学年高中数学 推理与证明 类比推理学案含解析北师大版选修
2018-2019学年高中数学 第一章 推理与证明 1 归纳与类比教案(含解析)北师大版选修2-2

A.6n-2
B.8n-2
C.6n+2
D.8n+2
解析:选 C 归纳“金鱼”图形的构成规律知,后面“金鱼”都比它前面的“金鱼”多了
去掉尾巴后 6 根火柴组成的鱼头部分,故各“金鱼”图形所用火柴棒的根数构成一首项为 8,
公差是 6 的等差数列,所以第 n 个“金鱼"图需要的火柴棒的根数为 an=6n+2. 6.设平面内有 n 条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过
距离等于定长的所有点构成的集合.
(2)圆是平面内封闭的曲线所围成的对称图形;球是空间中封闭的曲面所围成的对称图
形.
通过与圆的有关性质类比,可以推测球的有关性质。
圆
球
圆心与弦(非直径)中点的连线垂 球心与截面(不经过球心的小圆面)圆
直于弦
心的连线垂直于截面
与圆心距离相等的两条弦长相等
与球心距离相等的两个截面的面积相 等
同一点.若用 f(n)表示这 n 条直线交点的个数,则 f(4)=____________;当 n>4 时,f(n)
=______________。(用含 n 的数学表达式表示)
解析:画图可知,f(4)=5,当 n〉
4 时,
可得递推式 f(n)-f(n-1)=n-
1,由
f(n)-f(n-1)=n-1,
图与形的归 纳
[例 2] 某少数民族的刺绣有着悠久的历史,图①②③④所示为她们刺绣的最简单的四 个图案,这些图案都是由小正方形构成的,小正方形数越多,刺绣越漂亮.现按同样的规律 刺绣(小正方形的摆放规律相同),设第 n 个图形包含 f(n)个小正方形.
(1)求 f(5)的值; (2)利用合情推理的“归纳推理思想”,归纳出 f(n+1)与 f(n)之间的关系式,并 根据你得到的关系式求出 f(n)的表达式; (3)求错误!+错误!+错误!+…+错误!的值. [思路点拨] 先求出 f(1),f(2),f(3),f(4),f(5)的值,并归纳出 n 与 f(n) 的关系,然后即可解决问题(2)、(3). [精解详析] (1)f(5)=41. (2)f(2)-f(1)=4=4×1, f(3)-f(2)=8=4×2, f(4)-f(3)=12=4×3, f(5)-f(4)=16=4×4, …… 由上式规律,得 f(n+1)-f(n)=4n。 ∴f(n+1)=f(n)+4n, f(n)=f(n-1)+4(n-1) =f(n-2)+4(n-1)+4(n-2) =f(1)+4(n-1)+4(n-2)+4(n-3)+…+4 =2n2-2n+1。 (3)当 n≥2 时,错误!=错误!=错误!错误!, ∴错误!+错误!+错误!+…+错误! =1+错误!错误!+错误!错误!+…+错误!错误! =1+错误!错误!=错误!-错误!. [一点通] 利用归纳推理解决几何问题的两个策略 (1)通项公式法:数清所给图形中研究对象的个数,列成数列,观察所得数列的前几项, 探讨其变化规律,归纳猜想通项公式.
高中数学(北师大版)选修1-2教案:第3章 类比推理 参考学案

3.1.2 类比推理学习目标1. 结合已学过的数学实例,了解类比推理的含义;2. 能利用类比进行简单的推理,体会并认识合情推理在数学发现中的作用. 学习过程 一、课前准备1.已知 0(1,2,,)i a i n >=,考察下列式子:111()1i a a ⋅≥;121211()()()4ii a a a a ++≥; 123123111()()()9iii a a a a a a ++++≥. 我们可以归纳出,对12,,,n a a a 也成立的类似不等式为 . 2. 猜想数列1111,,,,13355779--⨯⨯⨯⨯的通项公式是 .二、新课导学 ※ 学习探究鲁班由带齿的草发明锯;人类仿照鱼类外形及沉浮原理发明潜水艇;地球上有生命,火星与地球有许多相似点,如都是绕太阳运行、绕轴自转的行星,有大气层,也有季节变更,温度也适合生物生存,科学家猜测:火星上有生命存在. 以上都是类比思维,即类比推理.新知:类比推理就是由两类对象具有 和其中 ,推出另一类对象也具有这些特征的推理. 简言之,类比推理是由 到 的推理. ※ 典型例题例1 类比实数的加法和乘法,列出它们相似的运算性质.变式:用三角形的下列性质类比出四面体的有关性质. : 和 都是根据已有的事实,经过观察、分析、比较、联想,再进行 ,然后提出 的推理,我们把它们统称为合情推理.一般说合情推理所获得的结论,仅仅是一种猜想,未必可靠. ※ 动手试试练1. 如图,若射线OM ,ON 上分别存在点12,M M 与点12,N N ,则三角形面积之比11221122OM N OM N S OM ON S OM ON ∆∆=∙.若不在同一平面内的射线OP ,OQ 上分别存在点12,P P ,点12,Q Q 和点12,R R ,则类似的结论是什么?练2. 在ABC ∆中,不等式1119A B C π++≥成立;在四边形ABCD 中,不等式1111162A B C D π+++≥成立;在五边形ABCDE 中,不等式11111253A B C D E π++++≥成立.