层次分析法AHP (Analytic Hierarchy Process)
层次分析法(AHP法)

一致性检验是层次分析法 中非常重要的步骤,可以 保证分析结果的可靠性
04
CATALOGUE
层次单排序
特征向量法
总结词
通过计算判断矩阵的特征向量来确定各因素权重的方法。
详细描述
特征向量法是层次分析法中确定权重的一种常用方法。它基于线性代数原理,通过计算判断矩阵的特 征值和特征向量,得到各因素的权重值。这种方法能够反映各因素之间的相对重要性,广泛应用于决 策分析和多目标优化等领域。
要点一
总结词
通过计算判断矩阵的最大特征值对应的特征向量来确定各 因素权重的方法。
要点二
详细描述
最大特征值法也是层次分析法中确定权重的一种常用方法 。它基于矩阵论原理,通过计算判断矩阵的最大特征值和 对应的特征向量,得到各因素的权重值。这种方法能够反 映各因素之间的相对重要性,并且在判断矩阵一致性检验 中具有重要作用。最大特征值法在多目标决策、系统评价 等领域有广泛的应用。
03
CATALOGUE
构造判断矩阵
标度定义
标度2
两个元素相比,前者比后者稍 重要
标度4
两个元素相比,前者比后者强 烈重要
标度1
两个元素相比,具有相同的重 要性
标度3
两个元素相比,前者比后者明 显重要
标度5
两个元素相比,前者比后者极 端重要
判断矩阵的构造
01
通过专家咨询、比较等方法,对每一层次各元素相对重要性给 出判断
02
将判断结果整理成矩阵形式
判断矩阵的元素aij表示第i个元素与第j个元素相对重要性的比值
03
判断矩阵的一致性检验
一致性检验是检验各元素 重要性判断是否具有逻辑 一致性
当CR<0.1时,认为判断 矩阵的一致性是可以接受 的;否则,需要对判断矩 阵进行调整
层次分析法

层次分析法(AHP)AHP(Analytic Hierarchy Process)方法,是由20世纪70年代由美国著名运筹学学家T.L.Satty提出的。
它是指将决策问题的有关元素分解成目标、准则、方案等层次,在此基础上进行定性分析和定量分析的一种决策方法。
这一方法的特点,是在对复杂决策问题的本质、影响因素及其内在关系等进行深入分析之后,构建一个层次结构模型,然后利用较少的定量信息,把决策的思维过程数学化,从而为求解多准则或无结构特性的复杂决策问题提供了一种简便的决策方法。
AHP十分适用于具有定性的,或定性定量兼有的决策分析。
这是一种十分有效的系统分析和科学决策方法,现在已广泛地应用在企业信用评级、经济管理规划、能源开发利用与资源分析、城市产业规划、企业管理、人才预测、科研管理、交通运输、水资源分析利用等方面。
一、递阶层次结构的建立一般来说,可以将层次分为三种类型:(1)最高层:只包含一个元素,表示决策分析的总目标,因此也称为总目标层。
(2)中间层:包含若干层元素,表示实现总目标所涉及的各子目标,包含各种准则、约束、策略等,因此也称为目标层。
(3)最低层:表示实现各决策目标的可行方案、措施等,也称为方案层。
典型的递阶层次结构如下:一个好的递阶层次结构对解决问题极为重要,因此在建立递阶层次结构时,应注意到:(1)从上到下顺序地存在支配关系,用直线段(作用线)表示上一层次因素与下一层次因素之间的关系,同一层次及不相邻元素之间不存在支配关系。
(2)整个结构不受层次限制。
(3)最高层只有一个因素,每个因素所支配元素一般不超过9个,元素过多可进一步分层。
(4)对某些具有子层次结构可引入虚元素,使之成为典型递阶层次结构。
二、构造比较判断矩阵设有m个目标(方案或元素),根据某一准则,将这m个目标两两进行比较,把第i个目标(i=1,2,…,m)对第j个目标的相对重要性记为a,(j=1,2,…,m),这样构造的m阶矩阵用于求解各个目标关于某准则的优先权重,成为权重解析判断矩阵,ij简称判断矩阵,记作A=(a ij )m ×m 。
