二级管在光伏阵列中的作用及原理分析
光电二极管阵列电路

光电二极管阵列电路
光电二极管阵列电路是一种常用于电子设备中的电路,其作用是
将光信号转化为电信号。
本文将从以下几个方面介绍光电二极管阵列
电路的相关知识。
一、光电二极管的基本原理
光电二极管是一种能够将光信号转换为电信号的设备,其基本原
理是利用半导体材料的光敏效应来进行光电转换。
当光线照射到光电
二极管上时,其内部的半导体材料会产生电荷,从而产生电流。
二、光电二极管阵列电路的组成
光电二极管阵列电路由多个光电二极管通过各自的输出端与集中
式输出器相连,形成一个并联的电路,一般而言,光电二极管的阵列
电路中需要包含对光信号的放大电路、滤波电路、开关电路等。
三、光电二极管阵列电路的应用领域
光电二极管阵列电路广泛应用于数据通信与图像传输等领域,例
如数码相机、光电测量系统、扫描仪等。
四、光电二极管阵列电路的优点和缺点
光电二极管阵列电路具有响应速度快、精度高、频段宽等优点,
但其阵列性质会导致系统对外界环境抗干扰性能不佳、价格高等缺点。
五、光电二极管阵列电路的发展趋势
随着科技的不断进步,光电二极管阵列电路在未来的发展中将继
续向着小型化、集成化的方向发展,同时在滤波、增强信噪比、提高
灵敏度等方面也将有所创新。
综上所述,光电二极管阵列电路作为一种重要的电路组成元件,
在现代电子设备中发挥着重要的作用。
了解其基本原理和应用领域,
以及其优缺点和发展趋势,有助于我们更好地应用它们。
光电二极管的工作原理及应用特性分析

光电二极管的工作原理及应用特性分析作者:何俊来源:《科学与财富》2019年第23期摘要:光电二极管作为我国电子工程的关键组成原件,具有光伏探测性能,其工作原理较為复杂,操作应用极具严谨性,因此本文基于光电二极管的详细工作原理,介绍了其主要结构组成、功能应用和测试系统,并从光谱、频率和噪声三个方向分析了光电二极管的特征,同时简要概述了其他结构类型的光电二极管,希望能对相关工作者提供可参考性的建议.关键词:光电二极管;光伏;伏安;应用一、光电二极管的工作原理光电二极管的工作原理可以理解为当光线照射于半导体时,如果出现入射光子能量低于半导体禁带宽度的情况,半导体也会因为光透射穿过物质而形成透明伏,若大于禁带宽度半导体会吸收光子能量,电子和光子流产生相互作用而引发电学效应,也被称作为光子效应。
PN结光电二极管原理为O型和N型半导体发生接触作用,也被称为势垒区,其中N区向P区产生的空间电场被称为内建电场,当PN 结处于热平衡状态下时,因为浓度梯度产生的扩散电流和因为内电厂产生的漂移电流抵消为零,PN 结没有电流通过,这时辐射到半导体上的光子将会被吸收,光子强度也会随这深入半导体的过程而逐渐降低,其中吸收系数会随着入射光能的增加而增大,PN结半导体表面的薄层光能很快会被完全吸收。
电子空穴对的形成是因为光辐射在半导体内触发光子流和价电子的作用效果,价带中由电子产生空穴,并受到光强度的影响,因为光子强度在逐渐降低,所以空穴对的产生效率也呈下降趋势。
由此可见光辐射强度会直接影响到光电二极管内部的扩散效应和载流子剩余数目,其中载流子会对多子和少子的这平衡浓度产生影响,目前在该原理中应用较为广泛的器件主要有光电池和光电二极管,其中光电池主要原理是利用光生伏特效应而生成无偏压光电器,光电二极管是因为反向偏压原理形成的光伏器,光电二极管在低频率和微弱信号的探测工作中具有重要的应用价值,光电二极管可以理解为和恒流电源和普通二极管的并联作用。
光伏接线盒用二极管工作原理

光伏接线盒用二极管工作原理
光伏接线盒是太阳能光伏电池组件的一个重要部分。
它包含着多个太阳能电池板的连接和保护元件,其中二极管是一种必不可少的元件。
那么,光伏接线盒用二极管的工作原理是什么呢?