猜想,在n 边形12n A A A 中,有怎样的不等式成立?三、总结提升 ※ 学习小结1.类比推理是由特殊到特殊的推理.2. 类比推理的一般步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质得出一个命题(猜想).3. 合情推理仅是“合乎情理”的推理,它得到的结论不一定真,但合情推理常常帮我们猜测和发现新的规律,为我们提供证明的思路和方法. ※ 知识拓展 试一试下列题目: 1. 南京∶江苏A. 石家庄∶河北B. 渤海∶中国C. 泰州∶江苏D. 秦岭∶淮河 2. 成功∶失败A. 勤奋∶成功B. 懒惰∶失败C. 艰苦∶简陋D. 简单∶复杂 3.面条∶食物苹果∶水果 手指∶身体 菜肴∶萝卜 食品∶巧克力学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1.下列说法中正确的是( ). A.合情推理是正确的推理 B.合情推理就是归纳推理 C.归纳推理是从一般到特殊的推理 D.类比推理是从特殊到特殊的推理2. 下面使用类比推理正确的是( ). A.“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B.“若()a b c ac bc +=+”类推出 “()a b c ac bc ⋅=⋅” C.“若()a b c ac bc +=+” 类推出“a b a bc c c+=+ (c≠0)” D.“n n a a b =n (b )” 类推出“n n a a b +=+n(b ) 3. 设)()(,sin )('010x f x f x x f ==,'21()(),,f x f x ='1()()n n f x f x +=,n ∈N ,则2007()f x = ( ).A.sin xB.-sin xC.cos xD.-cos x 4. 一同学在电脑中打出如下若干个圆若将此若干个圆按此规律继续下去,得到一系列的圆,那么在前2006个圆中有 个黑圆. 5. 在数列1,1,2,3,5,8,13,x ,34,55……中的x 的值是 . 课后作业1. 在等差数列{}n a 中,若100a =,则有*121219(19,)n n a a a a a a n n N -+++=+++<∈成立,类比上述性质,在等比数列{}n b 中,若91b =,则存在怎样的等式?2. 在各项为正的数列{}n a 中,数列的前n 项和n S 满足⎪⎪⎭⎫ ⎝⎛+=n n n a a S 121(1) 求321,,a a a ;(2) 由(1)猜想数列{}n a 的通项公式;(3) 求n S。
高中数学第三章推理与证明1.1.2类比推理教案含解析北师大版选修1_2

1.2 类比推理类比推理三角形有下面两个性质:(1)三角形的两边之和大于第三边; (2)三角形的面积等于高与底乘积的12.问题1:你能由三角形的这两个性质推测空间四面体的性质吗?试写出来. 提示:(1)四面体任意三个面的面积之和大于第四个面的面积; (2)四面体的体积等于底面积与高乘积的13.问题2:由三角形的性质推测四面体的性质体现了什么?提示:由一类事物的特征推断另一类事物的类似特征,即由特殊到特殊.定义特征由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,把这种推理过程称为类比推理. 类比推理是两类事物特征之间的推理.合情推理合情推理的含义(1)合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.(2)归纳推理和类比推理是最常见的合情推理.1.类比推理是从人们已经掌握了的事物特征,推测正在被研究中的事物的特征.所以类比推理的结果具有猜测性,不一定可靠;2.类比推理以旧的知识作为基础,推测新的结果,具有发现功能.平面图形与空间几何体的类比[例1] (1)圆心与弦(非直径)中点的连线垂直于弦; (2)与圆心距离相等的两弦长相等; (3)圆的周长C =πd (d 是直径); (4)圆的面积S =πr 2.[思路点拨] 先找出相似的性质再类比,一般是点类比线、线类比面、面积类比体积. [精解详析] 圆与球有下列相似的性质:(1)圆是平面上到一定点的距离等于定长的所有点构成的集合;球面是空间中到一定点的距离等于定长的所有点构成的集合.(2)圆是平面内封闭的曲线所围成的对称图形;球是空间中封闭的曲面所围成的对称图形.通过与圆的有关性质类比,可以推测球的有关性质.圆球圆心与弦(非直径)中点的连线垂直于弦 球心与截面(不经过球心的小圆面)圆心的连线垂直于截面与圆心距离相等的两条弦长相等与球心距离相等的两个截面的面积相等圆的周长C =πd 球的表面积S =πd 2圆的面积S =πr 2球的体积V =43πr 3[一点通] 解决此类问题,从几何元素的数目、位置关系、度量等方面入手,将平面几何的相关结论类比到立体几何中,相关类比点如下:平面图形 立体图形 点 点、线 直线 直线、平面 边长 棱长、面积面积 体积 三角形 四面体 线线角 面面角 平行四边形平行六面体圆球1.下面类比结论错误的是( )A .