传动轴结构分析与设计

合集下载

传动轴设计及应用解读

传动轴设计及应用解读

• 准等速万向节:是指输入轴和输出轴以近似等速传递运动 的万向节。双联式万向节、凸块式万向节和三销轴式万向 节等为准等速万向节。主要用于转向驱动桥。
• 等速万向节:等速万向节是指输入轴和输出轴以等速传递 运动的万向节。球笼式万向节和球叉式万向节等为等速万 向节。主要用于轿车和驱动桥。 • 挠性万向节:挠性万向节依靠其中弹性零件的弹性变形来 保证在相交两轴间传动时不发生干涉。它能减小传动系的 扭转振动、动载荷和噪声,结构简单,使用中不需润滑, 一般用于两轴间夹角不大和很小轴向位移的万向传动场合。
传动轴的动平衡
• 传动轴总成不平衡是传动系弯曲振动的一个激 励源,当高速旋转时,将产生明显的振动和噪 声。所以传动轴装配后必须100%进行动平衡 检验,并在传动轴两端焊平衡片校正不平衡量, 其剩余不平衡量不应低于GB 9293中规定的G40 平衡品质等级。 • 影响传动轴动平衡品质的因素: 1、万向节十字轴的轴向间隙; 2、传动轴滑动花键副中的间隙; 3、传动轴总成两端连接处定心精度; 4、高速回转时传动轴的弹性变形。
传动轴额定载荷的确定
• • 传动轴的额定载荷是根据车型的配置参数计算出来的。先按发动机最大扭矩 计算,再按车轮的最大附着力计算,取二者中的小值作为额定扭矩。 1、按发动机最大扭矩计算: Mg=Memax×ik1×ip1/n 式中 Mg—按发动机最大扭矩计算时传动轴承受的扭矩,N.m Memax—发动机最大扭矩,N.m ik1 —变速箱一档速比 ip1 —分动箱低档速比 n —使用分动器低档时的驱动轴数目 2、按车轮最大附着力计算: Mφmax=G×rk×ψ/io 式中 Mφmax—按附着力计算时传动轴承受的扭矩,N.m G—满载时驱动轴上的载荷,N rk —车轮的滚动半径,m ψ —轮胎与地面的附着系数(在良好的沥青路面上取0.8) io —减速器速比