首先,二极管是一种只允许电流单向通过的半导体器件。
一般来说,它由p型半导体和n型半导体两种材料组成,中间有一个p-n结。
当二极管正向工作时,即正极连接p型半导体,负极连接n型半导体,外加电压大于二极管的阈值电压时,电流可以顺利通过;反向工作时,即正极连接n型半导体,负极连接p型半导体,外加电压小于二极管的阈值电压时,电流会被阻断。
在光伏接线盒中,二极管被用来保护太阳能电池板,防止它们在夜晚或阴天时受到反向电流的损害。
当太阳能电池板在正常工作时,二极管处于正向导通状态,电流可以从太阳能电池板向负载电路流动;而当太阳能电池板处于反向电压状态时,二极管就会变成反向阻断状态,从而防止反向电流的流动。
总之,光伏接线盒用二极管保护太阳能电池板的原理就是利用二极管的单向导通特性,将正向电流顺利通过,而防止反向电流的流动,从而保护太阳能电池板的安全运行。
- 1 -。
光伏组件内部二极管的作用(一)

光伏组件内部二极管的作用(一)光伏组件内部二极管的作用1. 介绍光伏组件内部二极管是光伏发电系统中的重要组成部分,扮演着至关重要的角色。
在光伏发电过程中,二极管发挥着关键的功能,保证系统的正常运行和最大功率输出。
2. 避免逆流光伏组件内部二极管的主要作用是防止逆流。
在光伏发电中,当光伏电池板受到阳光照射时,会产生电能。
然而,在某些情况下,光伏发电系统可能会发生逆流现象,即光伏电池板从负载或电网中吸收能量,而不是将能量传输到负载或电网中。
逆流现象会导致系统效率下降,甚至损坏光伏组件。
而光伏组件内部二极管的引入可以防止逆流,保证光伏电池板只向电网或负载输出能量。
3. 电流流向控制光伏组件内部二极管还可以控制电流的流向。
在某些情况下,光伏发电系统可能会受到不同的条件影响,例如夜晚、阴天或负载需求不稳定等。
光伏组件内部二极管能够根据需要将电流引导到适当的方向,确保系统始终能够产生所需的电能。
4. 温度保护光伏组件内部二极管还能起到温度保护的作用。
光伏发电系统在运行过程中可能会受到高温的影响,尤其是在夏季或长时间连续工作的情况下。
过高的温度可能会对光伏组件造成损害。
但是,光伏组件内部二极管能够通过控制电流的流向和减少电流的通过来降低系统的温度,提供温度保护。
5. 总结光伏组件内部二极管在光伏发电系统中扮演着重要的角色。
通过防止逆流,控制电流流向以及提供温度保护等功能,光伏组件内部二极管保证了系统的正常运行和最大功率输出。
对于光伏发电系统的设计和维护来说,光伏组件内部二极管的正确选择和使用至关重要。
6. 光伏组件内部二极管的选择在选择光伏组件内部二极管时,需要考虑以下几个因素:6.1 逆流电流能力逆流电流能力是指二极管能够防止逆流的最大电流。
根据光伏发电系统的负载和电流需求,选择具有足够逆流电流能力的二极管非常重要。
过小的逆流电流能力可能会导致二极管过热,甚至损坏。
6.2 开启电压开启电压是指二极管在正向偏置下开始导通所需的电压。
防反二极管

太阳能电池方阵-防反充(防逆流)和旁路二极管在太阳能电池方阵中,二极管是很的器件,常用的二极管基本都是硅整流二极管,在选用时要规格参数留有余量,防止击穿损坏。
一般反向峰值击穿电压和最大工作电流都要取最大运行工作电压和工作电流的2倍以上。
二极管在太阳能光伏发电系统中主要分为两类。
1、防反充(防逆流)二极管防反充二极管的作用之一是防止太阳能电池组件或方阵在不发电时,蓄电池的电流反过来向组件或方阵倒送,不公消耗能量,而且会使组件或方阵发热甚至损坏;作用之二是在电池方阵中,防止方阵各支路之间的电流倒送。
