于点F .由于AD ∥BC ,∴四边形ACFD 是平行四边形.∴DF =AC =12,AD =CF . ∴BF =BC +AD . ∴54=12×365×BF .∴BF =15. ……………………………4分 在△DBF 中,∵DB =9,DF =12,BF =15,∴DB 2+DF 2=BF 2. ……………………………5分 ∴∠BDF =90°.∴DF ⊥BD .∴AC ⊥BD . ……………………………6分 22.(本题满分6分)解1: 当0≤x ≤3时,y =5x . ……………………………1分 当y >5时,5x >5, ……………………………2分 解得 x >1.∴1<x ≤3. ……………………………3分当3<x ≤12时,设 y =kx +b .则⎩⎨⎧15=3k +b ,0=12k +b .解得⎩⎪⎨⎪⎧k =-53,b =20.∴ y =-53x +20. ……………………………4分当y >5时,-53x +20>5, ……………………………5分解得 x <9.∴ 3<x <9. ……………………………6分 ∴容器内的水量大于5升时,1<x <9 .FABCD E解2: 当0≤x ≤3时,y =5x . ……………………………1分 当y =5时,有5=5x ,解得 x =1. ∵ y 随x 的增大而增大,∴当y >5时,有x >1. ……………………………2分 ∴ 1<x ≤3. ……………………………3分当3<x ≤12时, 设 y =kx +b .则⎩⎨⎧15=3k +b ,0=12k +b .解得⎩⎪⎨⎪⎧k =-53,b =20.∴ y =-53x +20. ……………………………4分当y =5时,5=-53x +20.解得x =9.∵ y 随x 的增大而减小,∴当y >5时,有x <9. ……………………………5分 ∴3<x <9. ……………………………6分∴容器内的水量大于5升时,1<x <9 .23.(本题满分6分)证明1:∵四边形ABCD 是正方形,∴∠F AD ==90°. ∵DE ⊥AG ,∴∠AED =90°.∴∠F AG +∠EAD =∠ADF +∠EAD ∴∠F AG =∠ADF . …………………1分∵AG =DE +HG ,AG =AH +HG , ∴ DE =AH . ……………………………2分 又AD =AB ,∴ △ADE ≌△ABH . ……………………………3分 ∴ ∠AHB =∠AED =90°.∵∠ADC ==90°, ……………………………4分 ∴ ∠BAH +∠ABH =∠ADF +∠CDE . ……………………………5分 ∴ ∠ABH =∠CDE . ……………………………6分 24.(本题满分6分)解: ∵ 直线y =-x +m +n 与y 轴交于点C , ∴ C (0,m +n ).∵点B (p ,q )在直线y =-x +m +n 上, ……………………………1分 ∴q =-p +m +n . ……………………………2分B G H FED CA又∵点A 、B 在双曲线y =1x上,∴1p =-p +m +1m . 即p -m =p -m pm,∵点A 、B 是不同的点.∴ p -m ≠0.∴ pm =1. ……………………………3分 ∵ nm =1,∴ p =n ,q =m . ……………………………4分 ∵1>0,∴在每一个象限内,反比例函数y =1x的函数值y 随自变量x 的增大而减小.∴当m ≥2时,0<n ≤12. ……………………………5分∵S =12( p +q ) p=12p 2+12pq =12n 2+12又∵12>0,对称轴n =0,∴当0<n ≤12时,S 随自变量n 的增大而增大.12<S ≤58. ……………………………6分25.(本题满分6分)证明一:∵︵DE 的长是3π3,∴2πr 360·60=3π3.∴ r =3. ……………………1分作BN ⊥OA ,垂足为N .∵四边形OABC 是菱形, ∴AB ∥CO .∵∠O =60°,∴∠BAN =60°,∴∠AB N =30°.设NA =x ,则AB =2x ,∴ BN =3x . ……………………………2分 ∵M 是OA 的中点,且AB =OA ,∴ AM =x . ……………………………3分 在Rt △BNM 中,ONE D C MBA(3x )2+(2x )2=(7)2,∴ x =1,∴BN =3. ……………………………4分 ∵ BC ∥AO ,∴ 点O 到直线BC 的距离d =3. ……………………………5分 ∴ d =r .∴ 直线BC 与⊙O 相切. ……………………………6分证明二:∵︵DE 的长是3π3,∴2πr 360·60=3π3. ∴ r =3. ……………………1分延长BC ,作ON ⊥BC ,垂足为N .∵ 四边形OABC 是菱形 ∴ BC ∥AO , ∴ ON ⊥OA .∵∠AOC =60°, ∴∠NOC =30°.设NC =x ,则OC =2x , ∴ON =3x ……………………………2分连接CM , ∵点M 是OA 的中点,OA =OC ,∴ OM =x . ……………………………3分 ∴四边形MONC 是平行四边形. ∵ ON ⊥BC ,∴四边形MONC 是矩形. ……………………………4分∴CM ⊥BC . ∴ CM =ON =3x . 在Rt △BCM 中, (3x )2+(2x )2=(7)2, 解得x =1.∴ON =CM =3. ……………………………5分 ∴ 直线BC 与⊙O 相切. ……………………………6分26.(本题满分11分)(1)解: 不是 ……………………………1分 解方程x 2+x -12=0得,x 1=-4,x 2=3. ……………………………2分x 1+x 2=4+3=2×3.5. ……………………………3分 ∵3.5不是整数,∴方程x 2+x -12=0不是“偶系二次方程”.…………………………4分(2)解:存在 …………………………6分 ∵方程x 2-6x -27=0,x 2+6x -27=0是“偶系二次方程”,∴ 假设 c =mb 2+n . …………………………8分 当 b =-6,c =-27时,有 -27=36m +n .∵x 2=0是“偶系二次方程”,ABMD E O数学试卷∴n =0,m =- 34. …………………………9分 即有c =- 34b 2. 又∵x 2+3x -274=0也是“偶系二次方程”, 当b =3时,c =- 34×32=-274. ∴可设c =- 34b 2. …………………………10分 对任意一个整数b ,当c =- 34b 2时, ∵△=b 2-4c=4b 2.∴ x =-b ±2b 2. ∴ x 1=-32b ,x 2=12b . ∴ x 1+x 2=32b +12b =2b . ∵b 是整数,∴对任意一个整数b ,当c =- 34b 2时,关于x 的方程 x 2+bx +c =0是“偶系二次方程”. …………………………11分。

2019年福建省中考数学试卷(含答案解析)

2019年福建省中考数学试卷(含答案解析)