基于ANSYS的汽车传动轴有限元分析与优化设计

基于ANSYS的汽车传动轴有限元分析与优化设计

摘要ANSYS 有限元软件包是一个多用途的有限元法计算机设计程序,可以用来求解结构、流体、电力、电磁场及碰撞等问题。

因此它可应用于以下工业领域:航空航天、汽车工业、生物医学、桥梁、建筑、电子产品、重型机械、微机电系统、运动器械等。

传动轴是最常件的零件,该零件结构较为简单,操作方便,加工精度高,价格低廉,因此得到了广泛的使用。

目前很多传动轴都做了适当的改进,使其适用性得到了更大的提高。

.本设计是基于ANSYS 软件来汽车传动轴行分析。

与传统的计算相比,借助于计算机有限元分析方法能更加快捷和精确的得到结果。

设置正确的模型、划分合适的网格,并合理设置求解过程,能够准确的获得分析模型各个部位的应力、变形等结果。

对零件的设计和优化有很大的参考作用。

正是因为上述优点,我在本设计中运用UG 来建立三维模型。

再将此模型导入ANSYS 软件来对其进行分析。

关键词:传动轴,三维建模,ANSYS,动静态分析A b st r ac tANSYS (f i n i t e e l e m e n t) package i s a m u l t i-p ur po s e f i n i t e e l e m e n t method for computer des i gn program that can be used to s o l ve the structure, fluid, e l ec tr i c i ty,e l ec tr o m ag n et i cf i e l ds and co lli s i on problems. So it can be applied to the followingi ndus tr i es: aerospace, au tom o t i v e,bi o m ed i ca l,b r i dge s,c on s tr uc t i on,e l ec tr o ni cs,h ea vy machinery, mi cro-el e ct r o m echa ni ca l systems, sports equipment and so on.Tr an s mi ss i on s h a f t i s the most common a r egu l a r part, the part structure i s s i m p l e, convenient o pera t i on, high pr ec i s i on, low pr i c es, it has been w i d e l y used. At pr ese n t, many have made the appro pr i at e Tr an s mi ss i on s h a f t i mpr o v e m e n t s,it has been gr ea t l y enhanced app li c a bi li ty.The des i gn i s based on ANSYS s o f t ware to Tr an s m i ss i on s ha f t by the line of s p i nd l e. Compared with the tr adi t i on a l c a l cu l at i on,computer-based f i n i t e e l e m e n t an a l y s i s method can be f a s t er and more accurate r es u l t s.Set the correct m o de l,dividing the right grid, and set a reasonable s o l ut i on process, an a ly t i ca l m o de l can ac curat e l y access t h e various parts of the stress and de f o r m at i on r es u l t s. On the part of the des i gn a ndop t i mi za t i on has great r ef ere n c e.It i s because of these advantages, the use of this des i gn in my UG to crea t et h r ee-di m e ns i on a l model Tr a ns m i ss i on s h a f t. Then this model was i n tr o duce d by t h e ANSYS s o f t wa r e to i t s line of a n a ly s i s.Key Words: Tr an smiss i on s h af t,t h r ee-d i me n si on al mo d e li ng,ANSYS,d y n am i c and s t a t i c a n al y s i s目录摘要.............................................................................................................................. - 1 -Abs tr ac t ............................................................................................................................. -2 -目录.............................................................................................................................. - 2 -第1 章绪论..................................................................................................................... - 4 -1.1 选题的目的和意义............................................................................................. - 4 -- 2 -1.2 选题的研究现状及发展趋势.............................................................................. - 4 -1.3 传动轴知识........................................................................................................ - 5 -1.4 传动轴的结构特点............................................................................................. - 5 -1.5 传动轴重要部件................................................................................................. - 6 -1.6 传动轴常用类型................................................................................................ - 7 -第2 章本课题任务和研究方法...................................................................................... - 8 -2.1 课题任务............................................................................................................ - 8 -2.2 分析方法............................................................................................................. - 8 -3.3 本课题的研究方法............................................................................................. - 9 -3.4 有限元方法介绍................................................................................................ - 9 -3.4.1 概述.................................................................................................................. - 9 -3.4.2 基本思想......................................................................................................... - 9 -3.4.3 特点................................................................................................................ -10 -3.5 ANSYS 软件简介............................................................................................. -11 -第4 章确定汽车传动轴研究对象和UG 建模............................................................. -12 -4.1 确定汽车传动轴研究对象概述........................................................................ -12 -4.2 汽车传动轴(变速箱第二轴)的3D 建模设计............................................. -14 -4.2.1 进入UG 的操作界面............................................................................ -14 -第5 章汽车传动轴的有限元分析................................................................................ -21 -5.1 有限元分析的基本步骤............................................................................ -21 -5.2 有限元分析过程与步骤........................................................................... -22 -5.2.1 转换模型格式........................................................................................ -22 -第六章总结和传动轴的优化设计分析........................................................................ -41 -结论................................................................................................................................ -41 -参考文献........................................................................................................................ -42 -致谢.............................................................................................................................. -43 -第1 章绪论1.1 选题的目的和意义随着计算机技术的日益普及和FEA 技术的蓬勃发展,人们已经广泛采用计算机有限元仿真分析来作为传动轴强度校核的方法。

万向传动轴设计范文

万向传动轴设计范文

万向传动轴设计范文万向传动轴(Universal Joint Shaft)是一种能够实现两个轴线的不同角度传动的机械传动装置,广泛应用于汽车、机械设备和工业生产线等领域。