这是因为串联各去路的输出电压不可能绝对相等,各支路电压总有高低之差,或者某一支路故障、阴影遮蔽等使该支路的输出电压降低,高电压支路的电流就会流向低电压支路,甚至会使方阵总体输出电压的降低。
在各支路中串联接入防反充二极管就避免了这一现象的发生。
在独立光伏发电系统中,有些光伏控制器的电路上已经接入了防反充二极管,即控制器带有防反充功能时,组件输出就不需要再接二极管了。
防反充二极管存在有正向导通压降,串联在电路中会有一定的功率消耗,一般使用的硅整流二极管压降为0.7V左右,大功率管可达1~20.3V,但其耐压和功率都较小,适合小功率场合应用。
2、旁路二极管当有较多的太阳能电池组件串联组成电池方阵或电池方阵的一个支路时,需要在每块电池板的正负极输出端反向并联1个(或2~3个)二极管,这个并联在组件两端的二极管就叫旁路二极管。
旁路二极管的作用是防止方阵中的某个组件或组件中的某一部分被阴影遮挡或出现故障停止发电时,在该组件旁路二极管两端会形成正向偏压使二极管导通,组件串工作电流绕过故障组件,经二极管流过,不影响其他正常组件的发电,同时也保护被旁路组件避免受到较高的正向偏压或由于“热斑效应”发热而损坏。
旁路二极管一般都直接安装在接线盒内,根据组件功率大小和电池片串的多少,安装1~3个二极管。
旁路二极管也不是任何场合都需要的,当组件单独使用或并联使用时,是不需要接二极管的。
二极管在光伏阵列中的作用

二极管在光伏阵列中的作用光伏阵列是一种将光能转化为电能的设备,其主要由光伏电池组成。
而二极管则是光伏阵列中不可或缺的一个重要组件,其作用主要体现在以下几个方面:1.组串硅二极管:光伏阵列中的组串硅二极管被安装在每个光伏电池串联的末端,起到对串联电路进行保护的作用。
在整个光伏电池组串的过程中,每个光伏电池的电压都有可能存在不均匀性,一些电池可能会发生反向偏置。
二极管可以防止这种情况发生,保护整个光伏电池串联电路不发生损坏。
2.防逆流二极管:由于光伏电池是一个基于半导体原理的器件,光照会使其产生电压和电流。
在夜间或阴天等无光照情况下,光伏电池不再产生电能,存在逆向电压。
而防逆流二极管可以防止电能从电池组流向光伏阵列,阻止逆向电流的流动,避免电池反向损坏。
3.温度补偿二极管:光伏电池的工作效率会受到温度的影响,当光伏电池温度升高时,其工作电压会减小,从而影响光伏阵列的发电效率。
为了降低这种温度效应,常常在每个光伏电池的上方并联安装一个温度补偿二极管。
温度补偿二极管可以利用自身温度特性来进行温度补偿,使光伏电池的输出电压能随温度变化而适应。
4.电流分配二极管:光伏阵列中多个光伏电池串联,串联后的总电流会通过一个输出接口传输。
在实际情况中,由于光伏电池之间存在微小的参数不匹配,不同光伏电池之间的电流也会存在微小差异。
电流分配二极管可以在一定程度上平衡不同光伏电池之间的电流差异,确保整个光伏阵列的电流均匀分配。
除了上述作用之外,二极管还在光伏阵列中起到了承载电流、提供二极管电流特性(包括导通电压和正向电流)的基本功能。
同时,二极管也可以防止光伏阵列被倒放电池等问题所损坏。
综上所述,二极管在光伏阵列中具有保护、温度补偿、防逆流、电流分配等多种作用。
通过合理应用二极管,可以有效保护光伏电池,提高光伏阵列的工作效率和可靠性。
光伏接线盒用二极管工作原理

光伏接线盒用二极管工作原理光伏接线盒是太阳能光伏发电系统中最常用的组件之一,它主要起到连接电池板和电池串的作用。
而二极管则是光伏接线盒内的一种重要元件,其作用是防止逆流电流的产生。
今天我们就来详细地讲解一下光伏接线盒用二极管的工作原理。