效数学试卷第1页(共14 M)数学试卷第2页(共14 M)绝密★启用刖福建省2019年初中毕业会考、高级中等学校招生考试数学本试卷满分150分,考试时间120分钟................. .一名姓、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中 一项是符合题目要求的) 1. 22 (―1 0计算的结果是 A. 5 B.4 D. 2 C.3 2.北京故宫的占地面积约为 720 000m 2 ,将720 000用科学记数法表示为A. 72 104B. 7.2 105C. 7.2 1063. 下列图形中,一定既是轴对称图形又是中心对称图形的是 A.等边三角形B.直角三角形C.平行四边形4. 右图是由一个长方体和一个球组成的几何体,它的主视图是,只有D. 0.72 106D.正方形7. 下列运算正确的是 ( )A. aa 3 = a 3B. (2a )3 = 6a 3亠 632/ 2、3/3、2 CC.a-'a aD. (a ) — (— a )= 08. 《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问 若每日读多少? ”其大意是:有个学生天资聪慧,三天读完一部《孟子》 ,每天阅读 的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有 34 685个字,设他第一天读 X 个字,则下面所列方程正确的是( )A. X 2x 4x= 34 685B. X 2x 3x = 34 6851 1C. X 2x 2x = 34 685D. x+ x+ x = 346852 49. 如图,PA PB 是L O 切线,A B 为切点,点C 在L O 上,且∙ ACB=55 ,则.APB 等于 ()A. 55B. 70C. 110D. 125校学业毕(D(C则该正多边形的边数为A5.已知正多边形的一个外角为 36 , B.1010.若二次函数 y = a X 2 ■ bx ■ c 的图象经过A( m,n)、B(0,yJ 、C(3— m, n)、D(∙.2, y 2) >A. 12C.8D. 6E(2,y 3),贝U y p y 2、y 3的大小关系是()A. y 1<y 2< y 3B. y 1<y 3V y 2C. y 3V y 2<y 1D. y 2< y 3V y 1、填空题(本大题共6小题,每小题4分,共24分.把答案填写在题中的横线上)6.如图是某班甲、乙、丙三位同学最近 计图,则下列判断错误的是5次数学成绩及其所在班级相应平均分的折线统彳数学成绩/分)100,A.甲的数学成绩高于班级平均分,且成绩比较稳定 90 80B.乙的数学成绩在班级平均分附近波动,且比丙好70C.丙的数学成绩低于班级平均分,但成绩逐次提高 60D.就甲、乙、丙三个人而言,乙的数学成绩最不稳■甲・乙▲ 丙■■■■■班级平均分次数. - 211. 因式分解:X —9= _________ .ACB -4212. 如图,数轴上A 、B 两点所表示的数分别是 一4和2,(第12题)点C 是线段AB 的中点,则点C 所表示的数是 ____________ .13.某校征集校运会会徽,遴选出甲、乙、丙三种图案 .为了解何种图案更受欢迎,随机调查了该校100名学生,其中60名同学喜欢甲图案,若该校共有 2 000人,根据所学的统计知识可以估计该校喜欢甲图案的学生有人.数学试卷第3页(共14页) 数学试卷第4页(共14页)14.中在平面直角坐标系 Xoy 中,L OABC 的三个顶点0(0,0)、(3,0)、(4,2),则其第四个顶点是是 _________ . 15.如图,边长为2的正方形ABCD 中心与半径为2的L O 的圆心重合,E 、F 分别是AD 、BA 的延长与L O 的交点,则图中阴影部分的面积是 ___________ .(结果保留二)(2x _1\ j -先化简,再求值:(x -1 ÷ X- ------------- 丨,其中x = J 2 + 1I X 丿(第15题) 3 16.如图,菱形ABCD 顶点A 在函数y ( x >0)的图象上,函数X k y ( k >3, x >0)的图象关于直线 AC 对称,且经过点B 、D 两 X 点,若AB =2 , DAB=30 ,则k 的值为 _____________ 三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过 程或演算步骤) 17.(本小题满分8分) k _y =5 解方程组:丿 2x + y = 4 CAX(第16题)20.(本小题满分8分)如图,已知 △ ABC 为和点A'.(1) 以点 A'为顶点求作 A A'B'C',使△ A'B'C'S ^ABC , S “矶=4S“BC ; (尺规作图,保留作图痕迹,不写作法)(2) 设D 、E 、F 分别是△ ABC 三边AB 、BC 、AC 的中点,D'、E'、F'分别是你所作的 A A'B'C'三边 A'B'、B'C'、A'C'的中点,求证:A DEF — △ D'E'F'.A'18.(本小题满分8分) 如图,点E 、F 分别是矩形 ABCD 的边AB 、CD 上的一点,且 DF = BE . 求证:AF =CE .CEA21.(本小题满分8分)在Rt △ABC 中,∙ ABC = 90 , BAC = 30 ,将厶ABC 绕点A 顺时针旋转一定的角 度:•得到△ AED ,点B 、C 的对应点分别是 E 、D. (1) 如图1 ,当点E 恰好在AC 上时,求.CDE 的度数;(2) 如图2,若-=60时,点F 是边AC 中点,求证:四边形BFDE 是平行四边形(图I )(图2)19.(本小题满分8分)数学试卷第5页(共14 M )数学试卷第6页(共14 M )22. (本小题满分10分)某工厂为贯彻落实“绿水青山就是金山银山”的发展理念,投资组建了日废水处理量为m 吨的废水处理车间, 对该厂工业废水进行无害化处理•但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理 量的废水交给第三方企业处理 •已知该车间处理废水,每天需固定成本 30元,并且-----每处理一吨废水还需其他费用8元;将废水交给第三方企业处理, 每吨需支付12元.根据记录,5月21日,该厂产生工业废水 35吨,共花费废水处理费 370元• (1) 求该车间的日废水处理量 m ;(2) 为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过 10元/吨,试计算该厂一天产生的工业废水量的范围 .23. (本小题满分10分)某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外 购买若干次维修服务,每次维修服务费为2 000元.每台机器在使用期间,如果维修_____次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5 000元,但无需支付工时费某公司计划购买 1台该种机器,为决策 在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器1 以这100台机器为样本,估计“ 1台机器在三年使用期内维修次数不大于 10” 的概率;2 试以这100机器维修费用的平均数作为决策依据,说明购买1台该机器的同时 应一次性额外购 10次还是11次维修服务?_____在三年使用期内的维修次数,整理得下表; 24. (本小题满分12分)如图,四边形 ABCD 内接于L O ,AB = AC , BD_ AC ,垂足为E ,点F 在BD 的延长线上,且 DF =DC ,连接AF 、CF. (1) 求证:.BAC = 2 DAC ;(2) 若 AF =10 , BC = 4 5 ,求 tan BAD 的值.25. 已知抛物y = a χ1 2 ■ bx ■ c (b v 0)与轴只有一个公共点.(1) 若公共点坐标为(2,0),求A 、C 满足的关系式;(2) 设A 为抛物线上的一定点,直线 丨:y = kx • 1— k 与抛物线交于点 B 、C 两点, 直线BD 垂直于直线y = —1 ,垂足为点D .当k =0时,直线I 与抛物线的一个交点在在一 一此 一卷 一上 一答一题-- -维修次数8 9 10 11 12 频率(台数) 1020303010y 轴上,且 A ABC 为等腰直角三角形.① 求点A 的坐标和抛物线的解析式; ② 证明:对于每个给定的实数 k ,都有A 、F .CDA数学试卷第7页(共14页) 数学试卷第8页(共14页)福建省2019年初中毕业会考、高级中等学校招生考试数学答案解析1.【答案】 A 2.【答案】 B 3. 【答案】 D4. 【答案】C 5. 【答案】 B 6. 【答案】D 7. 【答案】 D 8. 【答案】 A 9. 【答案】 B 10. .【答案】 D11. ■【答案】 (x +3)(x-3)12 ■【答案】 —113.