本文将详细介绍万向传动轴的设计原理、结构特点以及设计优化方法。

一、设计原理当传动输入轴转动时,中心轴通过两个交叉连接轴的连杆传递旋转力矩,并使输出轴也产生旋转。

由于交叉连接轴的特殊结构,万向传动轴能够使传动输入轴和输出轴存在不同的旋转角度,从而解决了轴线不同角度对传动的限制。

二、结构特点在设计过程中,需要考虑以下几个关键参数:1.轴间角度:指传动输入轴与输出轴之间的夹角。

该角度越大,传动轴工作时的额定转速越低,并且还会增加传动过程中的振动和噪音。

2.传动扭矩:表示输入轴传递给输出轴的力矩大小。

在设计中需要根据传动系统的需求确定传动轴的最大扭矩。

3.长度和直径:传动轴的长度和直径需要根据具体应用条件和承载要求进行确定。

三、设计优化方法在进行万向传动轴的设计时,可以采用以下几种优化方法:1.结构材料选择:传动轴的结构材料对其承载能力和耐久性具有重要影响。

可以通过优化材料选择,如选用高强度合金钢,来提高传动轴的耐久性能。

2.回转角度优化:通过合理设计传动轴的长度和交叉板角度,使得传动轴的回转角度在设计范围之内,从而提高传动效率并减少振动和噪音。

3.杆件直径优化:传动轴的杆件直径直接影响其承载能力。

可以采用有限元分析方法来优化杆件的直径,以满足传动系统的扭矩和振动要求。

4.轴承选择与布局:传动轴的轴承选择与布局对其旋转平衡性和耐久性有重要影响。

可以通过优化轴承的类型和布局,如选用角接触球轴承和双排球轴承,来提高传动轴的工作稳定性和寿命。

总之,万向传动轴作为一种重要的机械传动装置,在众多领域都有广泛应用。

其设计涉及到结构原理、材料选择、回转角度优化、杆件直径优化以及轴承选择与布局等多个方面,需要综合考虑承载能力、回转角度和振动噪音等设计要求,以实现传动系统的高效、稳定和可靠工作。

重型汽车传动系统结构分析与优化设计

重型汽车传动系统结构分析与优化设计
差速器的优化设计:考虑重量、尺寸、效率等因素,提高差速器的性能和可靠性
重型汽车传动系统优化设计
轻量化设计
减轻重量:通过使 用轻质材料和优化 结构设计,降低传 动系统的重量
提高效率:减轻重 量可以提高传动系 统的效率,降低能 耗
增加寿命:轻量化 设计可以降低传动 系统的磨损,提高 使用寿命
环保节能:减轻重 量可以降低燃油消 耗,减少排放,符 合环保要求
智能化:采用智能控制技术, 优化传动系统效率,降低能 耗
未来重型汽车传动系统的发展趋势
节能环保:提 高燃油效率, 减少排放
轻量化:减轻 重量,提高燃 油经济性
智能化:实现 自动变速、智 能驾驶等功能
模块化:提高 通用性,降低 成本
电动化:发展 纯电动、混合 动力等新能源 汽车
网联化:实现 车辆与车辆、 车辆与基础设 施的互联互通
THANK YOU
汇报人:
离合器的功能是实现发动 机与传动系统的分离和结 合,保证汽车平稳起步和 换挡。
变速器的功能是改变传动 比,扩大驱动轮转矩和转 速的变化范围,以适应不 同行驶条件的需要。
传动轴的功能是将动力传 递给驱动桥,实现动力的 传递。
差速器的功能是实现左右 驱动轮的差速转动,保证 汽车在转弯时的行驶稳定 性。
驱动桥的功能是将动力传 递给驱动轮,实现汽车的 行驶。
智能化设计的应用:在重型汽车传动系 统优化设计中,智能化设计已经得到了 广泛的应用,如自动变速器、电控系统 等。
重型汽车传动系统性能评价
传动效率评价
影响传动效率的因素:齿轮 啮合、轴承摩擦、油液粘度 等
传动效率的定义:输入功率 与输出功率的比值
提高传动效率的方法:优化 齿轮设计、降低轴承摩擦、