由“若△ABC 一边长为a ,此边上的高为h ,则此三角形的面积S =12ah ”类比得出“若一个扇形的弧长为l ,半径为R ,则此扇形的面积S =12lR ”B .由“平行于同一条直线的两条直线平行”类比得出“平行于同一个平面的两个平面平行”C .由“在同一平面内,垂直于同一条直线的两条直线平行”类比得出“在空间中,垂直于同一个平面的两个平面平行”D .由“三角形的两边之和大于第三边”类比得出“凸四边形的三边之和大于第四边” 解析:选C 只有C 中结论错误,因为两个平面还有可能相交.2.如图所示,在△ABC 中,射影定理可表示为a =b ·cos C +c ·cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边,类比上述定理,写出对空间四面体性质的猜想.解:如图所示,在四面体P ABC 中,S 1,S 2,S 3,S 分别表示△PAB ,△PBC ,△PCA ,△ABC 的面积,α,β,γ依次表示平面PAB ,平面PBC ,平面PCA 与底面ABC 所成二面角的大小.我们猜想射影定理类比推理到三维空间,其表现形式应为S =S 1·cos α+S 2·cos β+S 3·cos γ.定义、定理与性质的类比[例2][精解详析] ①两实数相加后,结果是一个实数,两向量相加后,结果仍是向量; ②从运算律的角度考虑,它们都满足交换律和结合律, 即:a +b =b +a ,a +b =b +a ,(a +b )+c =a +(b +c ),(a +b )+c =a +(b +c ); ③从逆运算的角度考虑,二者都有逆运算,即减法运算, 即a +x =0与a +x =0都有唯一解,x =-a 与x =-a ;④在实数加法中,任意实数与0相加都不改变大小,即a +0=a .在向量加法中,任意向量与零向量相加,既不改变该向量的大小,也不改变该向量的方向,即a +0=a .[一点通] 运用类比推理常常先要寻找合适的类比对象,本例中实数加法的对象为实数,向量加法的对象为向量,且都满足交换律与结合律,都存在逆运算,而且实数0与零向量0分别在实数加法和向量加法中占有特殊的地位.因此我们可以从这四个方面进行类比.3.试根据等式的性质猜想不等式的性质并填写下表.等式不等式a =b ⇒a +c =b+c① a =b ⇒ac =bc ② a =b ⇒a 2=b 2③答案:①a >b ⇒a +c >③a >b >0⇒a 2>b 2(说明:“>”也可改为“<”)4.已知等差数列{a n }的公差为d ,a m ,a n 是{a n }的任意两项(n ≠m ),则d =a n -a mn -m,类比上述性质,已知等比数列{b n }的公比为q ,b n ,b m 是{b n }的任意两项(n ≠m ),则q =________.解析:∵a n =a m qn -m,∴q =⎝ ⎛⎭⎪⎫a n a m 1n -m.答案:⎝ ⎛⎭⎪⎫a n a m 1n -m1.类比推理先要寻找合适的类比对象,如果类比的两类对象的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的结论就越可靠.2.归纳推理与类比推理都是合情推理.归纳推理是从特殊过渡到一般的思想方法,类比推理是由此及彼和由彼及此的联想方法,归纳和类比离不开观察、分析、对比、联想,许多数学知识都是通过归纳与类比发现的.1.下列哪个平面图形与空间图形中的平行六面体作为类比对象较合适( ) A .三角形 B .梯形 C .平行四边形D .矩形解析:选C 从构成几何图形的几何元素的数目、位置关系、度量等方面考虑,用平行四边形作为平行六面体的类比对象较为合适.2.设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c;类比这个结论可知:四面体P ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,四面体P ABC 的体积为V ,则r =( )A.VS 1+S 2+S 3+S 4B.2VS 1+S 2+S 3+S 4C.3V S 1+S 2+S 3+S 4 D.4VS 1+S 2+S 3+S 4解析:选C 设内切球的球心为O ,所以可将四面体P ABC 分为四个小的三棱锥,即O ABC ,O PAB ,O PAC ,O PBC ,而四个小三棱锥的底面积分别是四面体P ABC 的四个面的面积,高是内切球的半径,所以V =13S 1r +13S 2r +13S 3r +13S 4r =13(S 1+S 2+S 3+S 4)r ,∴r =3VS 1+S 2+S 3+S 4.3.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1a 2a 3…a 9=29B .a 1+a 2+…+a 9=29C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9解析:选D 类比等比数列{b n }中b 1b 2b 3…b 9=b 95,可得在等差数列{a n }中a 1+a 2+…+a 9=9a 5=9×2.4.类比三角形中的性质: ①两边之和大于第三边; ②中位线长等于底边长的一半; ③三内角平分线交于一点. 