首先,我们需要了解二极管的基本结构及其工作原理。
二极管是由P型半导体和N型半导体组成的,其中P型半导体的载流子为空穴,而N型半导体的载流子为电子。
当P型半导体和N型半导体相接触时,会形成一个PN结,该结会给电流一个特定的方向,因此,二极管有“单向导电性”这一特性。
而在光伏发电系统中,当太阳能电池板向电网输送电能时,夜间或云天等无法正常发电的时候,电网会返回电荷。
这时,如果没有二极管的阻挡作用,就会产生逆流电流,导致电能大量流失。
因此,光伏接线盒中插入二极管,就可以避免这种不必要的流失。
具体而言,当光伏发电系统工作时,电流向负载方向流动,二极管处于导通状态,此时电流汇集于负载。
而当电网回馈电能时,电流方向与负载方向相反,二极管处于反向截止状态,此时逆流电流会在二极管中形成反向电压,使其阻止电流反向流动。
除了延长光伏发电系统寿命,二极管还可以起到保护作用。
当系统发生过电压、过电流等异常现象时,二极管还可以及时发现并截断电路,以避免设备受到损坏。
需要注意的是,光伏接线盒中用的二极管必须具备耐高温、低电压降、反向漏电流小等特点,以保证系统稳定工作。
此外,在使用二极管时还要注意其工作温度范围、工作电流范围等参数,以免超过二极管的承受范围而导致损坏或失效。
总之,光伏接线盒用二极管的工作原理是通过利用其单向导电性和反向截止特性来防止逆流电流的产生,从而保护光伏发电系统。
在实际使用的过程中,我们需要选择适合的二极管,并注意保养和维护。
光伏电站防反二极管的典型应用

光伏电站防反二极管的典型应用一、引言集中式并网光伏电站是利用荒漠,集中建设大型光伏电站,发电直接并入公共电网,接入高压输电系统供给远距离负荷。
防反二极管在集中式并网光伏电站建设中,不可或缺的原因,主要是集中式光伏电站发展初期重点考虑系统运行的稳定性和可靠性等因素;随着集中式光伏电站建设规模的增大,节约成本成为集中式光伏电站建设的重点考虑问题。
二、防反二极管的作用利用二极管的单向导电性,在每个组串的正极串联一个防反二极管。
主要作用是:防止因光伏组件正负极反接导致的电流反灌而烧毁光伏组件;防止光伏组件方阵各支路之间存在压差而产生电流倒送,即环流;当所在组串出现故障时,作为一个断开点,与系统有效隔离,在保护故障组串的同时,为检修提供方便。
三、防反二极管的选型大电流的二极管主要有整流二极管和肖特基二极管。
这两种二极管的正向导通压降分别是:肖特基二极管约1.2V、大容量整流二极管约0.8V。
在通过相同电流的情况下,肖特基二极管的导通损耗大于整流二极管。
因此,集中式光伏电站建设中普遍采用大容量整流二极管。
选用大容量整流二极管主要考虑以下两方面:最大耐压和最大整流电流。
器件的最大耐压必须大于系统设计电压的1.5倍,最大电流值必须大于系统设计最大电流的2倍。
目前市场上大部分汇流箱、直流柜、逆变器等光伏设备上的防反二极管采用浙江柳晶整流器有限生产的光伏防反二极管产品,光伏设备比较常用的防反二极管型号有:MDK55A1600V MD55A1600V MDA55A1600V MD25A1600V MDK25A1600VMDA25A1600V MDK26A1600V MDK160A1600V MD300A1600V MDK300A1600VMDA300A1600V MDA500A1600V MD500A1600V MDK500A1600V等,柳晶目前采用的3D三维技术,还可以免费提供样品、3D三维图纸、技术资料、光盘、目录本等资料,可最大限度满足可以设计汇流箱、直流柜的需要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本设计主要阐述了分析二极管在光伏阵列的作用。