【答案】 1 20014. .【答案】 (1,2)15 .【答案】 二一 116 .【答案】 6 2.317. .【答案】 X _y =5,①解:解: .2χ∙y=4,②①+②,得 (X - y)+(2x + y)=5+4即 3x = 9, 解得x =3 , 把X = 3代入②,得2 3+ y = 4 ,解得y = — 2 .x = 3所以原方程组的解为.y = -2 【考点】二元一次方程组的解法【考查能力】运算能力18.[答案】证明:•••四边形 ABCD 是矩形,••• ./ D=N B=90 , AD= CB ,在厶ADF 和△ CBE 中,AD =CB , D= B , DF =BE ,• △ ADF 空 CBE , • AF = CE .【考点】矩形的性质,全等三角形的判定与性质,勾股定理,平行四边形的判定与性质 【考查能力】推理能力2X 2 —(2x — 1) 19.【答案】解:原式=√x -1) -X2X 2x1二(X —1) - X(x - 1》=(X T)-X X=(X -1) 2(Xi)2 2aEAFDA即-DE【考点】分式的混合运算,因式分解,二次根式的运算【考查能力】运算能力∙∙∙ . BAC=60 •由旋转性质得, DC = AC , . DCE =. ACB=30 •1.DAC=. ADC = (180 -. DCE)=752 ,20.【答案】解:(1)又 E EDC = E BAC= 60 ,∙ × ADE = E ADC EEDC =15 •△ A BC •即为所求作的三角形.∙∙∙ F 是AC 的中点,BF = FCj AC2 ,∙ . FBC=. ACB=30 .由旋转性质得,AB=DE N DEC=ZABC=90 ,【考点】图形的旋转,直角三角形,等腰三角形,等边三角形,三角形的内角和,平行四边形的判定【考查能力】运算能力,推理能力22.【答案】解:(1)因为工厂产生工业废水35吨,共花费废水处理费370元, 依题意得,30÷8m ^12(35 - m =370 ,当^ 21时,原式(2)在厶ABC 中,.ABC =90 , . ACB=30 , 1 AB^- AC2 ,F'D'= 1B'C'2D'E'= 1A'C , E'F =丄A'B ;同理,2 21 ••• △ ABCsAABC ; D'E'EF E'F' F'D'AC = AB _ BC AC ' A'B' B'C'1 1 1 AC AB BC _2 _ = ____ = ____ 1 = 1 _ 1 AC- A'B' B'C' 2 2 2∙ A DEF SA D EF.BCE=. ACD=60 ;∙∙四边形BEDF 是平行四边形.又,所以m v 35【考点】尺规作图; 相似三角形的性质与判定,三角形中位线定理 【考查能力】推理能力21.【答案】解:(1)在厶ABC 中;.ABC=90 ; ■ ACB=30 ;数学试卷第9页(共14 M)故该车间的日废水处理量为 20吨. (2)设该厂一天产生的工业废水量为X 吨.数学试卷第10页(共14 M)B ~~(2)证明∙∙∙ D ; E ; F 分别是 △ ABC 三边AB ; BC ; CA 的中点; 1 1 1 DE =- AC EF = — AB FD =— BC2 2 2延长 BF 交 EC 于点 G ;则.BGE = GBC +. GCB=90 ; ∙ BGE = DEC ;∙ DELBF ;解得n =20卫口羊8357①当0v x≤20时,依题意得,8x+30≤10x ,解得x≥15,所以15≤x≤20.②当x>20 时,依题意得,12(x-20)+20 8+30≤10x ,解得x≤25 ,所以20v x≤25 .综上所述,15≤x≤25,故该厂一天产生的工业废水量的范围在15吨到25吨之间.【考点】一元一次方程,一元一次不等式,反比例函数的性质,平均数的概念【考查能力】运算能力,推理能力23. 【答案】解:(1)因为100台机器在三年使用期内维修的次数不大于100的台数为10+ 20 + 30= 60,所以“ 100台机器在三年使用期内维修的次数不大于10”的频率为60=0.6 ,100故可估计“ 1台机器在三年使用期内维修的次数不大于10”的概率为0.6.(2)若每台都购买10次维修服务,则有下表:此时这100台机器维修费用的平均数24000 10+ 24500 20+ 25000 30+30000 30+35000 10100=27300 ,26000 10+26500 20+ 27000 30+27500 30+32500 10y ==27500 ,因为y1< y2,所以购买1台该机器的同时应一次性额外购买10次维修服务.【考点】概率,加权平均数,统计表【考查能力】运算能力,推理能力24. 【答案】证明:(1)∙∙∙AC _ BD ,••• £AED=90 ,在Rt∆AED 中,/ ADE = 90 -Z CAD .∙∙∙ AB=AC ,.∙. AB= AC•. ACB=. ABC=. ADE = 90 -. CAD .在厶ABC 中,.BAC+. ABC+. ACB=180 ,•. BAC=180 — C ABC + . ACB)= 180 -2(90 -. CAD),即.BAC = 2 CAD .(2) V DF = DC ,•/FCD=/CF ,•BDC= FCD+ CFD ,•BDC=2 CFDV N BDC=NBAC ,且由(1)知N BAC=^CAD ,•CFD= CAD ,V CAD= CBD ,•匕CFD= /CBD ,•CF = CB ,V AC _ BF ,•BE= EF ,故CA垂直平分BF ,•AC= AB= AF = 10 ,设AE= X ,贝^CE= IO-X,在Rt△A BE和Rt∆BCE 中,AB2- AE2= BE2= BC2-CE2,又V BC = 4 一5 ,•102-χ2=(4√引2 _(10 —X)2,解得χ = 6 ,•AE = 6, CE = 4,数学试卷第11页(共14 M)数学试卷第12页(共14 M)•BE= AB2- AE2=8 ,数学试卷第11页(共14 M)数学试卷第12页(共14 M)数学试卷第13页(共14页)数学试卷第14页(共14 M)因为a=0,所以C = 4a ,即a ,C 满足的关系式为C = 4a . (2)①当k =0时,直线I 为y =1,它与y 轴的交点为(0,1).•••直线y =1与X 轴平行, ∙等腰直角 △ ABC 的直角顶点只能是 A ,且A 是抛物线的顶点.过 A 作AM _ BC ,垂足为M ,则AM =1 ,∙ BM = MC = AM =1 ,故点 A 坐标为(1,0), ∙抛物线的解析式可改写为【考点】一次函数和二次函数的图形与性质,等腰直角三角形的性质与判定,图形的对称 【考查能力】运算能力,推理能力 ∙抛物线的解析式可改写为 y =a(x -1)2,•••抛物线过点 0,1 ,所以1 =a(0 -1)2 ,解得a =1.∙∙∙ DAE = CBE , ADE = BCE , 所以抛物线的解析式为 y = a( X -1)2 ,即 y = X 2 一 2x 1. ∙∙∙ A ADE sABCE ∙ .AE DE AD BE ^CE ^ BC ∙ DE =3, AD =3j 5 ②设 B X 1,y 1 , C X 2,y 2 ,则 D X 1,_1 • 石 y =kx 1 -k /曰 2由 2 得 X 2 — (k 2)x k = 0 ,y = x 2_2x 1因为△工(k 2)2 — 4k = k 24>0过点D 作DH _AB ,垂足为H . 1 1 T S A ABD AB DH BD AE,BD =BE DE =11 , 2 2 ∙ 10DH =11 6,故 DH =335 由抛物线的对称性,不妨设 X I V X 2 ,则X 1 = k •2一k 4k 2 k 2 4X2 ≡所以 x 1v 1V x 2 ,在 Rt AADH 中,AH = AD2-DH 2=- 5 f 0 = m …n设直线AD 的解析式为y = mx ∙ n ,则有一1 = mx 1 十 n,解得∙ tan BAD=D HAH 112 1m = _X 1-1 1 n =- x 1 —1【考点】圆的有关性质,等腰三角形的判定与性质,线段垂直平分线的判定与性质,解直角三 角形,相似三角形的判定与性质,三角形面积等基础知识 【考查能力】运算能力,推理能力 2 b 25.【答案】解:(1)依题意,△= b 2-4ac =0, 2, 2a所以(―4a)2—4ac =0, 1 1所以直线 AD 的解析式为 y =-—— X •—— .x ∣ — 1 X 1 — 12X ? — 1W 1J1丄1——X 2 +------- I x L 1x1_1」卷一1 箍 X I- 1 X 2—1 1 因为y 2 -X 2 X j _ 1A i k- Jk 2 + 4 k 十 J k 2十 4 ’X 2 -112 2=01 1 即y 2x 2 ,所以点C x 2,y 2在直线AD 上. X 1 —1 X 1 _1故对于每个给定的实数 k ,都有AC, D 三点共线.H。