可得四面体的对应性质:①任意三个面的面积之和大于第四个面的面积;②过四面体的交于同一顶点的三条棱的中点的平面面积等于该顶点所对的面面积的14;③四面体的六个二面角的平分面交于一点. 其中类比推理方法正确的有( ) A .① B .①② C .①②③D .都不对解析:选C 以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法是否正确并不等价,方法正确结论也不一定正确.5.在△ABC 中,D 为BC 的中点,则AD ―→=12()AB ―→+AC ―→ ,将命题类比到四面体中去,得到一个命题为:______________________________________..解析:平面中线段的中点类比到空间为四面体中面的重心,顶点与中点的连线类比顶点和重心的连线.答案:在四面体A BCD 中,G 是△BCD 的重心,则AG ―→=13()AB ―→+AC ―→+AD ―→ 6.运用下面的原理解决一些相关图形的面积问题:如果与一条固定直线平行的直线被甲、乙两个封闭的图形所截得的线段的比都为k ,那么甲的面积是乙的面积的k 倍.你可以从给出的简单图形①②中体会这个原理.现在图③中的两个曲线方程分别是x 2a 2+y 2b2=1(a >b>0)与x 2+y 2=a 2,运用上面的原理,图③中椭圆的面积为__________.解析:由于椭圆与圆截y 轴所得线段之比为b a, 即k =b a,所以椭圆面积S =πa 2·b a=πab . 答案:πab7.在Rt △ABC 中,若∠C =90°,则cos 2A +cos 2B =1,在空间中,给出四面体性质的猜想.解:如图,在Rt △ABC 中,cos 2A +cos 2B =⎝ ⎛⎭⎪⎫b c 2+⎝ ⎛⎭⎪⎫a c 2=a 2+b2c 2=1.于是把结论类比到四面体P A ′B ′C ′中,我们猜想,三棱锥P A ′B ′C ′中,若三个侧面PA ′B ′,PB ′C ′,PC ′A ′两两互相垂直,且分别与底面所成的角为α,β,γ,则cos 2α+cos 2β+cos 2γ=1.8.在公比为4的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为4100;类比上述结论,相应地在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和.(1)写出相应的结论,判断该结论是否正确,并加以证明; (2)写出该结论一个更为一般的情形(不必证明).解:(1)在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和,则数列S 20-S 10,S 30-S 20,S 40-S 30也是等差数列,且公差为300.该结论是正确的.证明如下:∵等差数列{a n }的公差d =3, ∴(S 30-S 20)-(S 20-S 10)=(a 21+a 22+…+a 30)-(a 11+a 12+…+a 20) =10d +10d +…+10d =100d =300,10个同理可得:(S 40-S 30)-(S 30-S 20)=300,所以数列S 20-S 10,S 30-S 20,S 40-S 30是等差数列,且公差为300. (2)在公差为d 的等差数列{a n }中, 若S n 是{a n }的前n 项和, 则对于任意k ∈N +, 数列S 2k -S k ,S 3k -S 2k ,S 4k -S 3k 也成等差数列,且公差为k 2d .9.先阅读下列不等式的证法,再解决后面的问题:已知a 1,a 2∈R ,a 1+a 2=1,求证a 21+a 22≥12.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2, 则f (x )=2x 2-2(a 1+a 2)x +a 21+a 22=2x 2-2x +a 21+a 22. 因为对一切x ∈R ,恒有f (x )≥0,所以Δ=4-8(a 21+a 22)≤0,所以a 21+a 22≥12.(1)若a 1,a 2,…,a n ∈R ,a 1+a 2+…+a n =1,请写出上述结论的推广式; (2)类比上述证法,对你推广的结论加以证明. 解:(1)若a 1,a 2,…,a n ∈R ,a 1+a 2+…+a n =1, 求证:a 21+a 22+…+a 2n ≥1n.(2)证明:构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2,则f (x )=nx 2-2(a 1+a 2+…+a n )x +a 21+a 22+…+a 2n =nx 2-2x +a 21+a 22+…+a 2n . 因为对一切x ∈R ,恒有f (x )≥0, 所以Δ=4-4n (a 21+a 22+…+a 2n )≤0.。
高中数学第一章推理与证明章末小结教案含解析北师大版选修2_2

第一章推理与证明
章末小结
一、归纳和类比
1.归纳推理和类比推理是常用的合情推理,都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳类比,然后提出猜想的推理.