ahp名词解释

ahp名词解释
AHP,全称Analytic Hierarchy Process,中文名是“层次分析法”,是美国运筹学家、匹兹堡大学T. L. Saaty教授在20世纪70年代初期提出的。
层次分析法是对定性问题进行定量分析的一种简便、灵活而又实用的多准则决策方法。
它的特点是把复杂问题中的各种因素通过划分为相互联系的有序层次,使之条理化,根据对一定客观现实的主观判断结构,把专家意见和分析者的客观判断结果直接而有效地结合起来,将一层次元素两两比较的重要性进行定量描述。
而后,利用数学方法计算反映每一层次元素的相对重要性次序的权值,通过所有层次之间的总排序计算所有元素的相对权重并进行排序。
如需了解更多关于AHP的信息,建议查阅相关资料或咨询专业人士。
ahp层次分析法

ahp层次分析法Ahp层次分析法(AnalyticHierarchyProcess,AHP)是一种综合决策分析方法,主要用于复杂环境下的决策分析和优选。
它是由美国管理学家托马斯Saaty于1970年提出的,是一种更具体的优先级决策分析方法。
AHP能有效的提高复杂环境下的决策效率,这个方法可以显著减少企业决策者在决策过程中所面临的不确定性和复杂度。
AHP层次分析法具有以下几个特点:一,AHP可以深入理解用户的需求,一个AHP决策结果可以迅速完成,并且可以改变决策的方向;第二,AHP的处理结果是单一的,而不会出现多种可能的结果;第三,AHP易于操作和理解;第四,AHP可以使用大量的数据量,可以得到准确的结果;第五,AHP可以获得多个决策者的协调意见;第六,AHP 简洁明了,可以迅速给出满意的决策。
AHP决策分析包括四个关键步骤:数据收集、层次结构建模、比较矩阵构建以及最后的决策结果确定。
首先是数据收集,数据收集的目的是获得参与者的意见,定义参与者关于决策的偏好,以及对不同可能解决方案的评估。
其次,层次结构建模,层次结构建模是一个重要步骤,它将决策问题和多个偏好绩效方案结合在一起,使得决策者能够更好的理解不同可能解决方案之间的区别。
第三,比较矩阵构建,比较矩阵帮助权衡不同偏好绩效方案之间的相互关系,并最终准确定义出最优解决方案。
最后,决策结果确定,通过矩阵的计算,将最终的决策结果定义出来。
Ahp层次分析法用到的模型可以大致分为三类:全局序数模型、本地序数模型和组合序数模型。
全局序数模型是指直接使用参与者提供的相对评价数据,以及计算耦合权矩阵中的权重,并利用矩阵的迭代解耦合矩阵,最终获得最优解。
本地序数模型是指首先使用参与者提供的评价数据,然后建立一个本地评价矩阵来存储这些提供的数据,然后使用全局序数模型来计算权重值,来计算最后的决策结果。
组合序数模型是指将全局序数模型和本地序数模型组合在一起,以更有效的计算出最终的决策结果。
AHP层次分析模型

AHP层次分析模型简介层次分析法(Analytic Hierarchy Process,AHP)是一种常用的决策分析方法,通过将复杂的决策问题层次化,逐步进行比较和评估,最终得出相对权重,从而支持决策者做出合理的决策。
AHP方法最初由美国运筹学家托马斯·L·塞蒂(Thomas L. Saaty)于20世纪70年代提出,并逐渐在决策科学和管理领域得到广泛应用。
AHP模型步骤AHP模型主要分为以下几个步骤:1.建立层次结构:首先,需要将复杂的决策问题分解为不同层次的因素,并建立层次结构。
层次结构由目标、准则和方案组成。
目标是决策问题的最终目标,准则是实现目标所需要满足的条件,方案是用来实现目标的具体选择。
2.构建判断矩阵:在AHP中,判断矩阵是决策者对不同因素之间的比较矩阵。
