人教版八年级数学下册全册单元测试卷及答案
人教版初二数学下册第十八章-单元测试题及答案

八年级数学下册第十八章单元测试卷一、选择题(每小题3分,共30分)1.若平行四边形中两个内角的度数比为1∶3,则其中较小的内角是()A.30°B.45°C.60°D.75°2.如图,已知四边形ABCD是平行四边形,对角线AC,BD相交于点O,E是BC的中点,以下说法错误的是()A.OE=12DC B.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE ,第2题图,第3题图,第6题图3.如图,矩形ABCD的对角线AC=8 cm,∠AOD=120°,则AB的长为()A. 3 cm B.2 cm C.2 3 cm D.4 cm4.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形5.若顺次连接四边形各边中点所得的四边形是菱形,则该四边形一定是() A.矩形B.一组对边相等,另一组对边平行的四边形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,已知点E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()A.20°B.25°C.30°D.35°7.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④8.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB′=60°,则矩形ABCD的面积是()A.12 B.24 C.12 3 D.16 3,第8题图 ,第9题图 ,第10题图9.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( )A .1 B. 2 C .4-2 2 D .32-410.如图,在矩形ABCD 中,点E 是AD 的中点,∠EBC 的平分线交CD 于点F ,将△DEF 沿EF 折叠,点D 恰好落在BE 上点M 处,延长BC ,EF 交于点N ,有下列四个结论:①DF =CF ;②BF ⊥EN ;③△BEN 是等边三角形;④S △BEF =3S △DEF ,其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④二、填空题(每小题3分,共24分)11.如图,在▱ABCD 中,AB =5,AC =6,当BD =____时,四边形ABCD 是菱形.,第11题图),第12题图),第14题图)12.(2016·江西)如图,在▱ABCD 中,∠C =40°,过点D 作CB 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为____.13.在四边形ABCD 中,AD ∥BC ,分别添加下列条件之一:①AB ∥CD ;②AB =CD ;③∠A =∠C ;④∠B =∠C.能使四边形ABCD 为平行四边形的条件的序号是____.14.如图,∠ACB =90°,D 为AB 中点,连接DC 并延长到点E ,使CE =14CD ,过点B 作BF ∥DE 交AE 的延长线于点F ,若BF =10,则AB 的长为____.15.如图,四边形ABCD 是正方形,延长AB 到点E ,使AE =AC ,则∠BCE 的度数是____度.,第15题图),第16题图),第17题图),第18题图) 16.如图,在四边形ABCD中,对角线AC⊥BD,垂足为点O,E,F,G,H分别为边AD,AB,BC,CD的中点,若AC=8,BD=6,则四边形EFGH的面积为____.17.已知菱形ABCD的两条对角线长分别为6和8,M,N分别是边BC,CD的中点,P是对角线BD上一点,则PM+PN的最小值是____.18.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则S正方形MNPQ S正方形AEFG的值等于___.三、解答题(共66分)19.(8分)如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F 为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.(1)请你判断所画四边形的形状,并说明理由;(2)连接EF,若AE=8 cm,∠A=60°,求线段EF的长.20.(8分)如图,已知BD是△ABC的角平分线,点E,F分别在边AB,BC上,ED∥BC,EF∥AC.求证:BE=CF.21.(9分)如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC 于点F.(1)求证:△BEF≌△CDF;(2)连接BD,CE,若∠BFD=2∠A,求证:四边形BECD是矩形.22.(9分)如图,在▱ABCD中,E,F两点在对角线BD上,BE=DF.(1)求证:AE=CF;(2)当四边形AECF为矩形时,请求出BD-ACBE的值.23.(10分)如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)填空:当AB∶AD=__1∶2__时,四边形MENF是正方形,并说明理由.24.(10分)(2016·遵义)如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)求证:四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.25.(12分)如图,在正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于点Q.(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;(2)如图②,当点Q 落在DC 的延长线上时,猜想并写出PB 与PQ 满足的数量关系,并证明你的猜想.第十八章 单元检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.若平行四边形中两个内角的度数比为1∶3,则其中较小的内角是( B )A .30°B .45°C .60°D .75°2.如图,已知四边形ABCD 是平行四边形,对角线AC ,BD 相交于点O ,E 是BC 的中点,以下说法错误的是( D )A .OE =12DCB .OA =OC C .∠BOE =∠OBAD .∠OBE =∠OCE ,第2题图 ,第3题图 ,第6题图3.如图,矩形ABCD 的对角线AC =8 cm ,∠AOD =120°,则AB 的长为( D )A. 3 cm B .2 cm C .2 3 cm D .4 cm4.已知四边形ABCD 是平行四边形,下列结论中不正确的是( D )A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC =90°时,它是矩形D .当AC =BD 时,它是正方形5.若顺次连接四边形各边中点所得的四边形是菱形,则该四边形一定是( C )A .矩形B .一组对边相等,另一组对边平行的四边形C .对角线相等的四边形D .对角线互相垂直的四边形6.如图,已知点E 是菱形ABCD 的边BC 上一点,且∠DAE =∠B =80°,那么∠CDE 的度数为( C )A .20°B .25°C .30°D .35°7.在▱ABCD 中,AB =3,BC =4,当▱ABCD 的面积最大时,下结论正确的有(B)①AC =5;②∠A +∠C =180°;③AC ⊥BD ;④AC =BD .A .①②③B .①②④C .②③④D .①③④8.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B ′处,若AE =2,DE =6,∠EFB ′=60°,则矩形ABCD 的面积是( D )A .12B .24C .12 3D .16 3,第8题图 ,第9题图 ,第10题图9.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( C )A .1 B. 2 C .4-2 2 D .32-410.如图,在矩形ABCD 中,点E 是AD 的中点,∠EBC 的平分线交CD 于点F ,将△DEF 沿EF 折叠,点D 恰好落在BE 上点M 处,延长BC ,EF 交于点N ,有下列四个结论:①DF =CF ;②BF ⊥EN ;③△BEN 是等边三角形;④S △BEF =3S △DEF ,其中正确的结论是( B )A .①②③B .①②④C .②③④D .①②③④二、填空题(每小题3分,共24分)11.如图,在▱ABCD 中,AB =5,AC =6,当BD =__8__时,四边形ABCD 是菱形.,第11题图),第12题图),第14题图)12.如图,在▱ABCD 中,∠C =40°,过点D 作CB 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__50°__.13.在四边形ABCD 中,AD ∥BC ,分别添加下列条件之一:①AB ∥CD ;②AB =CD ;③∠A =∠C ;④∠B =∠C.能使四边形ABCD 为平行四边形的条件的序号是__①或③__.14.如图,∠ACB =90°,D 为AB 中点,连接DC 并延长到点E ,使CE =14CD ,过点B 作BF ∥DE 交AE 的延长线于点F ,若BF =10,则AB 的长为__8__.15.如图,四边形ABCD 是正方形,延长AB 到点E ,使AE =AC ,则∠BCE 的度数是__22.5__度.,第15题图) ,第16题图),第17题图) ,第18题图)16.如图,在四边形ABCD 中,对角线AC ⊥BD ,垂足为点O ,E ,F ,G ,H 分别为边AD ,AB ,BC ,CD 的中点,若AC =8,BD =6,则四边形EFGH 的面积为__12__.17.已知菱形ABCD 的两条对角线长分别为6和8,M ,N 分别是边BC ,CD 的中点,P 是对角线BD 上一点,则PM +PN 的最小值是__5__.18.如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则S 正方形MNPQ S 正方形AEFG的值等于__89__. 三、解答题(共66分)19.(8分)如图,点E ,F 分别是锐角∠A 两边上的点,AE =AF ,分别以点E ,F 为圆心,以AE 的长为半径画弧,两弧相交于点D ,连接DE ,DF.(1)请你判断所画四边形的形状,并说明理由;(2)连接EF ,若AE =8 cm ,∠A =60°,求线段EF 的长.解:(1)菱形,理由:根据题意得AE =AF =ED =DF ,∴四边形AEDF 是菱形 (2)∵AE =AF ,∠A =60°,∴△EAF 是等边三角形,∴EF =AE =8 cm20.(8分)如图,已知BD 是△ABC 的角平分线,点E ,F 分别在边AB ,BC 上,ED ∥BC ,EF ∥AC.求证:BE =CF.解:∵ED ∥BC ,EF ∥AC ,∴四边形EFCD 是平行四边形,∴DE =CF ,∵BD 平分∠ABC ,∴∠EBD =∠DBC ,∵DE ∥BC ,∴∠EDB =∠DBC ,∴∠EBD =∠EDB ,∴EB =ED ,∴EB =CF21.(9分)如图,将▱ABCD 的边AB 延长到点E ,使BE =AB ,连接DE ,交边BC 于点F.(1)求证:△BEF ≌△CDF ;(2)连接BD ,CE ,若∠BFD =2∠A ,求证:四边形BECD 是矩形.解:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD.∵BE =AB ,∴BE =CD.∵AB∥CD ,∴∠BEF =∠CDF ,∠EBF =∠DCF ,∴△BEF ≌△CDF(ASA) (2)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∠A =∠DCB ,∵AB =BE ,∴CD =EB ,∴四边形BECD 是平行四边形,∴BF =CF ,EF =DF ,∵∠BFD =2∠A ,∴∠BFD =2∠DCF ,∴∠DCF =∠FDC ,∴DF =CF ,∴DE =BC ,∴四边形BECD 是矩形22.(9分)如图,在▱ABCD 中,E ,F 两点在对角线BD 上,BE =DF.(1)求证:AE =CF ; (2)当四边形AECF 为矩形时,请求出BD -AC BE的值. 解:(1)由SAS 证△ABE ≌△CDF 即可 (2)连接CE ,AF ,AC.∵四边形AECF 是矩形,∴AC=EF ,∴BD -AC BE =BD -EF BE =BE +DF BE =2BE BE=2 23.(10分)如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点.(1)求证:△ABM ≌△DCM ;(2)填空:当AB ∶AD =__1∶2__时,四边形MENF 是正方形,并说明理由.解:(1)由SAS 可证 (2)理由:∵AB ∶AD =1∶2,∴AB =12AD ,∵AM =12AD ,∴AB =AM ,∴∠ABM =∠AMB ,∵∠A =90°,∴∠AMB =45°,∵△ABM ≌△DCM ,∴BM =CM ,∠DMC =∠AMB =45°,∴∠BMC =90°,∵E ,F ,N 分别是BM ,CM ,BC 的中点,∴EN ∥CM ,FN∥BM ,EM =MF ,∴四边形MENF 是菱形,∵∠BMC =90°,∴菱形MENF 是正方形24.(10分)(2016·遵义)如图,在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F.(1)求证:△AEF ≌△DEB ;(2)求证:四边形ADCF 是菱形;(3)若AC =4,AB =5,求菱形ADCF 的面积.解:(1)由AAS 易证△AFE ≌△DBE (2)由(1)知,△AEF ≌△DEB ,则AF =DB ,∵DB =DC ,∴AF =CD ,∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,∴AD=DC =12BC ,∴四边形ADCF 是菱形 (3)连接DF ,由(2)知AF 綊BD ,∴四边形ABDF 是平行四边形,∴DF =AB =5,∴S 菱形ADCF =12AC·DF =12×4×5=10 25.(12分)如图,在正方形ABCD 中,AC 是对角线,今有较大的直角三角板,一边始终经过点B ,直角顶点P 在射线AC 上移动,另一边交DC 于点Q.(1)如图①,当点Q 在DC 边上时,猜想并写出PB 与PQ 所满足的数量关系,并加以证明;(2)如图②,当点Q 落在DC 的延长线上时,猜想并写出PB 与PQ 满足的数量关系,并证明你的猜想.解:(1)PB =PQ.证明:连接PD ,∵四边形ABCD 是正方形,∴∠ACB =∠ACD ,∠BCD =90°,BC =CD ,又∵PC =PC ,∴△DCP ≌△BCP(SAS),∴PD =PB ,∠PBC =∠PDC ,∵∠PBC +∠PQC =180°,∠PQD +∠PQC =180°,∴∠PBC =∠PQD ,∴∠PDC =∠PQD ,∴PQ =PD ,∴PB =PQ (2)PB =PQ.证明:连接PD ,同(1)可证△DCP ≌△BCP ,∴PD =PB ,∠PBC =∠PDC ,∵∠PBC =∠Q ,∴∠PDC =∠Q ,∴PD =PQ ,∴PB =PQ。