根据太阳电池的仿真模型,建立光伏阵列的仿真模型,分析计算二极管在阵列中的作用。
得出二极管在光伏阵列中的作用是:1防夜间蓄电池给太阳能组件反充,2防蓄电池反接负载。
关键字二极管光伏矩阵太阳能组件防反冲反接负载摘要 (2)绪言 (4)一.光伏阵列 (5)1.1二极管阵列检测器 (5)1.2二级管阵列检测器的工作原理 (6)1.3二级管阵列检测器优缺点 (6)二.光伏阵列中二极管的种类及作用 (6)三.光伏阵列中二极管作用及原理分析 (8)四.光伏阵列在未来的发展 (9)参考文献10随着全球气候变暖、污染问题日益严重,从传统能源向可再生能源的转变势在必行。
太阳能光伏技术(Photovoltaic)是将太阳能转化为电力的技术,其核心是可释放电子的半导体物质。
最常用的半导体材料是硅。
地壳硅储量丰富,可以说是取之不尽、用之不竭。
太阳能光伏电池有两层半导体,一层为正极,一层为负极。
阳光照射在半导体上时,两极交界处产生电流。
阳光强度越大,电流就越强。
太阳能光伏系统不仅只在强烈阳光下运作,在阴天也能发电。
其优点有:燃料免费、没有会磨损、毁坏或需替换的活动部件、保持系统运转仅需很少的维护、系统为组件,可在任何地方快速安装、无噪声、无有害排放和污染气体等。
其中太阳能作为可再生能源的重要部分,最近几年已经得到了很广泛的应用,如何提高太阳能的利用效率成为研究热点之一。
本文首先从晶体硅太阳电池的等效电路图入手,根据电路分析的知识求解出等效电路伏安特性的数学表达式,建立光伏组件和阵列仿真模型,分析二极管在太阳电池、组件及阵列中的作用,及其导通电压的大小对光伏应用效果的影响,其分析结果具有较好的实践价值。
一.光伏阵列独立光伏系统的构成主要包括:光伏组件(阵列)、蓄电池、逆变器、控制器。
见图8.4。
下而我们分别加以讨论。
一个光伏阵列包含两个或两个以上的光伏组件,具体需要多少个组件及如何连接组件与所需电压(电流)及各个组件的参数有关。
光伏组件是由太阳能电池片群密封而成,是阵列的最小可换单元。
目前大多数太阳能电池片是单晶或多晶硅电池。
这些电池正面用退水玻璃背面用软的东西封装。
它就是光伏系统中把辐射能转换成电能的部件。
1.1二极管阵列检测器二极管阵列检测器即光电二级阵列管检测器又称光电二极管列阵检测器或光电二极管矩阵检测器,表示为PDA(photo-diode array)、PDAD(photo-diode array detector)或(Diode array detector,DAD)是20世纪80年代出现的一种光学多通道检测器。
在晶体硅上紧密排列一系列光电二极管,每一个二极管相当于一个单色器的出口狭缝,二极管越多分辨率越高,一般是一个二极管对应接受光谱上一个纳米谱带宽的单色光。
此外,还有的商家称之为多通道快速紫外-可见光检测器(multichannel rapid scanning UV-VIS detector),三维检测器(three dimensional detector)等。
光电二极管阵列检测器目前已在高效液相色谱分析中大量使用,一般认为是液相色谱最有发展、最好的检测器。
1.2二级管阵列检测器的工作原理复色光通过样品池被组分选择性吸收后再进入单色器,照射在二极管阵列装置上,使每个纳米波长的光强度转变为相应的电信号强度,即获得组分的吸收光谱,从而获得特定组分的结构信息,有助于未知组分或复杂组分的结构确定。
许多色谱工作站可将两张图谱绘在一张三维坐标图上而获得三维光谱一色谱图,也可进行峰纯度检查。