决策者需要对每个因素进行配对比较,用1至9的尺度来表示两个因素之间的重要性差异。
例如,如果因素A相对于因素B非常重要,则可以给予A和B之间的比较矩阵一个较高的权重。
3.计算权重向量:通过对判断矩阵进行计算,可以得到不同因素的权重向量。
在AHP中,利用特征向量法来计算权重向量。
特征向量是归一化后的最大特征值对应的特征向量。
4.一致性检验:在AHP中,一致性是指决策者的意见和决策结果之间的一致性程度。
通过计算一致性比率(CR),可以评估决策者对判断矩阵的一致性程度。
一致性比率的值应该小于0.1,表示决策者对判断矩阵的一致性程度较高。
5.综合评估:根据权重向量,可以对不同方案进行综合评估。
将不同方案的得分与其权重相乘,并进行加权求和,得出最终的评估结果。
AHP模型的应用范围AHP模型在各个领域都有广泛的应用,以下是几个典型的应用案例:1.项目选择:在项目管理中,AHP模型可以帮助项目经理确定项目目标、评估不同项目方案的优劣,并选择最适合的项目方案。
通过对不同因素的权重进行评估,可以避免主观决策的影响,提高项目管理的效果。
层次分析法AHP法

心理学家以为成对比较旳原因不宜超出9个,即 每层不要超出9个原因。
成对比较阵和权向量
比较尺度aij
Saaty等人提出1~9尺度——aij 取值
1,2,… , 9及其互反数1,1/2, … , 1/9
上述两相邻判断旳中值
原因i与j比较旳判断aij,则原因j与i比较旳判断aji=1/aij
对于 n 个元素 A1, …, An 来说,经过两两比 较,得到成对比较(判断)矩阵 A = (aij)nn:
其中判断矩阵具有如下性质: (1)aij > 0; (2)aij = 1/aji; (3)aii = 1。 我们称 A 为正旳互反矩阵。
3.一种好旳层次构造对于处理问题是极为 主要旳。层次构造建立在决策者对所面临 旳问题具有全方面进一步旳认识基础上, 假如在层次旳划分和拟定层次之间旳支配 关系上举棋不定,最佳重新分析问题,搞 清问题各部分相互之间旳关系,以确保建 立一种合理旳层次构造。
例1. 选择旅游地
目的层
怎样在3个目旳地中按照景色、 费用、居住条件等原因选择.
例2 旅游
假期旅游,是去风光秀丽旳苏州,还是 去凉爽宜人旳北戴河,或者是去山水甲天下 旳桂林?一般会根据景色、费用、食宿条件、 旅途等原因选择去哪个地方。
例3 择业 面临毕业,可能有高校、科研单位、企
业等单位能够去选择,一般根据工作环境、 工资待遇、发展前途、住房条件等原因择业。
例4 科研课题旳选择 因为经费等原因,有时不能同步开展几
因为λ(A旳特征根) 连续旳依赖于aij ,则λ比n 大旳越 多,A 旳不一致性越严重。引起旳判断误差越大。 因而能够用 λ-n 数值旳大小来衡量 A 旳不一致程度。
层次分析法 评价可行性

层次分析法评价可行性层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于多准则决策的方法,它通过对决策因素的层次化和权重的确定,帮助决策者评估和比较不同选择的可行性。
本文将通过介绍AHP的基本原理、评价可行性的步骤和方法,以及AHP的优缺点,来回答题目所提问题。
首先,AHP的基本原理是将整个决策问题分解为一系列层次,每个层次代表一个决策因素的重要性。
决策者需要对决策因素进行配对比较,以确定它们之间的相对权重,从而计算出最终的综合权重。
AHP的评价可行性的步骤包括:定义决策目标、确定决策因素、建立层次结构、进行配对比较、计算权重、一致性检验和结果解释。
评价可行性的第一步是定义决策目标,即明确决策的目的和意义。
例如,我们可以评价某个项目的可行性,包括其经济可行性、技术可行性、市场可行性等。