人教版八年级下册数学《一次函数》单元测试卷合集(含答案)

人教版八年级下册数学《一次函数》单元测试卷(一)姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.函数y =的自变量的取值范围是( )A.22x -<≤B.22x -≤≤C.2x ≤且2x ≠D.22x -<<2.下列关系式中不是函数关系的是( )A.y =0x >)B.y x =(0x >)C.y =(0x >) D.y(x <3.小红的爷爷饭后出去散步,从家中走20分钟到一个离家900米的街心花园,与朋友聊天10分钟后,用15分钟返回家里. 图中表示小红爷爷离家的时间与外出的距离之间的关系是 ( )A B C D4.甲、乙两个工程队完成某项工程,首先是甲队单独做10天,然后是乙队加入合作,完成剩下的全部工程,设工程总量是1,工程进度满足如图所示的函数图象,那么实际完成这项工程比甲单独完成这项工程的时间少( ) A.12天 B.13天 C.14天 D.15天分)分)分)分)5.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。
在课堂上,李老师请学生画出自行车行进路程s (km )与行进时间t (小时)的函数图象的示意图,同学们画出的示意图如图所示,你认为正确的是( )6.如果(0)y kx k =≠的自变量增加4,函数值相应地减少16,则k 的值为( )A.4B.4-C.14D.14-7.你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x ,瓶中水面的高度为y ,下面能大致表示上面故事情节的图象是( )A B C D8.如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离..为S ,则S 关于t 的函数图象大致为( )9.如果一次函数的图象经过第一象限,且与轴负半轴相交,那么( )A .,B .,C .,D .,10.如图,在矩形ABCD 中,AB=2,1BC =,动点P 从点B 出发,沿路线B C D→→作匀速运动,那么ABP ∆的面积S 与点P 运动的路程x 之间的函数图象大致是( )二 、填空题(本大题共5小题,每小题3分,共15分)11.函数2113y x =+的自变量x 的取值范围是 .12.已知一次函数的图象过点与,则这个一次函数随的增大而 .13.函数1x y x-=的自变量x 的取值范围是 .14.已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,,则a b +=______. y kx b =+y 0k >0b >0k >0b <0k <0b >0k <0b <()0,3()2,1y x D C P BAO31 1 3 Sx A .O1 1 3 Sx O3 Sx 3O1 1 3 SxB .C .D .2BAOA .B .C .D .S t S tS tStOOOO15.已知直线123141535y x y x y x ==+=+,,的图象如图所示,若无论x 取何值,y 总取12y y ,,3y ,中的最小值,则y 的最大值为 .三 、解答题(本大题共7小题,共55分)16.等腰ABC ∆周长为10cm ,底边BC 长为cm y ,腰长为cm x .⑴写出y 关于x 的函数关系式; ⑵求x 的取值范围; ⑶求y 的取值范围.17.已知一次函数()22312y a x a =-+-.求:①a 为何值时,一次函数的图象经过原点.②a 为何值时,一次函数的图象与y 轴交于点()0,9.18.已知一次函数()22312y a x a =-+-.求:①a 为何值时,一次函数的图象经过原点. ②a 为何值时,一次函数的图象与y 轴交于点()0,9.19.右图是某汽车行驶的路程()S km 与时间()min t 的函数关系图.观察图中所提供的信息,解答下列问题:⑴汽车在前9分钟内的平均速度是 ; ⑵汽车在中途停了多长时间? ; ⑶当3016t ≤≤时,求S 与t 的函数关系式.20.判断下列式子中y是否是x的函数.⑴22(35)y x=-⑵y=⑶12y x=-⑷8y x=-21.等腰三角形的周长为30,写出它的底边长y与腰长x之间的函数关系,并写出自变量的取值范围?22.甲乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的方案:甲超市累计购买商品超出300元后,超出部分按原价的8折优惠,在已超市累计购买商品超出200元后,超出部分按原价8.5折优惠.设顾客预计累计购物X元.(X>300)试比较顾客到哪家超市购物更实惠?说明理由人教版八年级下册数学《一次函数》单元测试卷答案解析一、选择题1.A2.A3.D4.A5.C6.B;由题意得:16(4)y k x-=+,将y kx=带入等式,即16(4)kx k x-=+,所以解出4k=-7.B8.C9.B10.B;【解析】了解P点的运动路线,根据已知矩形的长和宽求出当点P运动到C点时的S值为1,即当x为1时的S值为1,之后面积保持不变.二、填空题11.x为任意实数12.减小13.0x>14.16;【解析】分别将点()8m,代入两个一次函数解析式,得8m a=-+和8m b=+,联立方程得88m a m b+=-+++,所以16a b+=15.3717;【解析】如图,分别求出123y y y,,交点的坐标3322A⎛⎫⎪⎝⎭,;252599B⎛⎫⎪⎝⎭,;60371717C ⎛⎫ ⎪⎝⎭, 当32x <,1y y =;当232529x y y =,;当2560917x <,2y y = 当36017x y y =,.看图象可得到C 点最高, ∴6017x =,16037=+1=31717y ⨯最大.三 、解答题16.⑴102y x =-;⑵2.55x <<;⑶05y <<【解析】⑴由题意,得10x x y ++=,即102y x =-⑵因为x 、y 为线段,所以0x >,0y >.所以1020x ->,即05x <<;又因为x 、y 为三角形的边长,所以x x y +>,即2102x x >-,所以 2.5x >.所以2.55x << ⑶由2.55x <<,得5210x <<,所以1025x -<-<-,所以01025x <-<.因此y 的取值范围是05y <<.17.①2a =-;②a =18.①2a =-;②a =19.⑴4/min 3km ;⑵7分钟;⑶()3022016t S t =-≤≤. 20.⑴、⑶不是,⑵、⑷是.“y 有唯一值与x 对应”.21.⑴302y x =-,由三角形的三边关系可得:2x y >,0x >,0y >,可得15152x <<. 22.设在甲超市所付的购物费用为y 甲元,在乙超市所付的购物费用为y 乙元,由题意可得,y 甲=300+0.8(x-300)=60+0.8x ,y 乙=20090%200)0.920(300)x x x +⨯-=+>(当y 甲=y 乙时0.9200.860x x +=+,解得400x =; 当y 甲<y 乙,时0.9200.860x x +<+,解得400x >;当y甲>y乙,时0.9200.860x x+>+,解得400x<.所以当购买多于300元而少于400元的商品时,选择乙超市比较优惠,当购买400元的商品时,两个超市费用相同,选择哪个都可以,当购买商品大于400元时,选择甲超市比较优惠.人教版八年级下册数学《一次函数》单元测试卷(二)姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
人教版八年级数学下册第十九章《一次函数》单元测试附答案卷

第十九章《一次函数》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.(跨学科融合)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中自变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器2.函数y=√x+1中自变量x的取值范围是()A.x≥2B.x≥-1C.x≤1D.x≠13.下列函数中,不是一次函数的是()A.y=x+1B.y=-xC.y=x2D.y=1-x4.直线y=2x经过()A.第二、四象限B.第一、二象限C.第三、四象限D.第一、三象限5.将函数y=-3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=-3x+2B.y=-3x-2C.y=-3(x+2)D.y=-3(x-2)6.已知关于x的正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是()A.k>5B.k<5C.k>-5D.k<-57.已知点(-1,y1),(4,y2)在一次函数y=3x-2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y18.如图,已知一次函数y=kx+b的图象,则k,b的值为()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0第8题第9题第10题图9.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900 mB.小涛从家去报亭的平均速度是60 m/minC.小涛从报亭返回家中的平均速度是80 m/minD.小涛在报亭看报用了15 min10.(创新题)如图,若输入x的值为-5,则输出的结果为()A.-6B.-5C.5D.6二、填空题(共5小题,每小题3分,共15分)11.若y与x的函数关系式为y=2x-2,当x=2时,y的值为.12.直线y=2x-3与x轴的交点坐标是.13.如图,已知一次函数y1=kx+b与y2=x+a的图象,若y1<y2,则x的取值范围是.14.(跨学科融合)测得一根弹簧的长度与所挂物体质量的关系如下表:(重物不超过20千的函数关系式是(015.(创新题)如图1,在矩形ABCD中,BC=5,动点P从点B出发,沿BC-CD-DA运动至点A 停止.设点P运动的路程为x,△ABP的面积为y,若y关于x的函数图象如图2所示,则DC=,y的最大值是.三、解答题(一)(共3小题,每小题8分,共24分)16.已知一次函数y=2x-6.(1)判断点(4,3)是否在此函数的图象上;(2)此函数的图象不经过第象限,y随x的增大而.17.已知直线y=kx+b经过点A(3,7)和B(-8,-4),求直线AB的解析式.18.如图,已知直线l:y=kx+3经过A,B两点,点A的坐标为(-2,0).(1)求直线l的解析式;(2)当kx+3>0时,根据图象直接写出x的取值范围.。
人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)(含期中期末试题,共7套)第十六章达标检测卷(100分 90分钟)一、判断题:(每小题1分,共5分)1…………………( )222.( )3=2.…( )413…( )5都不是最简二次根式.( ) 二、填空题:(每小题2分,共20分)6.当78.a 9.当101112131415.x 16(A )17.若x<y<0………………………()(A)2x(B)2y(C)-2x(D)-2y18.若0<x<1………………………()(A)2x(B)-2x(C)-2x(D)2x19(a<0)得………………………………………………………………()(A(B(C(D20.当a<0,b<0时,-a+b可变形为………………………………………()(A)2(B)-2(C)2(D)2四、计算题:(每小题6分,共24分)21.;2223)÷)(a≠b).24五、求值:25.已知x26.当x=六、解答题:(共20分)+…).27.(8分)计算(+1)28参考答案(一)判断题:(每小题1分,共5分)1、|-2|=2.【答案】×.2、2).【答案】×.3、=|x -1|,2=x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4、【提示】13【答案】√.5是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分)6、7、89、x -410、11、12、13、(7-14、【答案】40.0时,x+1=0,y-3=0.15、【提示】∵34,∴_______<8__________.[4,5].由于84与5之间,则其整数部分x=?小数部分y=?[x=4,y=4【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵x<y<0,∴x-y<0,x+y<0.∴|x-y|=y-x.18、19、20、21、【解】原式=2-2=5-3-2=6- 22、【提示】先分别分母有理化,再合并同类二次根式.=431.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a abmnm ·221a b=21b 1mab+22n ma b =21b -1ab +221a b=2221a ab a b -+. 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.25、26、∴ x 2=1x.当x=1=-1【点评】本题如果将前两个“分式”分拆成两个“分式”=-1)x1x.六、解答题:(共22分)27、(8分)28、(14分)又∵∴ 原式=x y y x +-y x x y +=2x y 当x =14,y =12时, 原式=21412=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.