以峰纯度数值说明某个色谱峰的纯度,数值越高,色谱峰为单峰的可能性越大;数值越低,色谱峰为重叠峰的可能性越大,用于指导色谱分离条件的摸索。
随着化学计量学的发展,将色谱信息和相对应的光谱信息相结合,按一定的数学模型处理,能解决重叠峰的识别和定量难题。
但DAD检测器的灵敏度比通常的UA检测器约低一个数量级。
所以单纯用于含量测定或杂质检查时,还是采用UA检测器为好。
1.3二级管阵列检测器优缺点用一组光电二极管同时检测透过样品的所有波长紫外光,而不是某一个或几个波长,和普通的紫外-可见分光检测器不同的是进入流动池的光不再是单色光。
它具有以下优点:1、灵敏度高2、噪音低3、线性范围宽4、对流速和温度的波动不灵敏,适用于梯度洗脱及制备色谱5、可得任意波长的色谱图,极为方便6、可得任意时间的光谱图,相当于与紫外联用7、色谱峰纯度鉴定、光谱图检索等功能,可提供组分的定性信息。
缺点:1、只能检测有紫外吸收的物质2、流动相的选择有一定限制,流动相的截止波长必须小于检测波长二.光伏阵列中二极管的种类二极管的种类PN 结型光电二极管(也称PD),PIN 结型光电二极管,雪崩光电二极管(记为APD),肖特基势垒光电二极管,光电三极管等。
二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。
根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。
按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。
点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。
由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。
面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。
平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。
光伏阵列的任何部分不能被遮荫,它不像太阳能集热器,如果遮住了光伏组件必须有相同的电流。
如果有几个电池被遮荫,则它们便不会产生电流且会成为反向偏压,这就意味着被遮电池消耗功率发热,久而久之,形成故障。
但是有些偶然的遮挡是不可避免的,所以需要用旁路二极管来起保护作用。
如果所有的组件是并联的,就不需要旁路二极管,即如果要求阵列输出电压为12V ,而每个组件的输出恰为12V ,则不需要对每个组件加旁路二极管,如果要求24V 阵列(或者更高),那么必须有2个(或者更多的)组件串联,这时就需要加上旁路二极管,如图8.17所示,图8.17 带旁路二极管的串联电池图8.18 对于24V 阵列阻塞二极管的接法阻塞二极管是用来控制光伏系统中电流的:任何一个独立光伏系统都必须有防止从蓄电池流向阵列的反向电流的方法或有保护或失效的单元的方法。
如果控制器没有这项功能的话,就要用到阻塞二极管,如图8.18阻塞二极管既可在每一并联支路,又可在阵列与控制器之间的干路上,但是当多条支路并联接成一个大系统,则应在每条支路上用阻塞二极管(如图8.18)以防止由于支路故障或遮蔽引起的电流由强电流支路流向弱电流支路的现象。
在小系统中,在干路上用一个阻塞二极管就够了,不要两种都用,因为每个二极管会降压0.4~0.7V 是一个12V 系统的6%,这也是不小的一个比例。