在定义决策目标时,需要明确目标的性质和关注的方面。
第二步是确定决策因素,即将各个影响决策目标的因素进行识别和列举。
例如,在评价某个项目的可行性时,决策因素可能包括资金投入、市场需求、技术可行性、资源支持等。
决策因素的选择应该全面、具体、明确。
第三步是建立层次结构,即将决策目标和决策因素按照其层次关系进行分层组织。
层次结构可以用树状结构图表示,根节点表示决策目标,子节点表示决策因素。
例如,经济可行性可以作为根节点,而资金投入、市场需求等因素可以作为子节点。
第四步是进行配对比较,即对每个因素进行两两比较,确定他们之间的相对重要性。
比较可以使用9点量表进行,根据重要性进行判断,例如"比较因素A和因素B,A相对于B有多重要?"。
比较的结果可以通过判断矩阵表示。
第五步是计算权重,即根据配对比较的结果计算各个因素的权重。
计算权重的方法是通过计算判断矩阵的特征向量或者最大特征值。
计算判断矩阵的特征向量可以使用特征值法或者特征向量法。
第六步是一致性检验,即判断配对比较的一致性程度。
层次分析法AHP

AHP层次分析法原理一. AHP 层次分析法介绍•AHP 层次分析法简介AHP,即层次分析法(Analytic Hierarchy Process,AHP)是一种系统化的、层次化的多目标综合评价方法。
在评价对象的待评价属性复杂多样,结构各异,难以量化的情况下AHP层次分析法也能发挥作用。
•AHP 基本思想AHP 把复杂的问题分解为各个组成因素,又将这些因素按支配关系分组形成地递阶层次结构。
通过两两比较的方式确定方式确定层次中诸因素的相对重要性。
然后综合有人员的判断,确定备选方案相对重要性的总排序。
整个过程体现了入门分解问题—判断—综合,的思想特征。
•AHP 步骤1)分析问题,明确需求,确定评价指标,并建立评价层次关系。
2)构造上一层每个节点与下一层的判断矩阵。
3)由判断矩阵得出层间的相对权重(层次单排序及一致性检验)。
4)计算各层对总评价目标的总权重(层次总排序),得出各备选方案的评估结果。
二. AHP 的实际问题应用案例本章节我们将在选择购买空调的过程中使用 AHP 来完成决策。
为了从三种空调,空调A、空调B、空调C,中选购最合适的空调,我们采用 AHP法对我们的需求进行分析与评估,最终完成决策。
1. 确定评价指标,建立层次关系为了选出最合适的空调,我们确定从四个指标来对空调进行评估,分别是:价格、噪声、功耗、寿命。
在AHP 中,要构建三层层次关系:目标层、准则层、方案层。
•目标层只有一个要素,是分析问题的预期结果或期望实现的最终目标,是评价的最高准则,可称为目的或目标层•准则层准则层可以是多层构成,其包括所要考虑的准则,子准则等。
•方案层表示实现目标所提供的各种方案与措施,是最终评价对象,决策的结果将从中选出。
2. 构造上一层每个节点与下一层的判断矩阵对一层的每一个节点,与其下层的所有与其有关联的节点构建判断矩阵。
判断矩阵描述了下一层节点之间的相对重要性或优越性。
为了量化节点间的优劣先后,将用到以下判断矩阵标度定义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m
a jCI j
CR
j 1 m
a j RI j
j 1
类似地,当 CR<0.1时,认为层次总排序结果具有满 意的一致性,否则需要重新调整判断矩阵的元素取值。
二. 层次分析法的广泛应用
• 应用领域:经济计划和管理,能源政策和分配, 人才选拔和评价,生产决策,交通运输,科研选题, 产业结构,教育,医疗,环境,军事等。
w W w (3)
(3) (2)
第s层对第1层的组合权向量
w W W W w (s)
( s ) ( s1)
(3) (2)