2019-2020厦门市中考数学试题(带答案)

2019-2020厦门市中考数学试题(带答案)

2019-2020厦门市中考数学试题(带答案)1.旋转中心可能是点B。

2.有一组邻边相等的平行四边形是矩形。

3.y=3(x-2)^2+3.4.方差为2.5.选项B。

6.∠2的度数为65°。

7.对角线互相垂直平分的四边形是正方形。

8.∠AED度数为110°。

9.x=1或x=-2.10.竹竿AB与AD的长度之比为sinα/sinβ。

11.选项B。

12.线段DE的长为15/4.连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,因此三条线段的垂直平分线正好都过B,即旋转中心是B。

因此选B。

本题考查了旋转中心的确认,解题的关键是熟知旋转的性质特点。

根据矩形的判定定理,可以快速确定答案。

有一个角为直角的平行四边形是矩形满足判定条件,因此选A。

B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误。

根据“上加下减,左加右减”的原则,将抛物线y=3x向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为y=3(x+2)+3,故答案选A。

先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案。

根据题意,得:(6+7+x+9+5)/5 = x/2,解得:x=3,因此这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为[(6-6)²+(7-6)²+(3-6)²+(9-6)²+(5-6)²]/5=4,因此选A。

根据对顶角相等,得∠1与∠2一定相等,因此A选项中的答案可能成立。

B、C项中无法确定∠1与∠2是否相等,因此也可能成立。

D选项中因为∠1=∠ACD,∠2>∠ACD,所以∠2>∠1,因此也成立。

因此需要进一步分析,可以发现只有D选项中的角度关系是符合题意的,因此选D。

2019年5月福建省厦门市中考二检数学试卷及答案

2019年5月福建省厦门市中考二检数学试卷及答案

A 作 AC x 轴于点 C ,过该双曲线另一点 B 作 BD x 轴于点 D ,作 BE AC 于点 E ,
连接 AB .若 OD 3OC ,则 tan ABE

16.如图 4,在矩形 ABCD 中, AB BC ,以点 B 为圆心, AB 的长为半
径的圆分别交 CD 边于点 M ,交 BC 边的延长线于点 E .若 DM CE
式.(自变量 m 的取值范围只需直接写出)
24.(本题满分 12 分)
某村启动“脱贫攻坚”项目,根据当地的地理条件,要在一座高为 1000m 的山上种植
一种经济作物.农业技术人员在种植前进行了主要相关因素的调查统计,结果如下:
①这座山的山脚下温度约为 22℃,山高 h(单位:m)每增加 100m,温度 T (单位:℃)
A. a 1
B. a 3
C. a b c
D. a 1 (b c) 2
9.已知菱形 ABCD 与线段 AE ,且 AE 与 AB 重合.现将线段 AE 绕点 A 逆时针旋转180 ,
在旋转过程中,若不考虑点 E 与点 B 重合的情形,点 E 还有三次落在菱形 ABCD 的边上,
19.(本题满分 8 分)
化简并求值:
(
2a2 a

2
4
1)

a2 2a a2
,其中 a

2.
20.(本题满分 8 分) 在正方形 ABCD 中, E 是 CD 边上的点,过点 E 作 EF BD 于 F . (1)尺规作图:在图 6 中求作点 E ,使得 EF EC ; (保留作图痕迹,不写作法) (2)在(1)的条件下,连接 FC ,求 BCF 的度数.
A. sin A

2019年福建省中考数学试卷(带解析)

2019年福建省中考数学试卷(带解析)
2019 年福建省中考数学试卷
一、选择题(每小题 4 分,共 40 分)
1.(4 分)计算 22+(﹣1)0 的结果是( )
A.5
B.4
C.3
D.2
2.(4 分)北京故宫的占地面积约为 720000m2,将 720000 用科学记数法表示为( )
A.72×104
B.7.2×105
C.7.2×106
D.0.72×106
23.(10 分)某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外 购买若干次维修服务,每次维修服务费为 2000 元.每台机器在使用期间,如果维修次数 未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费 500 元; 如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费 5000 元,但无需支付工时费.某公司计划购买 1 台该种机器,为决策在购买机器时应同 时一次性额外购买几次维修服务,搜集并整理了 100 台这种机器在三年使用期内的维修 次数,整理得下表; 维修次数 8 9 10 11 12 频率(台数) 10 20 30 30 10 (1)以这 100 台机器为样本,估计“1 台机器在三年使用期内维修次数不大于 10”的概
A.72×104
B.7.2×105
C.7.2×106
D.0.72×106
【分析】用科学记数法表示较大的数时,一般形式为 a×10n,其中 1≤|a|<10,n 为整数,
据此判断即可.
【解答】解:将 720000 用科学记数法表示为 7.2×105.
故选:B.
3.(4 分)下列图形中,一定既是轴对称图形又是中心对称图形的是( )
A.等边三角形
B.直角三角形

2019年福建省中考数学试卷-答案(可编辑修改word版)

2019年福建省中考数学试卷-答案(可编辑修改word版)