第十七章达标检测卷(120分 120分钟)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25B .14C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的13,斜边长为10,则它的面积为( ) A.10 B.15 C.20 D.303. 如图,已知正方形B 的面积为144,正方形C 的面积为169,那么正方形A 的面积是( ) A.313 B.144 C.169 D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+ B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △ABC 中,90C ︒∠=,所以222c b a =+ D.在Rt △ABC 中,90B ︒∠=,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.52cm C.5.5 cm D.1 cm6.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A.365B.1225 C.94D.3347. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B.3+1 C.5-1 D.5+18. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.A.6B.8C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( ) A.6 B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A. B.3 C.1 D. 二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________. 15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm,cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C2.B3.A4.A5.A6.C7.C8.D9.D10.A二、11.37012.直角;24 分析:解方程得x 1=6,x 2=8.∵2212x x =36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.43 cm 分析:过点A 作AE ⊥BC 于点E,AF ⊥CD 交CD 的延长线于点F.易得△ABE ≌△ADF,所以AE=AF,进一步证明四边形AECF 是正方形,且正方形AECF 与四边形ABCD 的面积相等,则AE=24=26(cm),所以AC=2AE=2×26=43(cm).14.略15. 分析:如图,设这一束光与x 轴交于点C,作点B 关于x 轴的对称点B',过B'作B'D ⊥y 轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.所以S△ABC=·BC·AD≈×7×5.8=20.3≈20.17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC===10 .∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C作CE⊥AD于点E,由题意得AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m.在Rt△BCE中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S△ABC=ab,S△C'A'D'=ab,S直角梯形A'D'BA=(a+b)(a+b)= (a+b)2,S△ACA'=c2.(2)由题意可知S△ACA'=S直角梯形-S△ABC-S△C'A'D'=(a+b)2-ab-ab=(a2+b2),而S△ACA'=c2.所以A'D'BAa2+b2=c2.21.解:(1)MN不会穿过原始森林保护区.理由如下:过点C作CH⊥AB于点H.设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x m,在Rt△HBC中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN不会穿过原始森林保护区.(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.第十八章达标检测卷(120分120分钟)一、选择题(每题4分,共40分)1.不能判定四边形ABCD为平行四边形的题设是()(A)AB平行且等于CD (B)∠A=∠C,∠B=∠D(C)AB=AD,BC=CD (D)AB=CD,AD=BC2.正方形具有而菱形不一定具有的性质是()(A)四条边相等(B)对角线互相垂直平分(C)对角线平分一组对角(D)对角线相等3、顺次连结任意四边形四边中点所得的四边形一定是()A、平行四边形B、矩形C、菱形D、正方形4.正多边形的一个内角是120°,则这个正多边形的边数为()A.4B.8C.6D.125.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于( )A.18°B.36°C.72°D.108°6.下列命题中,真命题是()A、有两边相等的平行四边形是菱形B、对角线垂直的四边形是菱形C、四个角相等的菱形是正方形D、两条对角线相等的四边形是矩形7.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n 的值是()A.6B.7C.8D.98.菱形的周长是它的高的倍,则菱形中较大的一个角是()A.100°B.120°C.135°D.150°9.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是()A.20B.15C.10D.510.如图,梯形ABCD中,AB∥CD,点E,F,G分别是BD,AC,DC的中点.已知两底之差是6,两腰之和是12,则△EFG 的周长是()A.8B.9C.10D.12二、填空题(每题4分,共24分)11、菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为_________。
人教版八年级数学下册单元测试《第18章平行四边形》(a卷)(解析版)

初中数学试卷新人教版八年级下册《第18章平行四边形》单元测试(A卷)一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于度,外角和等于度.2.正方形的面积为4,则它的边长为,一条对角线长为.3.一个多边形的内角和等于它的外角和的3倍,它是边形.4.如果四边形ABCD满足条件,那么这个四边形的对角线AC和BD互相垂直(只需填写一组你认为适当的条件).5.如果边长分别为4cm和5cm的矩形与一个正方形的面积相等,那么这个正方形的边长为cm.6.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是cm2.7.平行四边形ABCD,加一个条件,它就是菱形.8.等腰梯形的上底是10cm,下底是14cm,高是2cm,则等腰梯形的周长为cm.9.已知菱形的一条对角线长为12cm,面积为30cm2,则这个菱形的另一条对角线长为cm.10.如图,▱ABCD中,AE⊥BC于E,AF⊥DC于F,BC=5,AB=4,AE=3,则AF的长为.11.如图,梯形ABCD中,AD∥BC,已知AD=4,BC=8,E、F分别为AB、DC的中点,则EF=,EF分梯形所得的两个梯形的面积比S1:S2为.12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形(请填图形下面的代号,答案格式如:“①,②,③,④,⑤”).13.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了米.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去.若第一个正方形边长为1,则第n个正方形的面积是.二、填空题(共4小题,每题3分,共12分)15.如图,平行四边形ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于()A.100°B.80°C.60°D.40°16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形,正三角形,等腰梯形,菱形等四种方案,你认为符合条件的是()A.等腰三角形B.正三角形C.等腰梯形D.菱形17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是()A.6条 B.7条 C.8条 D.9条18.如图,图中的△BDC′是将矩形ABCD沿对角线BD折叠得到的,图中(包括实线,虚线在内)共有全等三角形()对.A.1 B.2 C.3 D.4三、解答题(共60分)19.如图,平行四边形ABCD中,DB=CD,∠C=70°,AE⊥BD于E.试求∠DAE的度数.20.已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.21.在一个平行四边形中,若一个角的平分线把一条边分成长是2cm和3cm的两条线段,求该平行四边形的周长是多少?22.已知:如图,▱ABCD中,延长AB到E,延长CD到F,使BE=DF.求证:AC与EF互相平分.23.如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少.24.顺次连接等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.25.如图所示,在△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN 交∠BCA的平分线于E,交∠BCA的外角平分线于F.(1)请猜测OE与OF的大小关系,并说明你的理由;(2)点O运动到何处时,四边形AECF是矩形?写出推理过程;(3)在什么条件下,四边形AECF是正方形?26.如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=BC.根据上面的结论:(1)你能否说出顺次连接任意四边形各边中点,可得到一个什么特殊四边形并说明理由;(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.27.如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?新人教版八年级下册《第18章平行四边形》单元测试(A卷)参考答案与试题解析一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于360度,外角和等于360度.【考点】多边形内角与外角.【专题】计算题.【分析】n边形的内角和是(n﹣2)•180度,因而代入公式就可以求出四边形的内角和;任何凸多边形的外角和都是360度.【解答】解:四边形的内角和=(4﹣2)•180=360度,四边形的外角和等于360度.【点评】本题主要考查了多边形的内角和公式与外角和定理,是需要熟记的内容.2.正方形的面积为4,则它的边长为2,一条对角线长为2.【考点】正方形的性质.【分析】根据正方形的面积公式可得到正方形的边长,根据正方形的对角线的求法可得对角线的长.【解答】解:设正方形的边长为x,则对角线长为=x;由正方形的面积为4,即x2=4;解可得x=2,故对角线长为2;故正方形的边长为2,对角线长为2.故答案为2,2.【点评】本题考查正方形的面积公式以及正方形的性质,此题是基础题,比较简单.3.一个多边形的内角和等于它的外角和的3倍,它是八边形.【考点】多边形内角与外角.【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故答案为:8.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.4.如果四边形ABCD满足四边形ABCD是菱形或正方形条件,那么这个四边形的对角线AC和BD互相垂直(只需填写一组你认为适当的条件).【考点】正方形的性质;菱形的性质.【专题】开放型.【分析】符合对角线互相垂直的四边形有:菱形、正方形,选择一个即可.【解答】解:根据四边形的性质可得到对角线互相垂直的有菱形和正方形,从而答案为:四边形ABCD是菱形或正方形.【点评】此题主要考查菱形和正方形的对角线的性质.5.如果边长分别为4cm和5cm的矩形与一个正方形的面积相等,那么这个正方形的边长为2cm.【考点】正方形的性质.【专题】计算题.【分析】先求出长方形的面积,因为长方形的面积和正方形的面积相等,再根据正方形的面积公式即可求得其边长.【解答】解:边长分别为4cm和5cm的矩形的面积是20cm2,所以正方形的面积是20cm2,则这个正方形的边长为=2(cm).故答案为2.【点评】本题主要考查了正方形的面积计算公式,即边长乘边长.6.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是20cm2.【考点】菱形的性质.【专题】计算题.【分析】根据菱形的面积等于两对角线乘积的一半即可求得其面积.【解答】解:由已知得,菱形面积=×5×8=20cm2.故答案为20.【点评】本题主要考查了菱形的面积的计算公式.7.平行四边形ABCD,加一个条件一组邻边相等或对角线互相垂直,它就是菱形.【考点】菱形的判定.【专题】开放型.【分析】菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.所以,可添加:一组邻边相等或对角线互相垂直.【解答】解:因为一组邻边相等的平行四边形是菱形;对角线互相垂直平分的四边形是菱形.可补充条件:一组邻边相等或对角线互相垂直.【点评】本题考查菱形的判定.8.等腰梯形的上底是10cm,下底是14cm,高是2cm,则等腰梯形的周长为24+4 cm.【考点】等腰梯形的性质;勾股定理.【分析】过A,D作下底BC的垂线,从而可求得BE的长,根据勾股定理求得AB的长,这样就可以求得等腰梯形的周长了.