在组成光伏阵列的支路中串联二极管可以起到电压钳位作用,但能引起附加损耗; 而在阵列支路中没有串联二极管,在出现光斑现象严重时,可能出现支路间的回路电组件 组件 组件 组件 + - DC24V …… 组件 组件 组件 组件 + - DC24V …… 阻塞二极管流,增加了电路的附加损耗。
由于二极管导通时有损耗,建议使用导通电压低的二极管。
三.光伏阵列中二极管作用及原理分析防反充(防逆流)二极管:防反充二极管的作用之一是防止太阳能电池组件或方阵在不发电时,蓄电池的电流反过来向组件或方阵倒送,不仅消耗能量,而且会使组件或方阵发热甚至损坏;作用之二是在电池方阵中,防止方阵各支路之间的电流倒送。
这是因为串联各支路的输出电压不可能绝对相等,各支路电压总有高低之差,或者某一支路因为故障、阴影遮蔽等使该支路的输出电压降低,高电压支路的电流就会流向低电压支路,甚至会使方阵总体输出电压的降低。
在各支路中串联接入防反充二极管就避免了这一现象的发生。
二极管的工作原理:晶体二极管为一个由p型半导体和n型半导体形成的p-n 结,在其界面处两侧形成空间电荷层,并建有自建电场。
当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。
当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。
在独立光伏发电系统中,有些光伏控制器的电路上已经接入了防反充二极管,即控制器带有防反充功能时,组件输出就不需要再接二极管了。
防反充二极管存在有正向导通压降,串联在电路中会有一定的功率消耗,一般使用的硅整流二极管管压降为0.7v左右,大功率管可达l~2V。
肖特基二极管虽然管压降较低,为0.2~0.3v,但其耐压和功率都较小,适合小功率场合应用。
用户在使用电池供电产品时常常会误将电池装反,利用单个二极管或二极管桥可以避免损坏电路,但那会浪费功率,并由于在电池与系统电源间串入了一或两个二极管压降,使可用的电源电压减小。
PIN光电二极管原理:由于PN结耗尽层只有几微米,大部分入射光被中性区吸收,因而光电转换效率低,响应速度慢。
为改善器件的特性,在PN结中间设置一层本征半导体(称为I),这种结构便是常用的PIN光电二极管。
PIN光电二极管原理:PIN管的结构:在P型半导体和N型半导体之间夹着一层本征半导体。
因为本征层相对于P区和N区是高阻区。
这样,PN结的内电场就基本上全集中于 I 层中。
PIN光电二极管原理:I层很厚,吸收系数很小,入射光很容易进入材料内部被充分吸收而产生大量电子 - 空穴对,因而大幅度提高了光电转换效率,从而使灵敏度得以提高。
两侧P层和N层很薄,吸收入射光的比例很小,I层几乎占据整个耗尽层,因而光生电流中漂移分量占支配地位,从而大大提高了响应速度。
I层所起的作用:本征层的引入,明显增大了p+区的耗尽层的厚度,这有利于缩短载流子的扩散过程。
耗尽层的加宽,也可以明显减少结电容Cj,从尔使电路常数减小。
同时耗尽加宽还有利于对长波区的吸收。
性能良好的PIN光电二极管,扩散和漂移时间一般在10-10 s数量级,频率响应在千兆赫兹。
实际应用中决定光电二极管的频率响应的主要因素是电路的时间常数。
合理选择负载电阻是一个很重要的问题。
四.光伏阵列在未来的发展早在1839年,法国科学家贝克雷尔(Becqurel)就发现,光照能使半导体材料的不同部位之间产生电位差。
这种现象后来被称为“光生伏打效应”,简称“光伏效应”。
1954年,美国科学家恰宾和皮尔松在美国贝尔实验室首次制成了光电转换效率为 4.5%的单晶硅太阳电池,诞生了将太阳光能转换为电能的实用光伏发电技术。