福建省2019年初中毕业会考、高级中等学校招生考试数学答案解析1.【答案】A2.【答案】B3.【答案】D4.【答案】C5.【答案】B6.【答案】D7.【答案】D8.【答案】A9.【答案】B10.【答案】D11.【答案】()(33)x x ①①12.【答案】1①13.【答案】1 20014.【答案】(1)2①15.【答案】1π①16.【答案】6+17.【答案】解:5,24,x y x y -=⎧⎨+=⎩①①①+②,得,()24)5(x y x y ①①①①①即,39x ①解得,3x ①把代入②,得,3x ①234y ⨯①①解得.2y ①①所以原方程组的解为32x y =⎧⎨=-⎩【考点】二元一次方程组的解法【考查能力】运算能力18.【答案】证明:∵四边形ABCD 是矩形,∴,90D B ∠∠︒==,AD CB =在和中,ADF △CBE △AD CB D B DF BE =⎧⎪∠=∠⎨⎪=⎩①①①∴,ADF CBE △≌△∴.AF CE=【考点】矩形的性质,全等三角形的判定与性质,勾股定理,平行四边形的判定与性质【考查能力】推理能力19.【答案】解:原式2(21)(1)x x x x--=-- 221(1)x x x x-+=-- 2(1)(1)x x x-=-- 2(1)(1)xx x =-⋅- (1)xx =-当时,原式.1x =1===+【考点】分式的混合运算,因式分解,二次根式的运算【考查能力】运算能力20.【答案】解:(1)即为所求作的三角形.A B C '''△(2)证明∵D ,E ,F 分别是三边AB ,BC ,CA 的中点,ABC △∴,111222DE AC EF AB FD BC =,=,=同理,.111''''''''''''222D E A C E F A B F D B C =,=,=∵,ABC A B C '''△∽△=''''AC AB BC A C A B B C =‘’,即111222=111''''222AC AB BC A C A B B C =‘’''''''DE EF FD D E E F F D ==∴DEF D E F '''△∽△【考点】尺规作图,相似三角形的性质与判定,三角形中位线定理【考查能力】推理能力21.【答案】解:(1)在中,,,ABC △90ABC ∠︒=30ACB ∠︒=∴.60BAC ∠︒=由旋转性质得,,.DC AC =30DCE ACB ∠∠︒==∴,1180752()DAC ADC DCE ∠∠︒-∠︒===又,60EDC BAC ∠∠︒==∴.15ADE ADC EDC ∠∠-∠︒==(2)在中,,,ABC △90ABC ∠︒=30ACB ∠︒=∴,12AB AC =∵F 是AC 的中点,∴,12BF FC AC ==∴.由旋转性质得,30FBC ACB ∠∠︒==,90AB DE DEC ABC ∠∠︒=,==,60BCE ACD ∠∠︒==∴,DE BF =延长BF 交EC 于点G ,则,90BGE GBC GCB ∠∠∠︒=+=∴,BGE DEC ∠∠=∴,DE BF A ∴四边形 BEDF 是平行四边形.【考点】图形的旋转,直角三角形,等腰三角形,等边三角形,三角形的内角和,平行四边形的判定【考查能力】运算能力,推理能力22.【答案】解:(1)因为工厂产生工业废水35吨,共花费废水处理费370元,又,所以37030688357-=>35m <依题意得,,308123)3(570m m -++=解得20m =故该车间的日废水处理量为20吨.(2)设该厂一天产生的工业废水量为吨.x ①当时,依题意得,,解得,所以.020x <≤83010x x +≤15x ≥1520x ≤≤②当时,依题意得,,解得,所以.20x >12202083010()x x ⨯-++≤25x ≤2025x <≤综上所述,,1525x ≤≤故该厂一天产生的工业废水量的范围在15吨到25吨之间.【考点】一元一次方程,一元一次不等式,反比例函数的性质,平均数的概念【考查能力】运算能力,推理能力23.【答案】解:(1)因为100台机器在三年使用期内维修的次数不大于100的台数为10+20+30=60,所以“100台机器在三年使用期内维修的次数不大于10”的频率为,60=0.6100故可估计“1台机器在三年使用期内维修的次数不大于10”的概率为0.6.(2)若每台都购买10次维修服务,则有下表:某台机器使用期内维修次数89101112该台机器的维修费用2400024500250003000035000此时这100台机器维修费用的平均数124000102450020250003030000303500010100100y ⨯⨯⨯⨯⨯++++=,=27300若每台都购买 11 次维修服务,则有下表:某台机器使用期内维修次数89101112该台机器的维修费用2600026500270002750032500此时这100台机器维修费用的平均数226000102650020270003027500303250010=100y ⨯⨯⨯⨯⨯++++,=27500因为,所以购买1台该机器的同时应一次性额外购买10次维修服务.12y y <【考点】概率,加权平均数,统计表【考查能力】运算能力,推理能力24.【答案】证明:(1)∵,AC BD ⊥∴,90AED ∠︒=在中,.Rt AED △90ADE CAD ∠︒∠=-∵,AB AC =∴A A AB AC=∴.90ACB ABC ADE CAD ∠∠∠︒∠===-在中,,ABC △180BAC ABC ACB ∠∠∠︒++=∴,即.()(180180290)BAC ABC ACB CAD ∠︒∠∠︒︒∠=-+=--2BAC CAD ∠=∠(2)∵,DF DC =∴,FCD CF ∠∠=∴,BDC FCD CFD ∠∠∠=+∴2BDC CFD∠∠=∵,且由(1)知,BDC BAC ∠∠=2BAC CAD ∠∠=∴,CFD CAD ∠∠=∵,CAD CBD ∠∠=∴,CFD CBD ∠∠=∴,CF CB =∵,AC BF ⊥∴,故垂直平分,BE EF =CA BF ∴,10AC AB AF ===设,则,在和中,,AE x =10CE x =-Rt ABE △Rt BCE △²²²²²AB AE BE BC CE -==-又∵,BC =∴,解得,(()22221010x x -=--6x =∴64AE CE =,=,∴,8BE ∵,,DAE CBE ∠∠=ADE BCE ∠∠=∴.ADE BCE △∽△∴AE DE AD BE CE BC==∴3,DE AD ==过点D 作,垂足为H .DH AB ⊥∵,11,1122ABD S AB DH BD AE BD BE DE =⋅=⋅=+=△∴故10116,DH =⨯335DH =在中,Rt ADH △6²²5AH AD DH -==∴112DH tan BAD AH ∠==【考点】圆的有关性质,等腰三角形的判定与性质,线段垂直平分线的判定与性质,解直角三角形,相似三角形的判定与性质,三角形面积等基础知识【考查能力】运算能力,推理能力25.【答案】解:(1)依题意,,,240b ac △=-=22b a-=所以,2440()a ac --=因为,所以,即满足的关系式为.0a ≠4c a =a c ,4c a =(2)①当时,直线为,它与轴的交点为.0k =l 1y =y (0)1,∵直线与轴平行,1y =x ∴等腰直角的直角顶点只能是,且是抛物线的顶点.过作,垂足为,则ABC △A A A AM BC ⊥M ,1AM =∴,故点坐标为,1BM MC AM ===A (1)0,∴抛物线的解析式可改写为【考点】一次函数和二次函数的图形与性质,等腰直角三角形的性质与判定,图形的对称【考查能力】运算能力,推理能力∴抛物线的解析式可改写为,2(1)y a x =-∵抛物线过点,所以,解得.()0,121(01)a =-1a =所以抛物线的解析式为,即.2(1)y a x =-221y x x =-+②设,则.()()1122,,,B x y C x y ()1,1D x -由得,2121y kx k y x x =+-⎧⎨=-+⎩2(2)0x k x k -++=因为22(2)440k k k =+-=+△>由抛物线的对称性,不妨设,则,12x x <1x =2x =所以,121x x <<设直线的解析式为,则有,解得AD y mx n =+101m n mx n =+⎧⎨-=+⎩111111m x n x ⎧=-⎪-⎪⎨⎪=⎪-⎩所以直线的解析式为.AD 111111y x x x =-+--因为()222221111111111x y x x x x x ⎛⎫---+=-+ ⎪---⎝⎭()()()212111111x x x x -⎡--+⎤⎣⎦=-()21111x x ⎫-+⎪⎪⎝⎭=-0=即,所以点在直线上.22111111y x x x =-+--()22,C x y AD 故对于每个给定的实数,都有三点共线.k ,,A C D。

2019-2020厦门市中考数学试题(带答案)

2019-2020厦门市中考数学试题(带答案)