机械加工工艺1.2.1分析传动轴零件的结构工艺性

机械加工工艺1.2.1分析传动轴零件的结构工艺性

2.绘制正确的零件结构图 下图为改进后的传动轴零件结构示意图,完成了以下修 改工作:①增加了两表面粗糙度为0.4微米的外圆柱面 的越程槽;②修改了A-A剖面处的平键结构;③增加了 右侧表面M16螺纹处的退刀槽,以准确车削外螺纹;④ 增加了右侧光孔120度的底部锥孔,便于使用钻头钻孔。
改进结构如图:
工作任务1.2.1:分析传动轴零件的结构工艺性
零件图的研究 • 检查零件的完整性和正确性
• 零件的技术要求分析 • 审查零件材料选用是否恰当 • 零件的结构工艺性分析
零件的技术要求分析
– 零件加工表面的尺寸精度 – 主要加工表面的形状精度 – 主要加工表面间的相互位置精度 – 表面粗糙度、表面微观质量、热处理要求 – 其他要求(如动平衡、未注圆角或倒角、去毛刺、
图示传动轴零件为某企业需要大批量加工的产品, 现在需要详细分析该零件的结构工艺性,指出不足 并绘制正确的零件结构。
1.分析零件结构工艺性的不合理之处 图示传动轴零件结构上,主要存在以下不合理之处: ①左侧两表面粗糙度为0.4微米的外圆柱面处缺少磨 削用的越程槽; ②A-A剖面处的平键结构错误,两端部应有圆头, 便于铣削加工; ③M16螺纹表面缺少退刀槽,无法准确车削螺纹; ④右侧直径为6毫米的光孔无锥度底孔,钻头无法加 工。
毛坯要求等)
返回
结构工艺性分析
– 零件的结构工艺性是指所设计的零件在满足使 用要求的前提下,制造的可行性和能以较高的生产率和最低的成本而方便的 加工出来。
零件机械加工结构工艺性的对比
结构工艺改进
(c) (e)
改进结构如图: (e)

传动轴的设计及校核

传动轴的设计及校核

第一章轻型货车原始数据及设计要求发动机的输出扭矩:最大扭矩·m/2000r/min;轴距:3300mm;变速器传动比: 五挡1 ,一挡,轮距:前轮1440毫米,后轮1395毫米,载重量2500千克设计要求:第二章万向传动轴的结构特点及基本要求万向传动轴一般是由万向节、传动轴和中间支承组成。

主要用于在工作过程中相对位置不节组成。

伸缩套能自动调节变速器与驱动桥之间距离的变化。

万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角的变化,并实现两轴的等角速传动。

一般万向节由十字轴、十字轴承和凸缘叉等组成。

传动轴是一个高转速、少支承的旋转体,因断改变的两根轴间传递转矩和旋转运动。

重型载货汽车根据驱动形式的不同选择不同型式的传动轴。

一般来讲4×2驱动形式的汽车仅有一根主传动轴。

6×4驱动形式的汽车有中间传动轴、主传动轴和中、后桥传动轴。

6×6驱动形式的汽车不仅有中间传动轴、主传动轴和中、后桥传动轴,而且还有前桥驱动传动轴。

在长轴距车辆的中间传动轴一般设有传动轴中间支承.它是由支承架、轴承和橡胶支承组成。

传动轴是由轴管、伸缩套和万向此它的动平衡是至关重要的。

一般传动轴在出厂前都要进行动平衡试验,并在平衡机上进行了调整。

因此,一组传动轴是配套出厂的,在使用中就应特别注意。

图 2-1 万向传动装置的工作原理及功用图 2-2 变速器与驱动桥之间的万向传动装置基本要求:1.保证所连接的两根轴相对位置在预计范围内变动时,能可靠地传递动力。

2.保证所连接两轴尽可能等速运转。

3.由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内。

4.传动效率高,使用寿命长,结构简单,制造方便,维修容易等第三章轻型货车万向传动轴结构分析及选型由于货车轴距不算太长,且载重量吨属轻型货车,所以不选中间支承,只选用一根主传动轴,货车发动机一般为前置后驱,由于悬架不断变形,变速器或分动器输出轴轴线之间的相对位置经常变化,根据货车的总体布置要求,将离合器与变速器、变速器与分动器之间拉开一段距离,考虑到它们之间很难保证轴与轴同心及车架的变形,所以采用十字轴万向传动轴,为了避免运动干涉,在传动轴中设有由滑动叉和花键轴组成的伸缩节,以实现传动轴长度的变化。