【解答】解:过A,D作下底BC的垂线,则BE=CF=(14﹣10)=2cm,在直角△ABE中根据勾股定理得到:AB=CD==2,所以等腰梯形的周长=10+14+2×2=24+4cm.故答案为:24+4cm.【点评】等腰梯形的问题可以通过作高线转化为直角三角形的问题来解决.9.已知菱形的一条对角线长为12cm,面积为30cm2,则这个菱形的另一条对角线长为5cm.【考点】菱形的性质.【专题】计算题.【分析】设另一条对角线长为x,然后根据菱形的面积计算公式列方程求解即可.【解答】解:设另一条对角线长为xcm,则×12x=30,解之得x=5.故答案为5.【点评】主要考查菱形的面积公式:两条对角线的积的一半.10.如图,▱ABCD中,AE⊥BC于E,AF⊥DC于F,BC=5,AB=4,AE=3,则AF的长为.【考点】平行四边形的性质.【专题】几何图形问题.【分析】平行四边形的面积=底×高,根据已知,代入数据计算即可.【解答】解:连接AC,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,在△ABC和△CDA中,,∴△ABC≌△CDA(SSS),=S△CDA,∴S△ABC即BC•AE=CD•AF,∵CD=AB=4,∴AF=.故答案为:.【点评】“等面积法”是数学中的重要解题方法.在三角形和四边形中,以不同的边为底其高也不相同,但面积是定值,从而可以得到不同底的高的关系.11.如图,梯形ABCD中,AD∥BC,已知AD=4,BC=8,E、F分别为AB、DC的中点,则EF=6,EF分梯形所得的两个梯形的面积比S1:S2为5:7.【考点】梯形中位线定理;梯形.【分析】要求EF的长,只需根据梯形的中位线定理求解;根据平行线等分线段定理,知两个梯形的高相等,只需根据梯形的面积公式,即可求得两个梯形的面积比.【解答】解:∵AD=4,BC=8,E、F分别为AB、DC的中点,∴EF=(4+8)=6,则S1=(4+6)=h,S2=(6+8)=.则S1:S2=5:7.【点评】此题主要考查梯形的中位线定理和梯形的面积公式.12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形②(请填图形下面的代号,答案格式如:“①,②,③,④,⑤”).【考点】翻折变换(折叠问题).【专题】压轴题;操作型.【分析】通过动手操作易得出答案.【解答】解:对于①剪开后能拼出平行四边形和梯形两种,对于②剪开后能拼出三种图形,对于③剪开后能拼出三角形和平行四边形两种,对于④剪开后能拼出平行四边形,对于⑤剪开后能拼出平行四边形和梯形两种,故符合条件的图形为②.【点评】本题考查图形的折叠与拼接,同时考查了三角形、四边形等几何基本知识,解题时应分别对每一个图形进行仔细分析,难度不大.13.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了120米.【考点】多边形内角与外角.【专题】应用题.【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.故答案为:120.【点评】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去.若第一个正方形边长为1,则第n个正方形的面积是)n﹣1.【考点】正方形的性质;三角形中位线定理.【专题】压轴题;规律型.【分析】根据正方形的性质及三角形中位线的定理可分别求得第二个,第三个正方形的面积从而不难发现规律,根据规律即可求得第n个正方形的面积.【解答】解:根据三角形中位线定理得,第二个正方形的边长为=,面积为,第三个正方形的面积为=()2,以此类推,第n个正方形的面积为.【点评】根据中位线定理和正方形的性质计算出正方形的面积,找出规律,即可解答.二、填空题(共4小题,每题3分,共12分)15.如图,平行四边形ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于()A.100°B.80°C.60°D.40°【考点】平行四边形的性质.【专题】常规题型.【分析】根据平行四边形的性质和角平分线的性质求解.【解答】解:在▱ABCD中,∵AD∥BC,∴∠DAB=180°﹣∠B=180°﹣100°=80°.∵AE平分∠DAB,∴∠AED=∠DAB=40°.故选D.【点评】本题考查了平行四边形的性质,并利用了两直线平行,同旁内角互补和角的平分线的性质.16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形,正三角形,等腰梯形,菱形等四种方案,你认为符合条件的是()A.等腰三角形B.正三角形C.等腰梯形D.菱形【考点】中心对称图形;轴对称图形.【专题】方案型.【分析】根据轴对称图形与中心对称图形的概念和等腰三角形、正三角形、等腰梯形、菱形的性质求解.【解答】解:等腰三角形、正三角形、等腰梯形都只是轴对称图形;菱形既是轴对称图形,也是中心对称图形.故选:D.【点评】解题时要注意中心对称图形与轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是()A.6条 B.7条 C.8条 D.9条【考点】多边形内角与外角;多边形的对角线.【分析】先求出多边形的边数,再求从这个多边形的一个顶点出发的对角线的条数即可.【解答】解:∵多边形的每一个内角都等于140°,∴每个外角是180°﹣140°=40°,∴这个多边形的边数是360°÷40°=9,∴从这个多边形的一个顶点出发的对角线的条数是6条.故选:A.【点评】本题考查多边形的外角和及对角线的知识点,找出它们之间的关系是本题解题关键.18.如图,图中的△BDC′是将矩形ABCD沿对角线BD折叠得到的,图中(包括实线,虚线在内)共有全等三角形()对.A.1 B.2 C.3 D.4【考点】矩形的性质;全等三角形的判定.【分析】共有四对,分别为△ABO≌△C′DO,△ABD≌△CDB,△ABD≌△C′DB,△CDB ≌△C′DB.【解答】解:∵△BDC′是将矩形ABCD沿对角线BD折叠得到的∴C′D=CD,∠C=∠C′,BD=BD∴△CDB≌△C′DB同理可证其它三对三角形全等.故选D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题(共60分)19.如图,平行四边形ABCD中,DB=CD,∠C=70°,AE⊥BD于E.试求∠DAE的度数.【考点】平行四边形的性质.【分析】因为BD=CD,所以∠DBC=∠C=70°,又因为四边形ABCD是平行四边形,所以AD∥BC,所以∠ADB=∠DBC=70°,因为AE⊥BD,所以在直角△AED中,∠DAE即可求出.【解答】解:在△DBC中,∵DB=CD,∠C=70°,∴∠DBC=∠C=70°,又∵在▱ABCD中,AD∥BC,∴∠ADB=∠DBC=70°,又∵AE⊥BD,∴∠DAE=90°﹣∠ADB=90°﹣70°=20°.【点评】此题主要考查了平行四边形的基本性质,以及等腰三角形的性质,难易程度适中.20.已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.【考点】平行四边形的判定;三角形中位线定理.【专题】证明题.【分析】平行四边形的判定方法有多种,选择哪一种解答应先分析题目中给的哪一方面的条件多些,本题中给了两条中位线,利用中位线的性质,可利用一组对边平行且相等来证明.【解答】解:在△ABC中,∵BE、CD为中线∴AD=BD,AE=CE,∴DE∥BC且DE=BC.在△OBC中,∵OF=FB,OG=GC,∴FG∥BC且FG=BC.∴DE∥FG,DE=FG.∴四边形DFGE为平行四边形.【点评】平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.21.在一个平行四边形中,若一个角的平分线把一条边分成长是2cm和3cm的两条线段,求该平行四边形的周长是多少?【考点】平行四边形的性质.【专题】分类讨论.【分析】此题注意要分情况讨论:根据角平分线的定义以及平行线的性质,可以发现一个等腰三角形,即较短的边是2cm或3cm,又较长的边是2+3=5cm,所以平行四边形的周长是2(2+5)=14或2(3+5)=16cm.【解答】解:如图所示:∵在平行四边形ABCD中,AB=CD,AD=BC,AD∥BC,∴∠AEB=∠CBE.又∠ABE=∠CBE∴∠ABE=∠AEB∴AB=AE.(1)当AE=2时,则平行四边形的周长=2(2+5)=14.(2)当AE=3时,则平行四边形的周长=2(3+5)=16.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.22.已知:如图,▱ABCD中,延长AB到E,延长CD到F,使BE=DF.求证:AC与EF互相平分.【考点】平行四边形的判定与性质.【专题】证明题.【分析】此题要证明AC与EF互相平分,只需证明以AC,EF为对角线的四边形是平行四边形就可.根据已知的平行四边形,只需证明AE=CF.根据已知平行四边形的对边相等,即AB=CD,再加上已知BE=DF,就可证明AE=CF.根据一组对边平行且相等的四边形是平行四边形就可.【解答】解:连接AF,CE.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.又∵BE=DF∴AB+BE=CD+DF即AE=CF∴四边形AECF是平行四边形.∴AC与EF互相平分.【点评】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.23.如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少.【考点】正方形的性质.【分析】一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,有101块黑色瓷砖,由正方形的特殊性质知正方形知每边有(101+1)÷2=51块瓷砖,那么可求出瓷砖的总数.【解答】解:根据题意得正方形每边有(101+1)÷2=51块瓷砖,所以总数为:51×51=2601(块).【点评】解答本题要充分利用正方形的特殊性质.对角线上的瓷砖数等于每边的瓷砖数.24.顺次连接等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.【考点】等腰梯形的性质;三角形中位线定理;菱形的判定.【专题】综合题.【分析】由题意写出已知,画出图形,写出求证.由等腰梯形可得AC=BD,再由三角形中位线定理可得出小四边形四边的关系,即可知它是什么四边形.【解答】解:是菱形理由是:连接AC、BD∵E、F、G、H分别是AB、BC、CD、DA的中点∴EF=AC,GH=AC,EH=BD,GF=BD∵等腰梯形ABCD中AD∥BC,AB=CD,∴AC=BD∴EF=GH=EH=GF∴四边形EFGH菱形.【点评】本题考查了等腰梯形的性质和三角形中位线的性质.25.如图所示,在△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN 交∠BCA的平分线于E,交∠BCA的外角平分线于F.(1)请猜测OE与OF的大小关系,并说明你的理由;(2)点O运动到何处时,四边形AECF是矩形?写出推理过程;(3)在什么条件下,四边形AECF是正方形?【考点】正方形的判定;等腰三角形的判定与性质;矩形的判定.【专题】探究型.【分析】(1)猜想:OE=OF,由已知MN∥BC,CE、CF分别平分∠BCO和∠GCO,可推出∠OEC=∠OCE,∠OFC=∠OCF,所以得EO=CO=FO.(2)由(1)得出的EO=CO=FO,点O运动到AC的中点时,则由EO=CO=FO=AO,所以这时四边形AECF是矩形.(3)由已知和(2)得到的结论,点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,则推出四边形AECF是矩形且对角线垂直,所以四边形AECF是正方形.【解答】解:(1)猜想:OE=OF,理由如下:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠GCF,又∵CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE,∠OCF=∠GCF,∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO,∴EO=FO.(2)当点O运动到AC的中点时,四边形AECF是矩形.∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形,∵FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四边形AECF是矩形.(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,已知MN∥BC,当∠ACB=90°,则∠AOF=∠COE=∠COF=∠AOE=90°,∴AC⊥EF,∴四边形AECF是正方形.【点评】此题考查的知识点是正方形和矩形的判定及角平分线的定义,解题的关键是由已知得出EO=FO,然后根据(1)的结论确定(2)(3)的条件.26.如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=BC.根据上面的结论:(1)你能否说出顺次连接任意四边形各边中点,可得到一个什么特殊四边形并说明理由;(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.【考点】等腰梯形的性质;菱形的判定与性质;矩形的判定与性质;等腰梯形的判定.【专题】开放型.【分析】设四边形DBCE的中点分别为OPMN,根据已知条件及平行四边形的性质可得到是一个平行四边形;根据各四边的性质进行分析即可.【解答】解:(1)设四边形DBCE的中点分别为OPMN,则PM=ON,且PM∥ON⇒顺次连接任意四边形各边中点得到平行四边形;(2)平行四边形,矩形,菱形,根据各个四边形的性质:当四边形为菱形时,连接菱形各边中点所得出的为矩形;当四边形为矩形时,连接各边中点所得出的为菱形;当四边形为等腰梯形时,连接各边中点所得为菱形.【点评】本题考查的是各个四边形的性质以及等腰梯形的性质的运用.27.如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?【考点】矩形的判定;全等三角形的判定与性质;等边三角形的性质;平行四边形的判定.【分析】(1)四边形ADEF是平行四边形,可先证明△ABC≌△DBE,可得DE=AC,又有AC=AF,可得DE=AF,同理可得AD=EF,根据两组对边分别相等的四边形是平行四边形,可证四边形ADEF是平行四边形;(2)如四边形ADEF是矩形,则∠DAF=90°,又有∠BAD=∠FAC=60°,可得∠BAC=150°,故∠BAC=150°时,四边形ADEF是矩形;(3)当∠BAC=60°时,∠DAF=180°,此时D、A、F三点在同一条直线上,以A,D,E,F为顶点的四边形就不存在.【解答】解:(1)四边形ADEF是平行四边形,理由如下:∵△ABD,△BCE都是等边三角形,∴∠DBE=∠ABC=60°﹣∠ABE,AB=BD,BC=BE.在△ABC与△DBE中,,∴△ABC≌△DBE(SAS).∴DE=AC.又∵AC=AF,∴DE=AF.同理可得EF=AD.∴四边形ADEF是平行四边形.(2)∵四边形ADEF是平行四边形,∴当∠DAF=90°时,四边形ADEF是矩形,∴∠FAD=90°.∴∠BAC=360°﹣∠DAF﹣∠DAB﹣∠FAC=360°﹣90°﹣60°﹣60°=150°.则当∠BAC=150°时,四边形ADEF是矩形;(3)当△ABC满足角A=60°时,四边形ADEF不存在.【点评】此题主要考查了用等边三角形的性质,全等三角形的性质与判定来解决平行四边形的判定问题,也探讨了矩形,平行四边形之间的关系.。