2019-2020厦门市中考数学试题(带答案)一、选择题1.在如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( )A .点AB .点BC .点CD .点D2.下列命题正确的是( ) A .有一个角是直角的平行四边形是矩形 B .四条边相等的四边形是矩形 C .有一组邻边相等的平行四边形是矩形D .对角线相等的四边形是矩形3.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 4.如果一组数据6、7、x 、9、5的平均数是2x ,那么这组数据的方差为( ) A .4B .3C .2D .15.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( ) A .B .C .D .6.如图,直线l 1∥l 2,将一直角三角尺按如图所示放置,使得直角顶点在直线l 1上,两直角边分别与直线l 1、l 2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为( )A .25°B .75°C .65°D .55°7.下列命题中,真命题的是( ) A .对角线互相垂直的四边形是菱形 B .对角线互相垂直平分的四边形是正方形C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形8.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED 度数为( )A .110°B .125°C .135°D .140°9.分式方程()()31112x x x x -=--+的解为( )A .1x =B .2x =C .1x =-D .无解10.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠A BC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα11.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是 ( )A .B .C .D .12.如图,在矩形ABCD 中,BC=6,CD=3,将△BCD 沿对角线BD 翻折,点C 落在点C 1处,BC 1交AD 于点E ,则线段DE 的长为( )A .3B .154C .5D .152二、填空题13.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.14.如图,△ABC 的三个顶点均在正方形网格格点上,则tan ∠BAC =_____________.15.如图,在Rt△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕点C 顺时针旋转至△A′B′C,使得点A′恰好落在AB 上,则旋转角度为_____.16.如图,一张三角形纸片ABC ,∠C=90°,AC=8cm ,BC=6cm .现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .17.若a ,b 互为相反数,则22a b ab +=________.18.已知扇形AOB 的半径为4cm ,圆心角∠AOB 的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm19.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量 100 200 500 1000 2000 A出芽种子数961654919841965发芽率0.960.830.980.980.98出芽种子数961924869771946B发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).x 在实数范围内有意义,则x的取值范围是_____.20.若式子3三、解答题21.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了名市民,扇形统计图中,C组对应的扇形圆心角是 °;(2)请补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.22.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?23.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E 是OB 上一点,且,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .(1)求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.24.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE. (1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.25.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元. (1)求如图所示的y 与x 的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到.【详解】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点.2.A解析:A【解析】【分析】运用矩形的判定定理,即可快速确定答案.【详解】解:A.有一个角为直角的平行四边形是矩形满足判定条件;B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;因此答案为A.【点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.3.A【解析】 【分析】直接根据“上加下减,左加右减”的原则进行解答即可. 【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .4.A解析:A 【解析】分析:先根据平均数的定义确定出x 的值,再根据方差公式进行计算即可求出答案. 详解:根据题意,得:67955x ++++=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6, 所以这组数据的方差为15[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4, 故选A .点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.5.D解析:D 【解析】 【分析】 【详解】解:A 选项中,根据对顶角相等,得1∠与2∠一定相等; B 、C 项中无法确定1∠与2∠是否相等;D 选项中因为∠1=∠ACD ,∠2>∠ACD ,所以∠2>∠1. 故选:D6.C解析:C 【解析】 【分析】依据∠1=25°,∠BAC =90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°. 【详解】如图,∵∠1=25°,∠BAC =90°, ∴∠3=180°-90°-25°=65°,∴∠2=∠3=65°,故选C.【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.7.D解析:D【解析】【分析】根据平行四边形、矩形、菱形、正方形的判定定理进行判断即可.【详解】对角线互相垂直且平分的四边形是菱形,故A是假命题;对角线互相垂直平分且相等的四边形是正方形,故B是假命题;对角线相等且平分的四边形是矩形,故C是假命题;对角线互相平分的四边形是平行四边形,故D是真命题.故选D.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.B解析:B【解析】【分析】由AB∥CD,根据两直线平行,同旁内角互补可得∠CAB=110°,再由角平分线的定义可得∠CAE=55°,最后根据三角形外角的性质即可求得答案.【详解】∵AB∥CD,∴∠BAC+∠C=180°,∵∠C=70°,∴∠CAB=180°-70°=110°,又∵AE平分∠BAC,∴∠CAE=55°,∴∠AED=∠C+∠CAE=125°,故选B.本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握相关知识是解题的关键.9.D解析:D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.10.B解析:B【解析】【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【详解】在Rt△ABC中,AB=AC sinα,在Rt△ACD中,AD=AC sinβ,∴AB:AD=ACsinα:ACsinβ=sinsinβα,故选B.【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.11.A解析:A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.12.C解析:C【解析】【分析】【详解】解:根据题意易证BE=DE,设ED=x,则AE=8﹣x,在△ABE中根据勾股定理得到关于线段AB、AE、BE的方程x2=42+(8﹣x)2,解方程得x=5,即ED=5故选C.【点睛】本题考查翻折变换(折叠问题);勾股定理;方程思想.二、填空题13.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BAE+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C的度数.详解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.14.【解析】分析:在图形左侧添加正方形网格分别延长ABAC连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan∠BAC=故答案为点睛:本题考查了锐角三角函解析:13 【解析】分析:在图形左侧添加正方形网格,分别延长AB 、AC ,连接它们延长线所经过的格点,可构成直角三角形,利用正切的定义即可得出答案.详解:如图所示,由图形可知,90AFE ∠=︒,3AF AC =,EF AC =,∴tan ∠BAC =133EF AC AF AC ==. 故答案为13. 点睛:本题考查了锐角三角函数的定义. 利用网格构建直角三角形进而利用正切的定义进行求解是解题的关键.15.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC 绕点C 顺时针旋转至△A′B′C 时点A′恰好落在AB 上∴AC=A′C ∴△A′AC 是等边三角形∴∠ACA解析:60°【解析】试题解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC 绕点C 顺时针旋转至△A′B′C 时点A′恰好落在AB 上,∴AC=A′C ,∴△A′AC 是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故答案为60°. 16.cm 【解析】试题解析:如图折痕为GH 由勾股定理得:AB==10cm 由折叠得:AG=BG=AB=×10=5cmGH ⊥AB ∴∠AGH=90°∵∠A=∠A ∠AGH=∠C=90°∴△ACB ∽△AGH ∴∴∴G解析:cm .【解析】试题解析:如图,折痕为GH ,由勾股定理得:AB==10cm , 由折叠得:AG=BG=AB=×10=5cm ,GH ⊥AB ,∴∠AGH=90°, ∵∠A=∠A ,∠AGH=∠C=90°,∴△ACB ∽△AGH , ∴, ∴, ∴GH=cm .考点:翻折变换17.0【解析】【分析】先提公因式得ab (a+b )而a+b=0任何数乘以0结果都为0【详解】解:∵=ab (a+b )而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数解析:0【解析】【分析】先提公因式得ab (a+b ),而a+b=0,任何数乘以0结果都为0.【详解】解:∵22a b ab = ab (a+b ),而a+b=0,∴原式=0.故答案为0,【点睛】本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零.18.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm 根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面解析:1【解析】试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm,根据题意得2πr=904180π⨯,解得r=1.故答案为:1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.19.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.20.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式解析:x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围.【详解】.在实数范围内有意义,则x+3≥0,解得:x≥﹣3,则x的取值范围是:x≥﹣3.故答案为:x≥﹣3.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.三、解答题21.(1)2000,108;(2)作图见解析;(3).【解析】试题分析:(1)根据B组的人数以及百分比,即可得到被调查的人数,进而得出C组的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)根据C组的人数,补全条形统计图;(3)根据甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种画树状图或列表,即可运用概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率.试题解析:(1)被调查的人数为:800÷40%=2000(人),C组的人数为:2000﹣100﹣800﹣200﹣300=600(人),∴C组对应的扇形圆心角度数为:×360°=108°,故答案为:2000,108;(2)条形统计图如下:(3)画树状图得:∵共有16种等可能的结果,甲、乙两人选择同一种交通工具的有4种情况,∴甲、乙两人选择同一种交通工具上班的概率为:=.考点:列表法与树状图法;扇形统计图;条形统计图.22.答案见解析【解析】试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0<x≤1和x>1两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.试题解析:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3;∴22?(01){157?(1)x xyx x甲<<=+>,=163y x+乙;(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<12;令y甲=y乙,即22x=16x+3,解得:x=12;令y甲>y乙,即22x>16x+3,解得:12<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:0<x<4.综上可知:当12<x<4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x<12或x>4时,选甲快递公司省钱.考点:一次函数的应用;分段函数;方案型.23.(1)证明见解析;(2)BH=.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.24.(1)详见解析;(2)存在,3;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质结合△ABC是等边三角形可得∠DCB=60°,CD=CE,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE是等边三角形,由此可得DE=CD,因此当CD⊥AB时,CD最短,则DE最短,结合△ABC是等边三角形,AC=4即可求得此时DE=CD=23(3)由题意需分0≤t<6,6<t<10和t>10三种情况讨论,①当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,由此可知:此时若△DBE是直角三角形,则∠BED=90°;②当6<t<10s时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°+∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE 是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t的值了.试题解析:(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由(1)知,△CDE是等边三角形,∴DE=CD,由垂线段最短可知,当CD⊥AB时,CD最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴ AD=12AC=2,∴ CD=22224223AC AD-=-=,∴ DE=23(cm);(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14(s);综上所述:当t=2s或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D在运动过程中,△DBE是等边三角形这一点得到DE=CD,从而可知当CD⊥AB时,CD最短,则DE最短,由此即可由已知条件解得DE的最小值;(2)解第3小题的关键是:根据点D的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t的值了.25.(1)y=5x+400.(2)乙.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;试题解析:(1)设y=kx+b,则有400100900bk b=⎧⎨+=⎩,解得5400kb=⎧⎨=⎩,∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.。