CA6140普通车床传动系统分析与结构组成分析

CA6140普通车床传动系统分析与结构组成分析

一、CA6140普通车床传动系统分析与结构组成分析1.性能简介CA6140 型普通车床是普通精度级的万能机床,它适用于加工各种轴类,套筒类和盘类零件上的内外回转表面,以及车削端面。

它还能加工各种常用的公制、英制、模数制和径节制螺纹,以及作钻孔、扩孔、铰孔、滚花等工作。

其加工范围较广,由于它的结构复杂,而且自动化程度低,所以适用于单件小批生产及修配车间。

2.主要部件图1 CA6140普通车床的结构1.主轴箱(床头箱) 它固定在床身的左端。

在主轴箱中装有主轴,以及使主轴变速和变向的传动齿轮,通过卡盘等夹具装夹工件,使主轴带动工件按需要的转速旋转,实现主运动。

2.刀架它装在刀架导轨上,并可沿刀架导轨作纵向移动,刀架部件由床鞍(大拖板)、横拖板、小拖板和四方刀架等组成。

刀架部件是用于装夹车刀,并使车刀作纵向、横向和斜向的运动。

3.尾架它装在床身右端,可沿尾架导轨作纵向位置的调整,尾架的功能是用后顶尖支承工件, 还可安装钻头,铰刀等孔加工工具,以进行孔加工,尾架作适当调整,以实现加工长锥形的工件。

4.进给箱它位于床身的左前侧,进给箱中装有进给运动的变速装置及操纵机构,其功能是改变被加工螺纹的螺距或机动进给时的进给量。

它用来传递进给运动,改变进给箱的手柄位置,可得到不同的进给速度,进给箱的运动通过光杠或丝杠传出。

5.溜板箱它位于床身前侧和刀袈部件相连接,它的功能是把进给箱的运动(光杠或丝杠的旋转运动)传递给绐刀架,使刀架实现纵向进给、横纵向进给、快速移动或车螺纹。

6.床身它固定在左右床腿上,它是车床的基本支承元件,是机床各部件的安装基准,是使机床各部件在工作过程中保持准确的相对位置。

7.光杠和丝杠是将运动由进给箱传到溜板箱的中间传动元件。

光杠用于一般车削,丝杠用于车螺纹。

3.传动系统简介图2 CA6140普通车床的传动系统方框图由图2及图2-1-1可知,电动机经主换向机构、主变速机构带动主轴完成主运动。

进给传动从主轴开始,经进给换向机构、交换齿轮和进给箱内的变速机构和转换机构、溜板箱中的传动机构和转换机构传至刀架。

汽车设计 第6版 第4章 万向传动设计

汽车设计 第6版 第4章 万向传动设计

尺寸大,零件多,结构较复杂,传递转矩有限
当应用于转向驱动桥中,由于轴向尺寸大,为 使主销轴线的延长线与地面交点到轮胎的印迹 中心偏离不大,需要较大的主销内倾角
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
四、等速万向节
1.球笼式万向节
(1)固定型球笼式万向节
星形套7以内花键与主动轴1相连,其外表面设置有 6条凹槽(形成内滚道)。球形壳8的内表面设置有 对应的6条凹槽(形成外滚道)。6个钢球分别嵌装 在6条滚道中,并由保持架4使之保持在同一平面内。 动力由主动轴1经过钢球6、球形壳8输出。
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
二、十字轴式万向节
滚针轴承的润滑和密封
毛毡油封:因防漏油、防水、防尘效果差,已淘汰 双刃口复合油封:防漏油、防水、防尘效果好。在 灰尘较多的环境中万向节寿命显著提高。 多刃口油封:防漏油、防水、防尘效果更好。
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
四、等速万向节
2.三枢轴式万向节
三枢轴式万向节能允许最大轴间交角为43°
万向节安装位置或相连接总成
离合器-变速器;变速器-分动器 (相连接总成均安装在车架上)
驱动桥 传动轴
汽车满载 静止夹角
行驶中的 极限夹角
一般汽车 越野汽车 一般汽车 越野汽车
α不大于
1°~3°
6° 12° 15°~20° 30°
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
三、双联式万向节
汽车工程系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传动轴结构分析与设计
传动轴总成主要由传动轴及其两端焊接的花键轴和万向节叉组成。