人教版八年级数学下册第十七章《勾股定理》单元测试卷附答案

第十七章《勾股定理》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.如图,一根垂直于地面的旗杆在离地面5 m的B处撕裂折断,旗杆顶部落在离旗杆底部12 m的A处,则旗杆折断部分AB的高度是()A.5 mB.12 mC.13 mD.18 m第1题图第3题图第5题图2.下列各组数据中,不能作为直角三角形的三边长的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,153.如图,在Rt△ABC中,∠ACB=90°.若AB=10,则正方形ADEC和正方形BCFG的面积和为()A.100B.120C.140D.1604.若直角三角形的两条直角边长分别是3和4,则斜边长为()A.2.4B.5C.√7D.75.如图,以数轴的单位长线段为边作一个正方形,数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A.1B.1.4C.√2D.√36.在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是()A.a2+b2=c2B.a2+c2=b2C.b2+c2=a2D.以上都有可能7.若一个直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是()A.60B.30C.20D.328.如图,将风筝放至高30 m,牵引线与水平面夹角约为45°的高空中,则牵引线AB的长约是()A.30 mB.45 mC.20√3 mD.30√2 m第8题图第9题图第10题图9.(跨学科融合)如图,在物理实验课上,小明将长为8 cm的橡皮筋放置在水平面上,固定两端A和B,然后把中点C垂直向上拉升3 cm至点D,则橡皮筋被拉长了()A.3 cmB.2 cmC.6 cmD.4 cm10.如图所示的一块地,已知∠ADC=90°,AD=12 m,CD=9 m,AB=25 m,BC=20 m,则这块地的面积为()A.96 m2B.204 m2C.196 m2D.304 m2二、填空题(共5小题,每小题3分,共15分)11.如图,两个正方形的面积分别是100和36,则字母B所代表的正方形的面积是.第11题图第13题图12.若△ABC的三边长满足a2=b2+c2,则△ABC是直角三角形且∠=90°.13.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了步路(假设2步为1米),却踩伤了花草.14.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于.第14题图第15题图15.(数学文化)如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AH=6,EF=2,那么AB的长等于.三、解答题(一)(共3小题,每小题8分,共24分)16.如图,根据所给条件,求BC的长.17.如果三角形的三边长分别为√2,√6,2,那么这个三角形是直角三角形吗?。
人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析

人教版八年级数学下册《第19章一次函数》单元测试一、单选题1.下列关于变量x ,y 的关系,其中y 不是x 的函数的是()A .B .C .D .2.下列变量之间的关系不是函数关系的是()A .长方形的宽一定,其长与面积B .正方形的周长与面积C .等腰三角形的底边与面积D .速度一定时,行驶的路程与时间3.小明以4km /h 的速度匀速前进,则他行走的路程()km s 与时间()h t 之间的函数关系式是()A .4s t=B .4000s t=C .4t s =D .4s t=4.平面直角坐标系中,直线y =2x ﹣6不经过()A .第一象限B .第二象限C .第三象限D .第四象限5.一次函数y =kx +b (k ≠0)的图象如图所示,则k ,b 的取值范围是()A .k >0,b <0B .k >0,b >0C .k <0,b <0D .k <0,b >06.要从直线43y x =得到直线423x y +=,就要把直线43y x =()A .向上平移23个单位B .向下平移23个单位C .向左平移23个单位D .向右平移23个单位7.下列一次函数中,y 随x 增大而增大的有()①87y x =-;②65y x =-;③83y x =-+;④(57)y x =-;⑤9y x =.A .①②③B .①②⑤C .①③⑤D .①④⑤8.一次函数26y x =-+的图象与两坐标轴交于点A 、B ,则AOB 的面积等于().A .18B .12C .9D .69.如图是一次函数y kx b =+的图象,若0y >,则x 的取值范围是()A .0x >B .2x >C .3x >-D .32x -<<10.小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h (米)与小强出发后的时间t (分钟)的函数关系如右图所示,给出结论①山的高度是720米,②1l 表示的是爷爷爬山的情况,2l 表示的是小强爬山的情况,③小强爬山的速度是爷爷的2倍,④爷爷比小强先出发20分钟.其中正确的有().A .1个B .2个C .3个D .4个二、填空题11.已知函数26y x =-,当3x =时,y =_______;当19y =时,x =_______.12.如图中的两条直线1l 、2l 的交点坐标可以看做方程组__________的解.13.已知O 为坐标原点,点(2,)A m 在直线2y x =上,在x 轴上有一点B 使得AOB 的面积为8,则直线AB 与y 轴的交点坐标为________.14.某商场销售某种商品时,顾客一次购买20件以内的(含20件)按原价付款,超过20件的,超出部分按原价的7折付款.若付款的总数y (元)与顾客一次所购买数量x (件)之间的函数关系如图,则这种商品每件的原价为______元.15.某工厂生产甲乙两种产品,共有工人200名,每人每天可以生产5件甲产品或3件乙产品,若甲产品每件可获利4元,乙产品每件可获利7元,工厂每天安排x 人生产甲产品,其余人生产乙产品,则每日的利润y (元)与x 之间的函数关系式为________.三、解答题16.小明说,在式子y kx b =+中,x 每增加1,kx 增加了k ,b 没变,因此y 也增加了k .而如图所示的一次函数图象中,x 从1变成2时,函数值从3变为5,增加了2,因此该一次函数中k 的值是2.小明这种确定k 的方法有道理吗?说说你的认识.17.如图,直线1是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.h与温度t(℃)之间的关系,某日研究人员在该地的不18.为了研究某地的高度()km同高度处同时进行了若干次测量,测得的数据如下表:h00.51 1.52 2.53/kmt/℃2521.818.615.3128.7 5.5(1)在直角坐标系内,描出各组有序数对(h,t)所对应的点;(2)这些点是否近似地在一条直线上?(3)写出h与t之间的一个近似关系式;(4)估计此时3.5km高度处的温度.19.如图(单位:cm ),规格相同的某种盘子整齐地摞在一起.(1)设x 个这种盘子摞在一起的高度为y cm ,求y 与x 之间的关系式;(2)求10个这种盘子摞在一起的高度.20.已知一次函数的图象经过()2,3M --,()1,3N 两点.(1)求这个一次函数的解析式;(2)设图象与x 轴、y 轴交点分别是A 、B ,求点A 、B 的坐标;(3)求此函数图象与x 轴、y 轴所围成的三角形的面积.21.如图,1l 、2l 分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(1)根据图象分别求出12l l 、的函数解析式;(2)如果电费是0.5元/度,求两种灯各自的功率;(注:功率单位:瓦,1度=1000瓦×1小时)(3)若照明时间不超过2000小时,如何选择两种灯具,能使使用者更合算?22.一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部,三款手机的进价和售价如下表:手机型号A型B型C型进价(单位:元/部)90012001100预售价(单位:元/部)120016001300(1)请求出y与x之间的函数关系式,并求出x的取值范围;(2)假设所购进的手机全部售出,在此过程中经销商需额外支出各种费用共1500元,请求出预估利润P(元)与x之间的函数关系;(注:预估利润=预售总额-购机款-额外费用)(3)在(2)的条件下,请求出P的最大值,并求出此时购进三款手机各多少部.参考答案1.D 2.C3.A4.B5.C6.A7.C8.C9.C10.B11.35±12.421t s t s +=ìí-=-î13.()0,8或80,3æöç÷èø14.215.4200y x=-16.解:将x +1代入得:y 2=k (x +1)+b ,∴y 2-y =k (x +1)+b -kx -b =k ,∵y 2-y =2,∴k =2;所以小明的说法是正确的;实际上,当x 增加1时,y 的值的增加量为:()()1k x b kx b k ++-+=.17.解:∵由题意x =0,y =1;x =3,y =-3,∴1033k b k b =´+ìí-=+î解得:431k b ì=-ïíï=î∴413y x =-+∴直线与坐标轴的交点分别为(0,1),(34,0),∴函数413y x =-+与两坐标轴围成三角形的面积=31142´´=38.18.解:(1)如图:(2)这些点近似地在一条直线上.(3)设t =kh +b ,∵过点(0,25),(2,12),∴25122b k b =ìí=+î,∴ 6.525k b =-ìí=î,∴t =25−6.5h ,(4)当h =3.5时,t =25−6.5×3.5=2.25℃所以3.5千米高度处的温度约为2.25℃.19.(1)解:设解析式为y=kx+b 由题意得:6497k bk b =+ìí=+î解得:12k b =ìí=î∴解析式为2y x =+(2)把x =10代入2y x =+得102y =+=12(cm)20.解:(1)设一次函数的解析式为y kx b =+,由题意得:233k b k b -+=-ìí+=î,解得21k b =ìí=î,∴一次函数的解析式为:21y x =+;(2)令x =0,则y =1,∴B (0,1),令y =0,则210x +=,解得12x =-,∴A (12-,0);(3)∵A (12-,0),B (0,1),∴12OA =,1OB =,∴111112224AOB S OA OB =×=´´=.21.(1)设1:(0)l y kx b k =+¹,将(0,2)、(500,17)代入得250017b k b =ìí+=î解得0.032k b =ìí=î1:0.032l y x \=+设2:(0)l y mx n m =+¹,将(0,20)和(500,26)代入得2050026n m n =ìí+=î解得0.01220m n =ìí=î2:0.01220l y x \=+(2)将x =2000分别代入12l l 、得162y =、244y =12l l 、的灯泡售价分别是2元和20元\2000小时12l l 、的用电量分别为(62-2)0.5120¸=(度)、(4420)0.548-¸=(度)\1l 灯泡的功率:1201000602000´=(瓦),2l 灯泡的功率481000242000´=(瓦)(3)令12=l l 得0.0320.01220x x +=+,解得x =1000照明时间少于1000小时时,选择白炽灯合算;照明时间等于1000小时时,二者均可;照明时间大于1000小时时,选择节能灯合算22.解:(1)根据题意,知购进C 型手机的部数为60-x -y ;根据题意,得:900x +1200y +1100(60-x -y )=61000,整理,得:y =2x -50;购进C 型手机部数为60-x -y =110-3x ,根据题意,可列不等式组:8250811038x x x ³ìï-³íï-³î,解得:29≤x ≤34,综上,y =2x -50(29≤x ≤34);(2)由题意,得:P =1200x +1600y +1300(60-x -y )-61000-1500=500x +500;(3)由(1)知29≤x ≤34,由(2)得P =500x +500,∵P 是x 的一次函数,k =500>0,∴P 随x 的增大而增大,∴当x =34时,P 取得最大值,最大值为17500元,此时购进A 型手机34部、B 型手机18部、C 型手机8部.。
八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版)