【水印已去除】2019年福建省厦门市、南平市、福州市、漳州市中考数学最后一卷

【水印已去除】2019年福建省厦门市、南平市、福州市、漳州市中考数学最后一卷

2019年福建省厦门市、南平市、福州市、漳州市中考数学最后一卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)|﹣2019|等于()A.2019B.﹣2019C.D.﹣2.(4分)数据2060000000科学记数法表示为()A.206×107B.20.6×108C.2.06×108D.2.06×1093.(4分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.(4分)将一副三角板按如图所示方式摆放,点D在AB上,AB∥EF,∠A=30°,∠F =45°,那么∠1等于()A.75°B.90°C.105°D.115°5.(4分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1B.m>2C.﹣1<m<2D.m>﹣16.(4分)若一个多边形每一个内角都是150°,则这个多边形的边数是()A.6B.8C.10D.127.(4分)如图,在△ABC中,∠A是钝角,若AB=1,AC=3,则BC的长度可能是()A.π﹣1B.3C.D.8.(4分)在去年的体育中考中,某校6名学生的体育成绩统计如下表:则下列关于这组数据的说法错误的是()A.众数是18B.中位数是18C.平均数是18D.方差是29.(4分)如图,在矩形ABCD中,点E在CD上,且DE:CE=1:3,以点A为圆心,AE 为半径画弧,交BC于点F,若F是BC中点,则AD:AB的值是()A.6:5B.5:4C.6:D.:210.(4分)如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上的动点,连接DP,将直线DP绕点P顺时针旋转使∠DPG=∠DAC,且过D作DG⊥PG,连接CG,则CG 最小值为()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)计算:|﹣3|+=.12.(4分)如图,在Rt△ABC中,∠ACB=90°,D是AB中点,若AB=5,BC=3,则sin∠ACD=.13.(4分)甲、乙袋中各装有2个相同的小球,分别标有数字1、2和2、3.现从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是.14.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=BC,以AB为直径作⊙O,在上取一点D,使=2,则∠CBD=.15.(4分)如图,正方形ABCD的边长为4,G是BC边上一点.若矩形DEFG的边EF经过点A,GD=5,则FG长为.16.(4分)如图,已知点A(2,4)、P(1,0),B为y轴正半轴上的一个动点,以AB为边构造△ABC,使点C在x轴的正半轴上,且∠BAC=90°.若M为BC的中点,则PM 的最小值为.三、解答题(本大题共9小题,共86分)17.(8分)解不等式组并把解集在数轴上表示出来.18.(8分)化简:19.(8分)如图,将Rt△ABC绕直角顶点B逆时针旋转90°得到△DBE,DE的延长线恰好经过AC的中点F,连接AD,CE.(1)求证:AE=CE;(2)若BC=,求AB的长.20.(8分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.21.(8分)如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)22.(10分)八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.请你根据上面提供的信息回答下列问题:(1)扇形图中跳绳部分的扇形圆心角为度,该班共有学生人,训练后篮球定时定点投篮平均每个人的进球数是.(2)老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.23.(10分)某公司经销的一种产品每件成本为40元,要求在90天内完成销售任务.已知该产品90天内每天的销售价格与时间(第x天)的关系如下表:任务完成后,统计发现销售员小王90天内日销售量p(件)与时间(第x天)满足一次函数关系p=﹣2x+200.设小王第x天销售利润为W元.(1)直接写出W与x之间的函数关系式,井注明自变量x的取值范围;(2)求小生第几天的销售量最大?最大利润是多少?(3)任务完成后,统计发现平均每个销售员每天销售利润为4800公司制定如下奖励制度:如果一个销售员某天的销售利润超过该平均值,则该销售员当天可获得200元奖金.请计算小王一共可获得多少元奖金?24.(12分)如图,AB是⊙O的直径,D,E为⊙O上位于AB异侧的两点,连结BD并延长至点C,使得CD=BD,连结AC交⊙O于点F,连接BE,DE,DF.(1)若∠E=35°,求∠BDF的度数.(2)若DF=4,cos∠CFD=,E是的中点,求DE的长.25.(14分)我们规定,以二次函数y=ax2+bx+c的二次项系数a的2倍为一次项系数,一次项系数b为常数项构造的一次函数y=2ax+b叫做二次函数y=ax2+bx+c的“子函数”,反过来,二次函数y=ax2+bx+c叫做一次函数y=2ax+b的“母函数”.(1)若一次函数y=2x﹣4是二次函数y=ax2+bx+c的“子函数”,且二次函数经过点(3,0),求此二次函数的解析式及顶点坐标.(2)若“子函数”y=x﹣6的“母函数”的最小值为1,求“母函数”的函数表达式.(3)已知二次函数y=﹣x2﹣4x+8的“子函数”图象直线l与x轴、y轴交于C、D两点,动点P为二次函数y=﹣x2﹣4x+8对称轴右侧上的动点,求△PCD的面积的最大值.2019年福建省厦门市、南平市、福州市、漳州市中考数学最后一卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.【解答】解:|﹣2019|=2019.故选:A.2.【解答】解:数据2060000000科学记数法表示为2.06×109,故选:D.3.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项正确;C、是轴对称图形,也是中心对称图形,故本选项错误;D、不是轴对称图形,也不是中心对称图形,故本选项错误.故选:B.4.【解答】解:∵EF∥AB,∴∠E=∠EDB=45°,∴∠1=∠EDB+∠B=45°+60°=105°,故选:C.5.【解答】解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.6.【解答】解:∵多边形的各个内角都等于150°,∴每个外角为30°,设这个多边形的边数为n,则30°n=360°,解得n=12.故选:D.7.【解答】解:根据三角形三边关系,第三边小于AB+AC=4,当∠A为直角时,AB,AC分别是两直角边,则第三边即斜边的长度为BC==,故<BC<4,只有C选项符合题意,故选:C.8.【解答】解:A、这组数据中18出现了3次,次数最多,则这组数据的众数是18.故本选项说法正确;B、把这组数据从小到大排列,最中间两个数的平均数是(18+18)÷2=18,则中位数是18.故本选项说法正确;C、这组数据的平均数是:(17×2+18×3+20)÷6=18.