传动轴中一般设有由滑动叉和花键轴组成的滑动花键,以实现传动长度的变化。

为了减小滑动花键的轴向滑动阻力和磨损,有时对花键齿进行磷化处理或喷涂尼龙层;有的则在花键槽中放入滚针、滚柱或滚珠等滚动元件,以滚动摩擦代替滑动摩擦,提高传动效率。

但这种结构较复杂,成本较高。

有时对于有严重冲击载荷的传动,还采用具有弹性的传动轴。

传动轴上的花键应有润滑及防尘措施,花键齿与键槽间隙不宜过大,且应按对应标记装配,以免装错破坏传动轴总成的动平衡。

传动轴的长度和夹角及它们的变化范围由汽车总布置设计决定。

设计时应保证在传动轴长度处在最大值时,花键套与轴有足够的配合长度;而在长度处在最小时不顶死。

传动轴夹角的大小直接影响到万向节十字轴和滚针轴承的寿命、万向传动的效率和十字轴旋转的不均匀性。

在长度一定时,传动轴断面尺寸的选择应保证传动轴有足够的强度和足够高的临界转速。

所谓临界转速,就是当传动轴的工作转速接近于其弯曲固有振动频率时,即出现共振现象,以致振幅急剧增加而引起传动轴折断时的转速。

传动轴的临界转速为
22
2
8
10
2.1
C c
C k L d
D n +

= (4—13)
式中,n k为传动轴的临界转速(r/min);L C为传动轴长度(mm),即两万向节中心之间的距离;d c和D c分别为传动轴轴管的内、外径(mm)。

在设计传动轴时,取安全系数K=n k/n max=1.2~2.0,K=1.2用于精确动平衡、高精度的伸缩花键及万向节间隙比较小时,n max为传动轴的最高转速(r/min)。

由式(4—13)可知,在D c和L c相同时,实心轴比空心轴的临界转速低,且费材料。

另外,当传动轴长度超过1.5m时,为了提高n k以及总布置上的考虑,常将传动轴断开成两根或三根,万向节用三个或四个,而在中间传动轴上加设中间支承。

传动轴轴管断面尺寸除满足临界转速的要求外,还应保证有足够的扭转强度。

轴管的扭转切应力τc应满足
)
(1644c C S C c d D T D -=πτ≤[τc ] (4—14) 式中,[τc ]为许用扭转切应力,为300MPa ;其余符号同前。

对于传动轴上的花键轴,通常以底径计算其扭转切应力T h ,许用切应力一般按安全系数为2~3确定,即 316h
S h d T πτ= (4—15) 式中,d h 为花键轴的花键内径。

当传动轴滑动花键采用矩形花键时,齿侧挤压应力为
0)2
)(4('n L d D d D K T h h h h h S y -+=σ (4—16) 式中,K ′为花键转矩分布不均匀系数,K ′=1.3~1.4;D h 和d h 分别为花键外径和内径;L h 为花键的有效工作长度;n o 为花键齿数。

对于齿面硬度大于35HRC 的滑动花键,齿侧许用挤压应力为2550MPa ;对于不滑动花键,齿侧许用挤压应力为50~100MPa 。

渐开线花键应力的计算方法与矩形花键相似,只是计算的作用面是按其工作面的投影进行。

传动轴总成不平衡是传动系弯曲振动的一个激励源,当高速旋转时,将产生明显的振动和噪声。

万向节中十字轴的轴向窜动、传动轴滑动花键中的间隙、传动轴总成两端连接处的定心精度、高速回转时传动轴的弹性变形、传动轴上点焊平衡片时的热影响等因素,都能改变传动轴总成的不平衡度。

提高滑动花键的耐磨性和万向节花键的配合精度、缩短传动轴长度增加其弯曲刚度,都能降低传动轴的不平衡度。

为了消除点焊平衡片的热影响,应在冷却后再进行动平衡检验。

传动轴的不平衡度,对于轿车,在3000~6000r /min 时应不大于25~35g ·cm ;对于货车,在1000~4000r /min 时不大于50~100g ·cm 。

另外,传动轴总成径向全跳动应不大于0.5~0.8mm 。

相关文档
最新文档