八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版) 班级:___________姓名:___________考号:_____________A.5B.10C.D.25则ABC的周长是()55A.AB∥CD,AB=CD B.AB∥CD,AD∥BCA.①②B.①③C.②③D.①②③A .B .C .D .①BE⊥AC二、填空题13.已知四边形ABCD ,点O 是对角线AC 与BD 的交点,且OA OC =,请再添加一个条件,使得四边形ABCD 成为平行四边形,那么添加的条件可以是_____________.(用数学符号语言表达)14.如图,线段AB ⊥BC ,以C 为圆心,BA 为半径画弧,然后再以A 为圆心,BC 为半径画弧,两弧交于点D ,则四边形ABCD 是矩形,其依据是 _____.15.如图,在ABC ∆中,点D ,E 分别是AB ,AC 的中点,连结BE ,若6AE =,DE=5,∠BEC=90°,则BE =______.16.如图,在正方形ABCD中,E是BC边上一点,连接AE,AB=4CE,F是AE上一点,射线BF与正方形的边⊥交BC于点17.如图,在矩形ABCD中,AB=4,45BD=对角线AC、BD相交于点O,过点O作OE AC18.如图,点E在正方形ABCD的边CD上,若△ABE的面积为18,CE=4,则线段BE的长为_____.三、解答题19.如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线分别交BC 、AD 于点E 、F ,G 、H 分别是OB 、OD 的中点.求证:(1)OE =OF ;(2)四边形GEHF 是平行四边形.20.如图,E ,F 是▱ABCD 的对角线AC 上的两点,且AF =CE .求证:(1)△ADE ≌△CBF ;(2)DE ∥BF .21.如图,在平行四边形ABCD 中(1)若点E 、F 是AD 、BC 的中点,连接BE 、DF ,求证BE DF =;(2)若DF 平分ADC ∠且交边BC 于点F ,如果5AB =,BC=8,试求线段BF 的长.(1)求证:OE CB =;(1)求证:180ABO ACO ∠+∠=︒;1.C2.D3.D4.D5.A6.C7.C360 BAC ∠=ABO ∴∠+(2)线段之间的数量关系是过点O 作AOC ∴∠+∠+ABO ∠∠ABO ∴∠=BOC ∠=90AOC ∠∴AOB ∠∴∴四边形是正方形OB OC ∴=在ABO 和FCO 中ABO FCO∴≅∴AO FO=,AB=CFAOF∴是等腰直角三角形∴=AF AO2CF AC AO∴+=2∴+=AB AC AO2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《第十六章 二次根式》测试卷(A 卷)(测试时间:90分钟 满分:120分)一.选择题(共10小题,每题3分,共30分) 1.二次根式1x -中,x 的取值范围是( ) A. x >1 B. x≥1 C. x>﹣1 D. x≥﹣1 2.化简的结果是( )A. ﹣2B. 2C. ±2D. 43.下列根式中,属于最简二次根式的是( )A. 9B. 23a C. 3a D.3a 4..计算的结果是( ) A. 6 B.C. 2D.5.下列计算正确的是( ) A. 2×3=6B.+=C. 5﹣2=3D.÷=6.下列二次根式,不能与合并的是( )A. B. C. D.7.化简的结果是( ).A. B. C. D.8.计算25)-(的结果是( ) A. -5 B. 5 C. -25 D. 25 982 ) 16410a b+(a >0,b >0),分别作了如下变形:甲:()()()()==a b a ba ba b a ba ba b----++-乙:()()==a ba ba ba b a ba b-+--++关于这两种变形过程的说法正确的是( )A. 甲、乙都正确B. 甲、乙都不正确C. 只有甲正确D. 只有乙正确 二.填空题(共10小题,每题3分,共30分) 11.把下列非负数写成一个数的平方的形式: (1)2019=_________;(2)2x =_________. 12.=____=.13.13.13.已知32,32x y =+=-,则33_________x y xy +=.14.若最简二次根式125a a ++与34b a +是同类二次根式,则a=_____,b=_____.15.化简:(1)______;(2)______;(3)______.16.计算: ()3327+=________.17.实数a ,b ,c 在数轴上的位置如图所示,化简--|a -2b|的结果为____.18.计算()2252-的结果是________.19.若实数x ,y ,m 满足等式()23532322x y m x y m x y x y +--++-=+---- ,则m+4的算术平方根为 _______.20.对于任意不相等的两个数a ,b ,定义一种运算※如下:a※b=a b a b +-,如3※2=3232+-=5.那么12※4=____. 三、解答题(共60分) 21.(15分).计算与化简(1)5(251)- (2)123127+-(3)7216(31)(31)8-++- 22.(6分)当x 是多少时,1132+++x x 在实数范围内有意义? 23.(6分)若2440x y y y -+-+=,求yx 11+的值. 24.(8分)已知y=522+-+-x x ,求y x +的算术平方根.25.(8分)一个三角形的三边长分别为1545,20,5245x x xx .(1)求它的周长(要求结果化简);(2)请你给出一个适当的x 的值,使它的周长为整数,并求出此时三角形周长的值. 26.(8分)若最简二次根式31025311x x y x y +--+和是同类二次根式. (1)求x y 、的值; (2)求22y x +的值. 27.(9分)观察下列等式: ①12)12)(12(12121-=-+-=+;②23)23)(23(23231-=-+-=+;③34)34)(34(34341-=-+-=+;……回答下列问题:(1)仿照上列等式,写出第n 个等式: ; (2)利用你观察到的规律,化简:11321+;(3)计算:1031 (2)31321211++++++++(测试时间:90分钟 满分:120分)一.选择题(共10小题,每题3分,共30分) 1.二次根式1x -中,x 的取值范围是( ) A. x >1 B. x≥1 C. x>﹣1 D. x≥﹣1 【答案】B【解析】∵二次根式1x -有意义,∴x ﹣1≥0,解得:x ≥1.故选B . 2.化简的结果是( )A. ﹣2B. 2C. ±2D. 4 【答案】B 【解析】=.故选B.3.下列根式中,属于最简二次根式的是( )A. 9B. 23a C. 3a D.3a 【答案】C4..计算的结果是()A. 6B.C. 2D.【答案】D【解析】.故选D.5.下列计算正确的是()A. 2×3=6B. +=C. 5﹣2=3D. ÷=【答案】D【解析】根据二次根式的性质和运算,可知×3=18,故不正确;根据最简二次根式和同类二次根式,可知+不能计算,故不正确;根据最简二次根式和同类二次根式,可知5﹣2不能计算,故不正确;根据二次根式的除法和化简,可知÷=,故正确.故选:D. 学6.下列二次根式,不能与合并的是( )A. B. C. D.【答案】B7.化简的结果是( ).A. B. C. D.【答案】A【解析】原式=,故选A.825)-(的结果是( ) A. -5 B. 5 C. -25 D. 25 【答案】B ()22555-==.故答案为:5.982 ) 164【答案】C82164==. 故选C.10a b+(a >0,b >0),分别作了如下变形:甲:()()()=a b a ba b a ba ba b-++-乙:=a ba ba b a ba b++关于这两种变形过程的说法正确的是( )A. 甲、乙都正确B. 甲、乙都不正确C. 只有甲正确D. 只有乙正确 【答案】D二.填空题(共10小题,每题3分,共30分) 11.把下列非负数写成一个数的平方的形式: (1)2019=_________;(2)2x =_________. 【答案】【解析】根据=a ,可知a , 故2019=;2x =. 故答案为:;12.=____=.【答案】|a|【解析】由二次根式的性质得=|a|=.故答案为:|a| 学 13.13.13.已知32,32x y ==33_________x y xy +=.【答案】1014.若最简二次根式125a a ++与34b a +是同类二次根式,则a=_____,b=_____. 【答案】 1 1【解析】最简二次根式125a a ++与34b a +是同类二次根式, ∴12{2534a a b a +=+=+,解得1{1.a b == 故答案为:1,1. 15.化简:(1)______;(2) ______;(3)______.【答案】 42 0.45【解析】原式原式原式故答案为:(1). 42 (2). 0.45 (3).16.计算: ()3327+=________.【答案】12 【解析】原式()33333433412.=+=⨯=⨯=故答案为:12.17.实数a ,b ,c 在数轴上的位置如图所示,化简--|a -2b|的结果为____.【答案】-3b【解析】由数轴知:c<a<0<b , ∴a+c<0,c-b<0,a-2b<0,∴原式=|a+c|-|c -b|-|a -2b|=(-a-c )-(b-c )-(2b-a )=-a-c-b+c-2b+a=-3b , 故答案为:-3b. 18.计算()2252-的结果是________.【答案】22﹣410 【解析】原式()()22252252220410222410.=-⨯⨯+=-+=-故答案为: 22410.-19.若实数x ,y ,m 满足等式()23532322x y m x y m x y x y +--++-=+---- ,则m+4的算术平方根为 _______. 【答案】3所以m =5.49 3.m +== 故答案为:3.20.对于任意不相等的两个数a ,b ,定义一种运算※如下:a b +,如32+5那么12※4=____. 【答案】12【解析】根据题意可得: 1241641124.124882+====-※故答案为: 1.2三、解答题(共60分) 21.(15分).计算与化简 (1)5(251)- (2)123127+-(3)7216(31)(31)8-++- 【答案】(1)10-5(2)3314(3)5-2【解析】22.(6分)当x 是多少时,1132+++x x 在实数范围内有意义? 【答案】当x ≥-23且x ≠-1时,1132+++x x 在实数范围内有意义.【解析】考点:1、二次根式有意义的条件;2、分式有意义的条件. 23.(6分)若2440x y y y -+-+=,求yx 11+的值. 【答案】1. 【解析】试题分析:先把原式y 2-4y+4写成(y-2)2的形式,x y -(y-2)2=00x y -=,(y-2)2=0,从而求出x 、y 的值,再求yx 11+的值就容易了. 2440x y y y --+= x y -(y-2)2=00x y -=,(y-2)2=0, ∴x=2,y=2 ∴1111122x y +=+=. 考点:1.偶次方;2.算术平方根;3.二次根式. 24.(8分)已知y=522+-+-x x ,求y x +的算术平方根.【答案】7【解析】考点:1、二次根式有意义的条件;2、算术平方根. 25.(8分)一个三角形的三边长分别为1545,20,5245x x xx .(1)求它的周长(要求结果化简);(2)请你给出一个适当的x 的值,使它的周长为整数,并求出此时三角形周长的值. 【答案】(1)255x(2)x=20,周长25 【解析】试题分析:(1)将三边相加即可;(2)去x=20,答案不唯一,符合题意即可. 试题解析:(1)周长1545205245x x x=2552555xx x x =++.(2)当x=20时,周长=22055⨯=25.(答案不唯一,符合题意即可) 学考点:二次根式的加减.26.(8分)若最简二次根式31025311x x y x y +--+和是同类二次根式. (1)求x y 、的值; (2)求22y x +的值. 【答案】(1)x=4,y=3;(2)5 【解析】试题分析:(1)根据同类二次根式的定义:化为最简二次根式后被开方数相同的二次根式叫做同类二次根式,即可列出关于x 、y 的方程组,再解出即可;考点:1.同类二次根式;2.二次根式的计算 27.(9分)观察下列等式: ①12)12)(12(12121-=-+-=+;②23)23)(23(23231-=-+-=+;③34)34)(34(34341-=-+-=+;……回答下列问题:(1)仿照上列等式,写出第n 个等式: ; (2)利用你观察到的规律,化简:11321+;(3)计算:1031 (2)31321211++++++++【答案】(111n n n n=+++;(2)2311;(3101.【解析】试题分析:根据观察,可得规律,根据规律,可得答案. 试题解析:(1)写出第n 11n n n n=+++(2)原式121123111211==+(3)原式213243109101⋅⋅⋅+考点:1.探索规律题(数字的变化类);2.分母有理化.第十七章一、选择题(每小题4分,共28分)1.一个直角三角形的斜边长比一条直角边长大2,另一直角边长为6,则斜边长为( )A.4B.8C.10D.122.已知三角形的三边长之比为1∶1∶,则此三角形一定是( )A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形3.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为( )A.4B.8C.16D.644.如图,一个高1.5m,宽3.6m的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( )A.3.8 mB.3.9 mC.4 mD.4.4 m5.(德宏州中考)设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是( )A.1.5B.2C.2.5D.36.如图所示,要在离地面5m处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2m,L2=6.2m,L3=7.8m,L4=10m四种备用拉线材料中,拉线AC最好选用( )A.L1B.L2C.L3D.L47.(柳州中考)在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC 于D,则BD的长为( )A. B.C. D.二、填空题(每小题5分,共25分)8.