故本选项说法正确;D、这组数据的方差是:[2×(17﹣18)2+3×(18﹣18)2+(20﹣18)2]=1.故本选项说法错误.故选:D.9.【解答】解:∵DE:CE=1:3,∴设DE=a,CE=3a,∴CD=4a=AB,∵F是BC中点,∴BF=BC=AD,∵以点A为圆心,AE为半径画弧,交BC于点F∴AE=AF∵AF2=BF2+AB2,AE2=DE2+AD2,∴+16a2=a2+AD2,∴AD=2a,∴AD:AB=:2故选:D.10.【解答】解:如图,作DH⊥AC于H,连接HG延长HG交CD于F,作HE⊥CD于H.∵DG⊥PG,DH⊥AC,∴∠DGP=∠DHA,∵∠DPG=∠DAH,∴△ADH∽△PDG,∴=,∠ADH=∠PDG,∴∠ADP=∠HDG,∴△ADP∽△DHG,∴∠DHG=∠DAP=定值,∴点G在射线HF上运动,∴当CG⊥HE时,CG的值最小,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADH+∠HDF=90°,∵∠DAH+∠ADH=90°,∴∠HDF=∠DAH=∠DHF,∴FD=FH,∵∠FCH+∠CDH=90°,∠FHC+∠FHD=90°,∴∠FHC=∠FCH,∴FH=FC=DF=3,在Rt△ADC中,∵∠ADC=90°,AD=4,CD=3,∴AC==5,DH==,∴CH==,∴EH==,∵∠CFG=∠HFE,∠CGF=∠HEF=90°,CF=HF,∴△CGF≌△HEF(AAS),∴CG=HE=,∴CG的最小值为,故选:D.二、填空题(本大题共6小题,每小题4分,共24分)11.【解答】解:|﹣3|+=3+2=5.故答案为:5.12.【解答】解:∵在Rt△ABC中,∠ACB=90°,D是AB中点,∴CD=AD,∴∠A=∠ACD.∵AB=5,BC=3,∠ACB=90°,∴sin∠A==,∴sin∠ACD=.故答案为.13.【解答】解:如图所示:,一共有4种可能,取出的两个小球上都写有数字2的有1种情况,故取出的两个小球上都写有数字2的概率是:.故答案为:.14.【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=BC,∴∠CBA=45°,∵在Rt△ABC中,∠ACB=90°,=2,∴∠ABD=30°,∴∠CBD=75°,故答案为:75°15.【解答】解:∵四边形ABCD是正方形,四边形DEFG是矩形,∴∠E=∠C=90°,∠EDA与∠CDG均为∠ADG的余角,∴△DEA∽△DCG,∴=,∵ED=FG,∴=,由已知GD=5,AD=CD=4,∴=,即FG=.故答案为:.16.【解答】解:当B在原点时,OA=2,BC=10,点M2(5,0);当C在原点是,B(0,5),M1(0,),点M在经过(5,0)和(0,)的直线上,设直线解析式为y=kx+b,∴∴,∴y=﹣x+;∵当PM⊥M1M2时,PM最小,∴△PMM2∽△M1OM2,∴=,∵M1M2=,∴PM=;故答案为;三、解答题(本大题共9小题,共86分)17.【解答】解:∵解不等式①,得x<3,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<3,在数轴上表示为:.18.【解答】解:原式=÷=•=.19.【解答】解:(1)∵将Rt△ABC绕直角顶点B逆时针旋转90°得到△DBE ∴△ABC≌△DBE∴∠BAC=∠CDF∵∠BAC+∠ACB=90°∴∠CDF+∠ACB=90°∴DF⊥AC,且点F是AC中点∴DF垂直平分AC∴AE=CE(2)∵△ABC≌△DBE∴BE=CE=∴CE=AE=2∴AB=AE+BE=2+20.【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.21.【解答】解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2.4,∴.设BD=5k米,AD=12k米,则AB=13k米.∵AB=13米,∴k=1,∴BD=5米,AD=12米.在Rt△CDA中,∠CDA=90°,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8米,∴BC≈5.8米.答:二楼的层高BC约为5.8米.22.【解答】解:(1)扇形图中跳绳部分的扇形圆心角为360°×(1﹣50%﹣20%﹣10%﹣10%)=36度;该班共有学生(2+5+7+4+1+1)÷50%=40人;训练后篮球定时定点投篮平均每个人的进球数是=5,故答案为:36,40,5.(2)三名男生分别用A1,A2,A3表示,一名女生用B表示.根据题意,可画树形图如下:由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M)的结果有6种,∴P(M)==.23.【解答】解:(1)依题意:整理得(2)①当1≤x<50时,W=﹣2x2+180x+2000=﹣2(x﹣45)2+6050∵﹣2<0∴开口向下∴当x=45时,W有最大值为6050②当50≤x≤90时,W=﹣100x+10000∵﹣100<0∴W随x的增大而减小∴当x=50时,W有最大值为5000∵6050>5000∴当x=45时,W的值最大,最大值为6050即小王第45天的销售利润最大,最大利润为6050元(3))①当1≤x<50时,令W=4800,得W=﹣2(x﹣45)2+6050=4800解得x1=20,x2=70∴当W>4800时,20<x<70∵1≤x<50∴20<x<50②当50≤x≤90时,令W>4800,W=﹣100x+10000>4800解得x<52∵50≤x≤90∴50≤x<52综上所述:当20<x<50时,W>4800,即共有51﹣21+1=31天的销售利润超过4800元∴可获得奖金200×31=6200元即小王一共可获得6200元奖金24.【解答】解:(1)如图1,连接EF,BF,∵AB是⊙O的直径,∴∠AFB=∠BFC=90°,∵CD=BD,∴DF=BD=CD,∴=,∴∠DEF=∠BED=35°,∴∠BEF=70°,∴∠BDF=180°﹣∠BEF=110°;(2)如图2,连接AD,OE,过B作BG⊥DE于G,∵∠CFD=∠ABD,∴cos∠ABD=cos∠CFD=,在Rt△ABD中,BD=DF=4,∴AB=6,∵E是的中点,AB是⊙O的直径,∴∠AOE=90°,∵BO=OE=3,∴BE=3,∴∠BDE=∠ADE=45°,∴DG=BG=BD=2,∴GE==,∴DE=DG+GE=2+.25.【解答】解:(1)由题意得:a=1,b=﹣4,故抛物线的表达式为:y=x2﹣4x+c,将点C的坐标代入得:c=3,故抛物线的表达式为:y=x2﹣4x+3=(x﹣2)2﹣1,故抛物线的顶点坐标为(2,﹣1);(2)“子函数”y=x﹣6的“母函数”为:y=x2﹣6x+c,∵y=(x2﹣12x)+x=(x﹣6)2﹣18+c,故﹣18+c=1,解得:c=19,故“母函数”的表达式为:y=x2﹣6x+19;(3)如图所示,连接OP,设点P(m,﹣m2﹣4m+8),由题意得:直线l的表达式为:y=﹣2x﹣4,故点C、D的坐标分别为(﹣2,0)、(0,﹣4),∴S△PCD=S△POC+S△OCD+S△POD=﹣m2﹣4m+8+4+2m=﹣(m+1)2+13,∵﹣1<0,∴S△PCD=有最大值,当m=﹣1时,其最大值为13.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档