2.从推理形式上看,归纳是由部分到整体、由个别到一般的推理;类比是两类事物特征间的推理,是由特殊到特殊的推理.
二、直接证明和间接证明
1.直接证明包括综合法和分析法.
(1)综合法证明数学问题是“由因导果”,而分析法则是“执果索因”,二者一正一反,各有特点.综合法的特点是表述简单、条理清楚,分析法则便于解题思路的探寻.
(2)分析法与综合法往往结合起来使用,即用分析法探寻解题思路,而用综合法书写过程,即“两头凑”,可使问题便于解决.
2.间接证明主要是反证法.
反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.
反证法主要适用于以下两种情形:
(1)要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;
(2)如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.
三、数学归纳法
数学归纳法是推理逻辑,它的第一步称为归纳奠基,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为归纳递推,是命题具有后继传递性的保证,两步合在一起为完全归纳步骤.这两步缺一不可.第二步中证明“当n=k+1时结论正确”的过程中,必须用“归纳假设”,否则就是错误的.
1。
高中数学 第三章 推理与证明 归纳推理教案 北师大版选修1-2(1)

3.1归纳与类比归纳推理教材依据“归纳推理”是北京师范大学出版社出版的普通中学课程标准实验教科书数学(选修1-2)第三章第一节的内容。
教学目标:1.知识与技能目标:理解归纳推理的原理,并能运用解决一些简单的问题。
2.过程与方法目标:通过自主、合作与探究实现“一切以学生为中心”的理念。
3.情感、态度与价值观:感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的美感。
教学重点:归纳推理的原理教学难点:归纳推理的具体应用。
教法学法:自主、合作探究教学教学准备:多媒体电脑、课件、空间多面体模型等教学过程:1.创设情景:1.情景㈠:苹果落地的故事,正是基于这个发现,牛顿大胆地猜想,然后小心求证,终于发现了伟大的“万有引力定理”思考:整个过程对你有什么启发?教师:“科学离不开生活,离不开观察,也离不开猜想和证明”。
2.情景㈡:陈景润和他在“歌德巴赫猜想”证明中的伟大成就:任何一个大于4的偶数都可以写成两个奇素数之和。
如:6=3+3,8=3+5,10=5+5, 12=5+7,14=7+7, 16=5+11,…,1000=29+971,1002=139+863,……2.探求研究:探究1.学生根据自备的多面体进行观察,统计多面体的面数、顶点数和棱数;(学生实验与教师课件演示结合)探究2.观察、猜想它们之间是否有稳定的数量关系?探究3.整理所得结论,并尝试证明;若得证,则改写成定理,否则修改猜想,进一步尝试证明。
教师指导,合作交流,归纳:22V V V =棱柱棱台棱锥=-,32EE E =棱柱棱台棱锥=,1F F F 棱柱棱台棱锥==+,F+V-E=2等等,其中“F+V -E=2”为“欧拉公式”。
3.概念讲解结合情景问题和探究过程所得,教师引导学生完成归纳推理的概念及分析。
定义:根据一类事物的部分事物具有某种属性,推断该类事物的每一个都具有这种属性的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).说明:⑴归纳推理的作用:发现新事实,获得新结论;(2)归纳推理的一般步骤:试验、观察→概括、推广→猜测一般性结论→证明;⑶归纳推理的结论不一定成立。
高中数学第三章推理与证明3.1归纳与类比3.1.2类比推理课件北师大版选修1_2

学
习
目
标
思
维
脉
络
1.通过具体实例理解类比推理的意义. 2.会用类比推理对具体问题作出推断.