定理“全等三角形的对应边相等”的逆命题是,它是命题(填“真”或“假”).9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE= .10.如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若PA=AB=5,点P到AD的距离是3,有一只蚂蚁要从点P爬到点B,它的最短行程的平方应该是.11.如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P 从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC 边向点C以每秒2cm的速度移动,如果同时出发,则过3s时,△BPQ的面积为cm2.12.(哈尔滨中考)在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三、解答题(共47分)13.(10分)已知△ABC的三边分别为a,b,c,且a+b=4,ab=1,c=,试判定△ABC的形状,并说明理由.14.(12分)(湘西州中考)如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长.(2)求△ADB的面积.15.(12分)《中华人民共和国道路交通管理条例》规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)16.(13分)(贵阳中考)在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边长分别为6,8,9时,△ABC为三角形;当△ABC三边长分别为6,8,11时,△ABC为三角形.(2)猜想:当a2+b2c2时,△ABC为锐角三角形;当a2+b2 c2时,△ABC为钝角三角形.(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.答案解析1.【解析】选C.设斜边长为x,则一直角边为x-2,由勾股定理得,x2=(x-2)2+62,解得x=10.2.【解析】选D.由题意设三边长分别为x,x,x,∵x2+x2=(x)2,∴三角形一定为直角三角形,并且是等腰三角形.3.【解析】选D.由题意得,直角三角形的斜边为17,一条直角边为15,所以正方形A的面积为172-152=64.4.【解析】选B.设木板的长为xm,由题意知,x2=1.52+3.62,解得x=3.9(m).5.【解析】选D.∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5①,∵a,b是直角三角形的两条直角边,∴a2+b2=2.52②,由①②可得ab=3.6.【解析】选B.在Rt△ACD中,AC=2AD,设AD=x,由AD2+CD2=AC2,即x2+52=(2x)2,得x=≈2.8868,2x=5.7736,所以最好选用L2.7.【解析】选A.∵∠BAC=90°,AB=3,AC=4,∴BC===5,∴BC边上的高=3×4÷5=,∵AD平分∠BAC,∴点D到AB,AC上的距离相等,设为h,则S△ABC=×3h+×4h=×5×,解得h=,S△ABD=×3×=BD·,解得BD=.8.【解析】“全等三角形的对应边相等”的逆命题是三边分别对应相等的两个三角形全等,它是真命题.答案:三边分别对应相等的两个三角形全等真9.【解析】AE=====2.答案:210.【解析】如图,则AG=3.在Rt△APG中,PG2=PA2-AG2=52-32=16.在Rt△PGB中,PB2=PG2+GB2=16+(3+5)2=80.答案:8011.【解析】设AB为3xcm,BC为4xcm,AC为5xcm,因为周长为36 cm,AB+BC+AC=36,所以3x+4x+5x=36,得x=3,所以AB=9,BC=12,AC=15,因为AB2+BC2=AC2,所以△ABC是直角三角形,过3s时,BP=9-3×1=6,BQ=2×3=6,所以S△PBQ=BP·BQ=×6×6=18(cm2).答案:1812.【解析】当点D与C在AB同侧,BD=AB=2,作CE⊥BD于E,CE=BE=,ED=,由勾股定理得CD=(如图1);当点D与C在AB异侧,BD=AB=2,∠DBC=135°,作DE⊥BC于E,BE=ED=2,EC=3,由勾股定理得CD=(如图2).答案:或13.【解析】△ABC是直角三角形,理由:∵(a+b)2=16,a2+2ab+b2=16,ab=1,∴a2+b2=14.又∵c2=14,∴a2+b2=c2.∴△ABC是直角三角形.14.【解析】(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3.(2)在Rt△ABC中,由勾股定理得,AB===10, ∴S△ADB=AB·DE=×10×3=15.15.【解析】在Rt△ABC中,AC=30m,AB=50m,根据勾股定理可得: BC ===40(m).∴小汽车的速度为v==20m/s=20×3.6km/h=72km/h.∵72km/h>70km/h,∴这辆小汽车超速行驶.16.【解析】(1)锐角钝角.(2)> <.(3)∵a=2,b=4,∴2<c<6,且由题意,c为最长边, ∴4<c<6,当a2+b2=c2,即c=2时,△ABC是直角三角形, ∴当4<c<2时,△ABC是锐角三角形,当2<c<6时,△ABC是钝角三角形.新人教版八年级下册第18章 平行四边形单元测试试卷(A 卷)(时间90分钟 满分100分)班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于 º,外角和等于 º .2.正方形的面积为4,则它的边长为 ,一条对角线长为 . 3.一个多边形,若它的内角和等于外角和的3倍,则它是 边形.4.如果四边形ABCD 满足 条件,那么这个四边形的对角线AC 和BD 互相垂直(只需填写一组你认为适当的条件).5.如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm .6.已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是______cm . 7.平行四边形ABCD ,加一个条件__________________,它就是菱形.8.等腰梯形的上底是10cm ,下底是14cm ,高是2cm ,则等腰梯形的周长为______cm . 9.已知菱形的一条对角线长为12,面积为30,则这个菱形的另一条对角线的长为 .10.如图,ABCD 中,AE ⊥BC 于E ,AF ⊥DC 于F ,BC=5,AB=4,AE=3,则AF 的长为 .11.如图,梯形ABCD 中,AD ∥BC ,已知AD=4,BC=8,则EF= ,EF 分梯形所得的两个梯形的面积比S 1 :S 2为 .12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形_______(请填图形下面的代号).1S 2S 第10题 第11题13.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去,若第一个正方形的边长为1,则第n 个正方形的面积是 .二、填空题(共4小题,每题3分,共12分) 15.如图,ABCD 中,AE 平分∠DAB ,∠B=100°,则∠DAE等于( )A .100°B .80°C .60°D .40°16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,•从学生中征集到设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种图案,你认为符合条件的是( ) A .等腰三角形 B .正三角形 C .等腰梯形 D .菱形17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是( )A .6条B .7条C .8条D .9条 18.如图,图中的△BDC′是将矩形ABCD 沿对角线BD 折叠得到的,图中(包括实线、虚线在内)共有全等三角形( )对. A .1 B .2 C .3 D .430°30°30°A第13题第15题第18题三、解答题(共60分)19.(5分)如图,在□ABCD中,DB=CD,∠C=70°,AE⊥BD于点E.试求∠DAE的度数.20.(5分)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.21.(5分)在一个平行四边形中若一个角的平分线把一条边分成长是2cm和3cm•的两条线段,求该平行四边形的周长是多少?22.(6分)已知:如图,ABCD中,延长AB到E,延长CD到F,使BE=DF 求证:AC与EF互相平分23.(6分)如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少?24.(6分)顺次连结等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.已知:求证:证明:25.(6分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN•∥BC,•设MN•交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由?(2)当点O运动何处时,四边形AECF是矩形?并说出你的理由.26.(6分)如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=12 BC.•根据上面的结论:(1)你能否说出顺次连结任意四边形各边中点,可得到一个什么特殊四边形?•并说明理由.(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.27.(7分)如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?28.(8分)如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,•即△ABD•、•△BCE、△ACF,请回答下列问题,并说明理由.(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.参考答案一、填空题1.360 ,3602.2,223.84.四边形ABCD是菱形或四条边都相等或四边形ABCD是正方形等5.56.207.一组邻边相等或对角线互相垂直8.24+4 29.510.41511.6,7512.②13.120 14.1 12n-⎛⎫⎪⎝⎭二、选择题15.•D •16.D 17.A 18.D三、解答题19.∠DAE=20°20.略21.14cm或16cm22.略23.2601块24.略25.(1)OE=OF;(2)当点O运动到AC的中点时,四边形AECF•是矩形26.(1)平行四边形;(2)平行四边形,矩形,菱形,正方形27.(1)平行四边形;(2)满足∠BAC=150º时,四边形ADEF是矩形;(3)当△ABC为等边三角形时,以A、D、E、F为顶点的四边形不存在28.(1)平行四边形;(2)当∠BAC=150°时是矩形;(3)∠BAC=60°第十九章达标测试卷一、选择题(每题3分,共30分)1.函数y=1x-3+x-1的自变量x的取值范围是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤3 2.下列图象中,表示y是x的函数的是()3.已知一次函数y=(a+1)x+b的图象如图所示,那么a,b的取值范围分别是()A.a>-1,b>0B.a>-1,b<0C.a<-1,b>0D.a<-1,b<0(第3题)4.把直线y=x向上平移3个单位长度,下列在该平移后的直线上的点是() A.(2,2) B.(2,3) C.(2,4) D.(2,5) 5.一个正比例函数的图象经过点(2,-1),则它的解析式为()A.y=-2x B.y=2x C.y=-12x D.y=12x6.正比例函数y=kx(k≠0)的图象经过第二、四象限,则一次函数y=x+k的图象大致是()7.某学习小组做了一个实验:从100 m高的楼顶随手放下一个苹果,测得有关数据如下:下落时间t/s123 4下落高度h/m5204580则下列说法错误的是()A.苹果每秒下落的路程越来越长B.苹果每秒下落的路程不变C.苹果下落的速度越来越快D.可以推测,苹果落到地面的时间不超过5 s8.若直线y=-2x+m与直线y=2x-1的交点在第四象限,则m的取值范围是()A.m>-1 B.m<1 C.-1<m<1 D.-1≤m≤1 9.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是() A.乙前4 s行驶的路程为48 mB.在0到8 s内甲的速度每秒增加4 mC.两车到第3 s时行驶的路程相等D.在4至8 s内甲的速度都大于乙的速度(第9题)10.如图,点P是菱形ABCD边上的一动点,它从点A出发沿着A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x 的函数图象大致为()(第10题)二、填空题(每题3分,共24分)11.直线y=2x+1经过点(a,0),则a=________.12.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.13.图中直线是由直线l向上平移1个单位长度、向左平移2个单位长度得到的,则直线l对应的函数解析式为__________.(第13题)14.直线y=2x+b经过点(3,5),则关于x的不等式2x+b≥0的解集是__________.15.若一次函数y=-x+a与一次函数y=x+b的图象的交点坐标为(m,8),则a+b=________.16.一次越野跑中,当小明跑了1 600 m时,小刚跑了1 400 m,小明、小刚在此后所跑的路程y(m)与时间t(s)之间的函数关系如图所示,则这次越野跑的全程为________m.(第16题)17.已知一次函数y=(m+2)x+(1-m),若y随x的增大而减小,且该函数的图象与x轴的交点在原点的右侧,则m的取值范围是__________.18.如图,在平面直角坐标系中,A(2,3),B(-2,1),在x轴上存在点P,使点P到A,B两点的距离之和最小,则点P的坐标为__________.(第18题)三、解答题(19~21题10分,其余每题12分,共66分)19.