其中W(p)是由第p层对第 p-1层权向量组成的矩阵
层次分析法的基本步骤
1)建立层次分析结构模型
深入分析实际问题,将有关因素自上而下分层(目标— 准则或指标—方案或对象),上层受下层影响,而层内 各因素基本上相对独立。
• 便于定性到定量的转化:
尺度 aij
1 2 34
Ci
:
C
的重要性
j
相同
稍强
5 6 78 9 强 明显强 绝对强
aij = 1,1/2, ,…1/9 ~ Ci : C j 的重要性与上面相反 • 心理学家认为成对比较的因素不宜超过9个 • 用1~3,1~5,…1~17,…,1p~9p (p=2,3,4,5), d+0.1~d+0.9 (d=1,2,3,4)等27种比较尺度对若干实例构造成对比较 阵,算出权向量,与实际对比发现, 1~9尺度较优。
层次分析法将定性分析与定量分析结合起来完 成以上步骤,给出决策问题的定量结果。
层次分析法的基本步骤
成对比较阵 和权向量
元素之间两两对比,对比采用相对尺度
设要比较各准则C1,C2,… , Cn对目标O的重要性
Ci : C j aij
A
(aij )nn , aij
0,
a ji
1 aij
选 择
1 1/ 2 4 3 3
1)任取初始向量w(0), k:=0,设置精度
2) 计算 w~ (k1) Aw(k )
w w~ / w~ 3)归一化
( k 1)
n ( k 1)
( k 1) i
i 1
4)若
max w(k1) w(k )
i
i
i
,停止;
否则,k:=k+1, 转2
5) 计算
~ n
( k 1)
1 wi
n w(k )
方案层
P1 桂林
P2 黄山
P3 北戴河
“选择旅游地”思维过程的归 纳• 将决策问题分为3个层次:目标层O,准则层C, 方案层P;每层有若干元素, 各层元素间的关系 用相连的直线表示。
• 通过相互比较确定各准则对目标的权重,及各方 案对每一准则的权重。
• 将上述两组权重进行综合,确定各方案对目标的 权重。
• 处理问题类型:决策、评价、分析、预测等。 • 建立层次分析结构模型是关键一步,要有主要决 策层参与。
• 构造成对比较阵是数量依据,应由经验丰富、判 断力强的专家给出。
例1 国家 实力分析 国民
收入
国家综合实力
军事 力量
科技 水平
社会 稳定
例2 工作选择
美、俄、中、日、德等大国 工作选择
贡
收
发
声
• A的归一化特征向量可作为权向量
对于不一致(但在允许范围内)的成对比
较阵A,建议用对应于最大特征根的特
征向量作为权向量w ,即 Aw max w
Aw nw
成对比较阵和权向量 Saaty等人提出1~9尺度——aij 取值 比较尺度aij 1,2,… , 9及其互反数1,1/2, … , 1/9
w1 w2
w1
wn
w2
wn
wn
wn
成对比较阵和权向量
w1
w1
w1 w2
w1
wn
成对比较完全一致的情况
w2
A
w1
w2 w2
w2
wn
满足 aij a jk aik , i, j, k 1,2,, n 的正互反阵A称一致阵,如
wn
wn
wn
w1
w2
wn
一致阵 • A的秩为1,A的唯一非零特征根为n 性质 • A的任一列向量是对应于n 的特征向量
C3 式
C7 C8 坏
C4
C9
桥梁 D1
隧道 D2
渡船 D2
(2)过河代价层次结构
例4 科技成果 的综合评价
效益C1
科技成果评价 水平C2
规模C3
直接 经济 效益 C11
间接 经济 效益 C12
社会 效益 C13
学识 水平 C21
学术 创新 C22
技术 水平 C23
技术 创新 C24
待评价的科技成果
三. 层次分析法的若干问题
• 正互反阵的最大特征根是否为正数?特征向量 是否为正向量?一致性指标能否反映正互反阵接 近一致阵的程度?