一、类比推理 1.类比推理的含义 由于两类不同对象具有某些类似的特征,在此基础上,根据一类 对象的其他特征,推断另一类对象也具有类似的其他特征,我们把 这种推理过程称为类比推理. 类比推理是两类事物特征之间的推理. 2.类比推理的特征 类比推理是从特殊到特殊的推理,简称类比. 3.结论真假:利用类比推理得出的结论不一定是正确的. 4.思维过程流程图 观察、比较→联想、类推→猜想新的结论
【做一做 1】 (1)已知扇形的弧长为 l,半径为 r,类比三角形的面
底× 高 积公式 S= ,可推知扇形面积等于( 2 ������2 ������2 A. B. 2 2 ������������ ������+������ C. D. 2 2
)
(2)在医药研究中,研制新药初期,常用一些动物做药性、药理试 验,最后才做临床试验与应用,通过对动物的观察,得出对人应用的 一些结论,所用推理为 . 解析:(1)三角形的高对应扇形的半径,三角形的底对应扇形的弧 1 ������������ 长,所以可猜测为 2rl= 2 . (2)符合类比推理的方法,故应为类比推理. 答案:(1)C (2)类比推理
【做一做2】 (1)鲁班发明锯子的思维过程为:带齿的草叶能割破 行人的腿,“锯子”能“锯”开木材,它们在功能上是类似的.因此,它们 在形状上也应该类似,“锯子”应该是齿形的.该过程体现了( ) A.归纳推理 B.类比推理 C.没有推理 D.以上说法都不对 (2)等差数列{an}中有2an=an-1+an+1(n≥2,且n∈N+),类比以上结 论,在等比数列{bn}中类似的结论是 . 2 =b · 答案:(1)B (2) ������������ n-1 bn+1(n≥2,且n∈N+)
北师版数学选修22类比推理教案

4、尽管合情推理的结果不一定正确,但是它依然有非常重要的价值。
5、对于数学命题,需要通过演绎推理严格证明。演绎推理是根据已知的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程。
四、巩固练习(选做)
1、杨辉三角的前5行是
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
请试写出第8行,并归纳、猜想出一般规律,从上面的等式中,你能猜想出什么结论?教Biblioteka 过程教师活动学生活动
备注
一、复习引入
1、什么叫推理?推理由哪几部分组成?
2、 归纳推理是从事实中概括出结论的一种推理模式。
3、归纳推理的步骤有哪些?
二、新课讲解
1、引例:春秋时代鲁国的公输班(后人称鲁班,被认为是木匠业的祖师)一次去林中砍树时被一株齿形的茅草割破了手,这桩倒霉事却使他发明了锯子.
情感态度、价值观
1.体会并认识类比推理在数学发现中的作用。
2.培养学生“发现—猜想—证明”的合情推理能力。
教学重点
了解合情推理的含义,能利用类比进行简单的推理。
教学难点
用类比进行推理,做出猜想。
教学方法
引导、实例分析、探究、应用举例
学法指导
观察、对比、分析、思考、分组讨论
教具、仪器
教学课件、多媒体设备
学生
练习
有配套课件。
教师可根据学生情况选讲。
板书设计
2、类比推理
课件演示课堂练习
1、2、
教学反思
2、类比推理的一般步骤:
a)找出两类事物之间的相似性或者一致性。
b)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)。
高中数学 第三章 推理与证明 3.1 归纳与类比 3.1.1 归纳推理教案 北师大选修12

3.1.1归纳推理学习目标:1.通过对已学知识的回顾,进一步体会合情推理这种基本的分析问题法,认识归纳推理的基本方法与步骤,并把它们用于对问题的发现与解决中去。
2.归纳推理是从特殊到一般的推理方法,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。
教学重点:了解合情推理的含义,能利用归纳法进行简单的推理。
教学难点:用归纳进行推理,做出猜想。
学习过程:一、课堂引入:从一个或几个已知命题得出另一个新命题的思维过程称为推理。
见书上的三个推理案例,回答几个推理各有什么特点?都是由“前提”和“结论”两部分组成,但是推理的结构形式上表现出不同的特点,据此可分为合情推理与演绎推理二、新课讲解:1、蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。
蛇,鳄鱼,海龟,蜥蜴都是爬行动物,所有的爬行动物都是用肺呼吸的。
2、三角形的内角和是180︒,凸四边形的内角和是360︒,凸五边形的内角和是540︒由此我们猜想:凸边形的内角和是(2)180n-⨯︒3、221222221,,,331332333+++<<<+++,由此我们猜想:a a mb b m+<+(,,a b m均为正实数)这种由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理,称为归纳推理.(简称:归纳) 归纳推理的一般步骤:⑴ 对有限的资料进行观察、分析、归纳整理;⑵ 提出带有规律性的结论,即猜想;⑶ 检验猜想。
三、例题讲解:例1 通过观察下列等式,猜想一个一般性结论,并证明结论的真假。