小红帮弟弟荡秋千(如图①),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图②所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7 s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?(第19题)20.在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当-2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m-n=4,求点P的坐标.21.如图,在直角坐标系中,已知点A(6,0),又点B(x,y)在第一象限内,且x +y=8,设△AOB的面积是S.(1)写出S与x之间的函数解析式,并求出x的取值范围;(2)画出(1)中所求函数的图象.(第21题)22.某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是________元;(2)当x>2时,求y与x之间的函数解析式;(3)若某乘客有一次乘出租车的里程为18 km,则这位乘客需付出租车车费多少元?(第22题)23.“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A,B两个果园运送有机化肥,甲,乙两个仓库分别可运出80 t和100 t有机化肥;A,B两个果园分别需要110 t和70 t有机化肥,两个仓库到A,B两个果园的路程如下表:路程/ km甲仓库乙仓库A果园15 25B果园2020设甲仓库运往A果园x t有机化肥,若汽车每吨每千米的运费为2元.(1)根据题意,填写下表:运量/t 运费/元甲仓库乙仓库甲仓库乙仓库A果园x 110-x 2×15x 2×25(110-x)B果园(2)设总运费为y元,求y关于x的函数解析式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省.最省的总运费是多少元?24.新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/m2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120 m2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/m2)与楼层x(1≤x≤23,x取整数)之间的函数解析式;(2)老王要购买第十六层的一套楼房,若他一次性付清所有房款,请帮他计算哪种优惠方案更合算.答案一、1.B 2.D 3.A 4.D 5.C 6.B7.B8.C 点拨:由题意得⎩⎨⎧y =-2x +m ,y =2x -1,解得⎩⎪⎨⎪⎧x =m +14,y =m -12. ∵交点在第四象限,∴⎩⎪⎨⎪⎧m +14>0,m -12<0.解不等式组,得-1<m <1.9.C 10.B二、11.-12 12.-2 13.y =x -2 14.x ≥12 15.1616.2 200 点拨:设小明的速度为a m/s ,小刚的速度为b m/s ,由题意得⎩⎨⎧1 600+100a =1 400+100b ,1 600+300a =1 400+200b ,解得⎩⎨⎧a =2,b =4.故这次越野跑的全程为1 600+300×2=2 200(m).17.m <-2 点拨:∵y 随x 的增大而减小,∴m +2<0,解得m <-2.又∵该函数的图象与x 轴的交点在原点的右侧,∴图象过第一、二、四象限.∴图象与y 轴的交点在正半轴上,故1-m >0,解得m <1.∴m 的取值范围是m <-2.18.(-1,0) 点拨:如图,∵B (-2,1),∴点B 关于x 轴的对称点B ′的坐标为(-2,-1).作直线AB ′,与x 轴交于点P ,此时点P 即为所求.(第18题)设直线AB ′对应的函数解析式为y =kx +b ,∵A (2,3),B ′(-2,-1),∴⎩⎨⎧2k +b =3,-2k +b =-1,解得⎩⎨⎧k =1,b =1.∴直线AB ′对应的函数解析式为y =x +1.当y =0时,x =-1,∴点P 的坐标为(-1,0).三、19.解:(1)由图象可知,对于每一个摆动时间t ,h 都有唯一确定的值与其对应,∴变量h 是关于t 的函数.(2)①由函数图象可知,当t =0.7 s 时,h =0.5 m ,它的实际意义是秋千摆动0.7 s 时,离地面的高度是0.5 m.②由图象可知,秋千摆动第一个来回需2.8 s.20.解:将点(1,0),(0,2)的坐标分别代入y =kx +b ,得⎩⎨⎧k +b =0,b =2, 解得⎩⎨⎧k =-2,b =2.∴这个函数的解析式为y =-2x +2.(1)把x =-2代入y =-2x +2,得y =6;把x =3代入y =-2x +2,得y =-4.∴y 的取值范围是-4≤y <6.(2)∵点P (m ,n )在该函数的图象上,∴n =-2m +2.∵m -n =4,∴m -(-2m +2)=4,解得m =2.∴n =-2.∴点P 的坐标为(2,-2).21.解:(1)过点B 作BC ⊥OA 于点C .∵点A 和B 的坐标分别是(6,0),(x ,y ),且点B 在第一象限内,∴S =12OA ·BC =12×6y =3y .∵x +y =8,∴y =8-x.∴S =3(8-x )=24-3x .即所求函数解析式为S =-3x +24.由⎩⎨⎧x >0,-3x +24>0,解得0<x <8.(2)S =-3x +24(0<x <8)的图象如图所示.(第21题)22.解:(1)7(2)设当x >2时,y 与x 之间的函数解析式为y =kx +b ,分别代入点(2,7),(4,10)的坐标,得⎩⎨⎧2k +b =7,4k +b =10,解得⎩⎪⎨⎪⎧k =32,b =4.∴y 与x 之间的函数解析式为y =32x +4(x >2).(3)∵18>2,∴把x =18代入y =32x +4,得y =32×18+4=31.答:这位乘客需付出租车车费31元.23.解:(1)80-x ;x -10;2×20(80-x );2×20(x -10)(2)y =2×15x +2×25(110-x )+2×20(80-x )+2×20(x -10),即y =-20x +8 300.在一次函数y =-20x +8 300中,∵-20<0,且10≤x ≤80,∴当x =80时,y 最小=6 700.答:当甲仓库运往A 果园80 t 有机化肥时,总运费最省,最省的总运费是6 700元.24.解:(1)当1≤x ≤8,x 取整数时,每平方米的售价应为y =4 000-(8-x )×30=30x +3 760;当9≤x ≤23,x 取整数时,每平方米的售价应为y =4 000+(x -8)×50=50x +3 600.∴y =⎩⎨⎧30x +3 760(1≤x≤8,x 取整数),50x +3 600(9≤x≤23,x 取整数). (2)第十六层楼房的售价为50×16+3 600=4 400(元/m 2).按照方案一所交房款为:W 1=4 400×120×(1-8%)-a =485 760-a (元),按照方案二所交房款为:W 2=4 400×120×(1-10%)=475 200(元).当W 1>W 2时,即485 760-a >475 200,解得a <10 560;当W 1<W 2时,即485 760-a <475 200,解得a >10 560.∴当0<a <10 560时,方案二更合算;当a =10 560时,两种方案一样合算;当a >10 560时,方案一更合算.第二十章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.在某校八(2)班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( C)A.220 B.218 C.216 D.2092.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表,你认为商家更应该关注鞋子尺码的( C)尺码(cm)2222.52323.52424.525销售量(双)4661021 1A.平均数 B.中位数 C.众数 D.方差3.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为s甲2=0.56,s乙2=0.60,s丙2=0.50,s丁2=0.45,则成绩最稳定的是( D) A.甲 B.乙 C.丙 D.丁4.(2016·孝感)在2016年体育中考中,某班一学习小组6名学生的体育成绩如下表,则这组学生的体育成绩的众数、中位数、方差依次为( A)成绩(分)272830人数23 1A.28,28,1 B.28,27.5,1 C.3,2.5,5 D.3,2,55.(2017·清远模拟)已知a,b,c,d,e的平均数是x,则a+5,b+12,c+22,d +9,e+2的平均数是( C)A.x-1 B.x+3 C.x+10 D.x+126.去年我市6月1日到10日的每一天最高气温变化如折线图所示,则这10天最高气温的中位数和众数分别是( A)A.33 ℃,33 ℃ B.33 ℃,32 ℃C.34 ℃,33 ℃ D.35 ℃,33 ℃7.(2016·永州)在“爱我中华”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8,7,9,8,8 ;乙:7,9,6,9,9,则下列说法中错误的是( C) A.甲、乙得分的平均数都是8 B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6 D.甲得分的方差比乙得分的方差小8.下列说法中:①样本中的方差越小,波动越小,说明样本稳定性越好;②一组数据的众数只有一个;③一组数据的中位数一定是这组数据中的某一个数据;④数据3,3,3,3,2,5中的众数为4;⑤一组数据的方差一定是正数.其中正确的个数为( B) A.0 B.1 C.2 D.49.下列说法正确的是( C)A.中位数就是一组数据中最中间的一个数B.8,9,9,10,10,11这组数据的众数是9C.如果x1,x2,x3,…,x n的平均数是x,那么(x1-x)+(x2-x)+…+(x n-x)=0 D.一组数据的方差是这组数据的平均数的平方10.对某校八年级学生随机抽取若干名进行体能测试,成绩记为1分、2分、3分、4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图,根据图中信息,这些学生的平均分数是( C)A.2.25 B.2.5 C.2.95 D.3,第10题图),第15题图)二、填空题(每小题3分,共24分)11.某招聘考试分笔试和面试两种,其中笔试按60%,面试按40%计算加权平均数作为总成绩,小王笔试成绩90分,面试成绩85分,那么小王的总成绩是__88__分. 12.已知一组数据0,2,x ,4,5的众数是4,那么这组数据中位数是__4__.13.有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是__中位数__.(填“众数”“方差”“中位数”或“平均数”)14.一组数据3,5,a ,4,3的平均数是4,这组数据的方差为__0.8__.15.小华和小苗练习射击,两人的成绩如图所示,小华和小苗两人成绩的方差分别为s 12,s 22,根据图中的信息判断两人方差的大小关系为__s 12<s 22__.16.甲、乙两人各射击5次,成绩统计表如下:环数(甲) 6 7 8 9 10次数 1 1 1 1 1环数(乙) 6 7 8 9 10次数 0 2 2 0 1那么射击成绩比较稳定的是__乙__.(填“甲”或“乙”)17.当五个整数从小到大排列后,其中位数是4,如果这组数据的唯一众数是6,那么这组数据可能的最大的和是__21__.18.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组⎩⎪⎨⎪⎧x -3≥0,5-x >0的整数,则这组数据的平均数是__5__.三、解答题(共66分)19.(8分)为了估计西瓜、苹果和香蕉三种水果一个月的销售量,某水果店对三种水果7天的销售量进行了统计,统计结果如图所示:(1)若西瓜、苹果和香蕉的售价分别为6元/千克、8元/千克和3元/千克,则这7天销售额最大的水果品种是__A __.A .西瓜B .苹果C .香蕉(2)估计一个月(按30天计算)该水果店可销售苹果多少千克?解:1407×30=600(千克)20.(8分)(2016·呼和浩特)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140 146 143 175 125 164 134 155 152 168 162 148(1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分钟,请你依据样本数据的中位数,推断他的成绩如何?解:(1)中位数为150分钟,平均数为151分钟 (2)由(1)可得,中位数为150,可以估计在这次马拉松比赛中,大约有一半选手的成绩快于150分钟,有一半选手的成绩慢于150分钟,这名选手的成绩为147分钟,快于中位数150分钟,可以推断他的成绩估计比一半以上选手的成绩好21.(9分)为了全面了解学生的学习、生活及家庭的基本情况,加强学校、家庭的联系,某中学积极组织全体教师开展“课外访万家活动”,王老师对所在班级的全体学生进行实地家访,了解到每名学生家庭的相关信息,现从中随机抽取15名学生家庭的收入情年收入(万元) 2 2.5 3 4 5 9 13 家庭个数 1 3 5 2 2 1 1(1)(2)你认为用(1)中的哪个数据来代表这15名学生家庭年收入的一般水平较为合适?请简要说明理由.解:(1)平均数为4.3万元,中位数为3万元,众数为3万元 (2)中位数或众数,理由:虽然平均数为4.3万元,但年收入达到4.3万元的家庭只有4个,大部分家庭的年收入未达到这一水平,而中位数或众数3万元是大部分家庭可以达到的水平,因此用中位数或众数较为合适22.(9分)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如下表:甲 1 1 0 2 1 3 2 1 1 0 乙 0 2 2 0 3 1 0 1 3 1(1)(2)从计算的结果来看,在10天中,哪台机床出次品的平均数较小?哪台机床出次品的波动较小?解:(1)x 甲=1.2(个),x 乙=1.3(个);s 甲2=0.76,s 乙2=1.21 (2)由(1)知x 甲<x 乙,。