• 怎样简化计算正互反阵的最大特征根和特征向量?
• 为什么用特征向量作为权向量?
• 当层次结构不完全或成对比较阵有空缺时怎样用 层次分析法?
1. 正互反阵的最大特征根和特征向量的性质
1 1/ 2
2
1
A 1/ 4 1/ 7
1/ 3
1/ 5
1/ 3 1/ 5
4 3 3
7
5
5
1 1/ 2 1/ 3
2
1
1
3 1 1
权向量(特征向量)w =(0.263,0.475,0.055,0.090,0.110)T
一致性指标 CI 5.073 5 0.018 5 1
随机一致性指标 RI=1.12 (查表) 一致性比率CR=0.018/1.12=0.016<0.1
• 精确计算的复杂和不必要
• 简化计算的思路——一致阵的任一列向量都是特征向量, 一致性尚好的正互反阵的列向量都应近似特征向量,可取 其某种意义下的平均。
和法——取列向量的算术平均
1 2 例 A 1/ 2 1
6 列向量 0.6 0.615 0.545 算术 0.587
4
归一化
0.3 0.308 0.364 平均 0.324 w
3
4 0.633 0.193 0.175
5 0.166 0.166 0.668
3.009 3
w(2) 0.263 0.475 0.055 0.090 0.110
CI k
0.003
0.001
0
0.005 0
RI=0.58 (n=3), CIk 均可通过一致性检验 方案P1对目标的组合权重为0.5950.263+ …=0.300 方案层对目标的组合权向量为 (0.300, 0.246, 0.456)T
i 1
i
4.不完全层次结构中组合权向量的计算
完全层次结构:上层每一元素与下层所有元素相关联
不完全层次结构
例: 评价教师贡献的层次结构
设第2层对第1层权向量 w(2)=(w1(2),w2(2))T已定
第3层对第2层权向量
贡献O
教学C1
科研C2
w1(3)=(w11(3),w12(3),w13(3),0)T P1
把定性方法与定量方法有机地结合起来,使复杂的系统被分解, 把多目标、多准则又难以全部量化处理的决策问题化为多层次 单目标问题。
一. 层次分析法的基本步骤
例. 选择旅游地 如何在3个目的地中按照景色、 费用、居住条件等因素选择.
目标层
O(选择旅游地)
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
7
不一致
a 4 (C :C )
13
13
a 8 (C :C )
23
23
允许不一致,但要确定不一致的允许范围
考察完全一致的情况
W ( 1) w1, w2 ,wn
令aij wi / wj
w1
w1
w1 w2
w2
A
w1
w2 w2
w (w1, w2 ,wn )T ~ 权向量
wn
wn
层次分析模型 对策论模型(效益的合理分配)
杨丰梅 yangfm@
y
层次分析模型
一. 层次分析法的基本步骤 二. 层次分析法的广泛应用 三. 层次分析法的若干问题
层次分析模型
背 • 日常工作、生活中的决策问题 景 • 涉及经济、社会等方面的因素
• 作比较判断时人的主观选择起相当 大的作用,各因素的重要性难以量化
2
1
7
5
5
A~成对比较阵
旅 A 1/ 4 1/ 7
游 地
1/ 3
1/ 5
1/ 3 1/ 5
1 2
1/ 2 1
1/ 3
1
A是正互反阵
3 1 1
要由A确定C1,… , Cn对O的权向量
成对比较阵和权向量
1 1/ 2 4
成对比较的不一致情况
A
2
1
a12 1/ 2 (C1 : C2 ) 一致比较
1 1/ 3 1/8
B 2
3
1
1/ 3
8 3 1
…Bn
最大特征根 1
2
… n
权向量
w1(3)
w2(3)
… wn(3)
组合权向量 第3层对第2层的计算结果
k1
0.595
w(3) 0.277 k 0.129
k
3.005
2 0.082 0.236 0.682
3.002
3 0.429 0.429 0.142