23130sin 75sin 15sin 222=++ ;23145sin 85sin 25sin 222=++ ; 23150sin 90sin 30sin 222=++ ;23180sin 120sin 60sin 222=++ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
类比推理1.通过具体实例理解类比推理的意义.(重点)2.会用类比推理对具体问题作出判断.(难点)[基础·初探]教材整理1 类比推理阅读教材P5“类比推理”至P6前16行,完成下列问题.由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理.类比推理是两类事物特征之间的推理.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,你认为比较恰当的是________(填序号).①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.【解析】正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.【答案】①②③教材整理2 合情推理的最后4个自然段,完成下列问题.阅读教材P6合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.合情推理的结果不一定正确.下列说法正确的是( )A.由合情推理得出的结论一定是正确的B.合情推理必须有前提有结论C.合情推理不能猜想D.合情推理得出的结论不能判断正误【解析】根据合情推理可知,合情推理必须有前提有结论.【答案】B[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]类比推理在数列中的应用在公比为4的等比数列{b n}中,若T n是数列{b n}的前n项积,则有,,也成等比数列,且公比为4100;类比上述结论,相应地在公差为3的等差数列{a n}中,若S n是{a n}的前n项和.(1)写出相应的结论,判断该结论是否正确,并加以证明;(2)写出一个更为一般的结论(不必证明).【精彩点拨】结合已知等比数列的特征可类比等差数列每隔10项和的有关性质.【自主解答】(1)数列S20-S10,S30-S20,S40-S30也是等差数列,且公差为300.该结论是正确的.证明如下:∵等差数列{a n}的公差d=3,∴(S30-S20)-(S20-S10)=(a21+a22+…+a30)-(a11+a12+…+a20)==100d=300,同理可得:(S40-S30)-(S30-S20)=300,所以数列S20-S10,S30-S20,S40-S30是等差数列,且公差为300.(2)对于任意k∈N+,都有数列S2k-S k,S3k-S2k,S4k-S3k是等差数列,且公差为k2d.1.本题是等比数列与等差数列之间的类比推理,在等比数列与等差数列的类比推理中,要注意等差与等比、加与乘、减与除、乘法与乘方的类比特点.2.类比推理的思维过程观察、比较→联想、类推→猜测新的结论.即在两类不同事物之间进行对比,找出若干相同或相似之处后,推测这两类事物在其他方面的相同或相似之处.[再练一题]1.设等差数列{a n}的前n项和为S n,则S4,S8-S4,S12-S8,S16-S12成等差数列.类比以上结论有:设等比数列{b n}的前n项积为T n,则T4,________,________,成等比数列.【解析】等差数列类比于等比数列时,和类比于积,减法类比于除法,可得类比结论为:设等比数列{b n}的前n项积为T n,则T4,,,成等比数列.【答案】如图1-1-10所示,在平面上,设h a,h b,h c分别是△ABC三条边上的高,P为△ABC内任意一点,P到相应三边的距离分别为p a,p b,p c,可以得到结论++=1.图1-1-10证明此结论,通过类比写出在空间中的类似结论,并加以证明.【精彩点拨】三角形类比四面体,三角形的边类比四面体的面,三角形边上的高类比四面体以某一面为底面的高.【自主解答】==,同理,=,=.∵S△PBC+S△PAC+S△PAB=S△ABC,∴++==1.类比上述结论得出以下结论:如图所示,在四面体ABCD中,设h a,h b,h c,h d 分别是该四面体的四个顶点到对面的距离,P为该四面体内任意一点,P到相应四个面的距离分别为p a,p b,p c,p d,可以得到结论+++=1.证明如下:==,同理,=,=,=.∵V P-BCD+V P-ACD+V P-ABD+V P-ABC=V A-BCD,∴+++==1.1.一般地,平面图形与空间图形类比如下:2.类比推理的一般步骤(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质推测另一类事物的性质,得出一个明确的结论.[再练一题]2.在上例中,若△ABC的边长分别为a,b,c,其对角分别为A,B,C,那么由a=b·cos C+c·cos B可类比四面体的什么性质?【解】在如图所示的四面体中,S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示平面PAB,平面PBC,平面PCA与底面ABC所成二面角的大小.猜想S=S1·cos α+S2·cos β+S3·cos γ.[探究共研型]探究1 鲁班发明锯子的思维过程为:带齿的草叶能割破行人的腿,“锯子”能“锯”开木材,它们在功能上是类似的.因此,它们在形状上也应该类似,“锯子”应该是齿形的.你认为该过程为归纳推理还是类比推理?【提示】类比推理.探究2 已知以下过程可以求1+2+3+…+n的和.因为(n+1)2-n2=2n+1,n2-(n-1)2=2(n-1)+1,……22-12=2×1+1,有(n+1)2-1=2(1+2+…+n)+n,所以1+2+3+…+n==.类比以上过程试求12+22+32+…+n2的和.【提示】因为(n+1)3-n3=3n2+3n+1,n3-(n-1)3=3(n-1)2+3(n-1)+1,…23-13=3×12+3×1+1,有(n+1)3-1=3(12+22+…+n2)+3(1+2+3+…+n)+n,所以12+22+…+n2===.已知椭圆具有性质:若M,N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM,PN的斜率k PM,k PN都存在时,那么k PM与k PN之积是与点P的位置无关的定值,试写出双曲线-=1(a>0,b>0)具有类似特征的性质,并加以证明.【精彩点拨】→→→【自主解答】类似性质:若M,N为双曲线-=1(a>0,b>0)上关于原点对称的两个点,点P是双曲线上任意一点,当直线PM,PN的斜率k PM,k PN都存在时,那么k PM与k PN之积是与点P的位置无关的定值.证明如下:设点M,P的坐标分别为(m,n),(x,y),则N(-m,-n).因为点M(m,n)是双曲线上的点,所以n2=m2-b2.同理y2=x2-b2,则k PM·k PN=·==·=(定值).1.两类事物能进行类比推理的关键是两类对象在某些方面具备相似特征.2.进行类比推理时,首先,找出两类对象之间可以确切表达的相似特征.然后,用一类对象的已知特征去推测另一类对象的特征,从而得到一个猜想.[再练一题]3.(2016·温州高二检测)如图1-1-11所示,椭圆中心在坐标原点,F为左焦点,当⊥时,其离心率为,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于________.图1-1-11【解析】如图所示,设双曲线方程为-=1(a>0,b>0),则F(-c,0),B(0,b),A(a,0),所以=(c,b),=(-a,b).又因为⊥,所以·=b2-ac=0,所以c2-a2-ac=0,所以e2-e-1=0,所以e=或e=(舍去).【答案】[构建·体系]1.下面使用类比推理恰当的是( )A.“若a·3=b·3,则a=b”类比推出“若a·0=b·0,则a=b”B.“(a+b)c=ac+bc”类比推出“(a·b)c=ac·bc”C.“(a+b)c=ac+bc”类比推出“=+(c≠0)”D.“(ab)n=a n b n”类比推出“(a+b)n=a n+b n”【解析】由实数运算的知识易得C项正确.【答案】C2.已知扇形的弧长为l,半径为r,类比三角形的面积公式S=,可知扇形面积公式为( )D.无法确定【解析】扇形的弧长对应三角形的底,扇形的半径对应三角形的高,因此可得扇形面积公式S=.【答案】C3.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.【解析】由平面和空间的知识,可知面积之比与边长之比成平方关系,在空间中体积之比与棱长之比成立方关系,故若两个正四面体的棱长的比为1∶2,则它们的体积之比为1∶8.【答案】1∶84.在计算“1×2+2×3+…+n(n+1)”时,有如下方法:先改写第k项:k(k+1)=[k(k+1)(k+2)-(k-1)k(k+1)],由此得1×2=(1×2×3-0×1×2),2×3=(2×3×4-1×2×3),……n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)],相加得1×2+2×3+…+n(n+1)=n(+1)(n+2).类比上述方法,请你计算“1×3+2×4+…+n(n+2)”,其结果写成关于n的一次因式的积的形式为________________.【解析】1×3=×(1×2×9-0×1×7),2×4=×(2×3×11-1×2×9),3×5=×(3×4×13-2×3×11),……n(n+2)=[n(n+1)(2n+7)-(n-1)n(2n+5)],各式相加,得1×3+2×4+3×5+…+n(n+2)=n(n+1)(2n+7).【答案】n(n+1)(2n+7)5.如图1-1-12(1),在三角形ABC中,AB⊥AC,若AD⊥BC,则AB2=BD·BC.若类比该命题,如图1-1-12(2),三棱锥A-BCD中,AD⊥平面ABC,若A点在三角形BCD所在平面内的射影为M,则可以得到什么命题?命题是否是真命题,并加以证明.(1) (2)图1-1-12【解】命题是:三棱锥A-BCD中,AD⊥平面ABC,若A点在三角形BCD所在平面内的射影为M,则有S=S△BCM·S△BCD,是一个真命题.证明如下:如图,连接DM,并延长交BC于E,连接AE,则有DE⊥BC.因为AD⊥平面ABC,所以AD⊥AE.又AM⊥DE,所以AE2=EM·ED.于是S==·=S△BCM·S△BCD.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)。