初中数学中考模拟试卷.pdf

合集下载

2024年湖南省株洲市初中中考模拟数学信息卷(一)

2024年湖南省株洲市初中中考模拟数学信息卷(一)

2024年湖南省株洲市初中中考模拟数学信息卷(一)一、单选题1.如图,整数a 在数轴上的位置如图所示,则它的相反数是( )A .2B .12C .3-D .13- 2.已知三角形的两边长分别为4cm 和8cm ,则第三边的长可以是( )A .2cmB .4cmC .5cmD .12cm 3.下列运算正确的是( )A .353a a a +=B .3412a a a ⋅=C .()1432a a =D .824a a a ÷= 4.关于x 的一元二次方程223210x ax a -+-=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根5.下列立体图形中,左视图是三角形的是( )A .B .C .D . 6.2022年清明节假期三天国内旅游出游0.75419亿人次,2024年清明节假期三天国内旅游出游1.19亿人次,设清明节假期三天国内旅游出游的年平均增长率为x ,根据题意可列列方程为( )A .()20.754191 1.19x +=B .()20.754191 1.19x +=C .()21.1910.75419x -=D .()21.1910.75419x -=7.如图,已知AB DE ∥且:3:4AB DE =,A B ∠=∠.若6AC =,则BD 的长度为( )A .8B .12C .14D .168.为贯彻落实教育部办公厅关于“保障学生每天校内、校外各1小时体育活动时间”的要求,学校要求学生每天坚持体育锻炼.小亮记录自己一周内每天校外锻炼的时间(单位:分钟),并制作如图所示的统计图.根据统计图,下列描述错误..的是( )A .周日这天的校外锻炼时间最长B .周一至周日每天校外锻炼时间在逐渐增加C .这周每天校外锻炼时间在70分钟及以上的天数有一半以上D .这一周平均每天的校外锻炼时间为73分钟9.如图,锐角三角形ABC 中,A ABC CB =∠∠,点D ,E 分别在边AB ,AC 上,连接BE ,CD .下列命题中,假命题...是( )A .若ACD ABE ∠=∠,则CD BE =B .若BD CE =,则BE CD =C .若CD BE =,则ACD ABE ∠=∠ D .若AD AE =,则CBE DCB ∠=∠10.若()1,1A x -,()2,1B x 是一次函数2y x b =+(b 为常数)图象上的两个点,下面三个结论:①120x x +=;②211x x -=;③21214b x x -⋅=.正确结论的序号是( ) A .①② B .①③ C .②③ D .①②③二、填空题1112.如图,点A ,B ,C 在O e 上,若106AOB ∠=︒,则BCA ∠=.13.如图,将ABC V 沿BC 向右平移4个单位得到DEF V ,则A ,D 两点之间的距离=.14.营养参考值(NRV )是专用于食品营养标签上比较食品营养成分含量的参考标准,例如某高钙饼干,每100克饼干含钙272毫克,钙的NRV 是800毫克,所以钙的NRV%是34%.某瓶装牛奶每100g 含蛋白质g a ,蛋白质的NRV 为64g ,则该瓶装牛奶蛋白质的NRV %为.(用含a 的代数式表示)15.小明在一次投篮过程中,篮球在空中的高度h (单位:米)与在空中飞行的时间 t (单 位:秒)满足函数关系:2412h t t =-+,当篮球在空中的飞行时间=秒时,篮球距离地面最高.16.一个不透明的口袋中装有5个红球和m 个黄球,这些球除颜色外都相同,某同学进行了如下试验:从袋中随机摸出1个球记下它的颜色后,放回摇匀,为一次摸球试验.根据记录在下表中的摸球试验数据,可以估计出m 的值为.17.如图,菱形ABCD 中,120BAD ∠=︒,对角线AC ,BD 相交于点O ,E 为AB 的中点.若菱形ABCD 的周长为32,则AEO △的周长为.18.如图,在平面直角坐标系中,直线l 与反比例函数()0k y x x=>交于A ,B ,与x 轴交于点()4,0C ,与y 轴交于点()0,2D .若点A ,B 恰好是线段CD 的三等分点,则k =.三、解答题19.解一元一次不等式组:()233218x x ->⎧⎨+-<⎩. 20.某学校课后服务开展有声有色,这个学期因更多的学生选择足球和篮球班,学校计划购进若干个足球和篮球.已知篮球和足球的单价相差30元,且购买4个足球的费用与购买3个篮球的费用相同,求每个篮球和足球价格分别是多少元?21.如图是44⨯的正方形网格,请仅用无刻度的直尺.....按要求完成以下作图(保留作图痕迹).(1)在图1中作点C 使得ABC V 是直角三角形,90BAC ∠=︒,1tan 2ABC ∠=,且点C 在网格点上; (2)在图2中找出所有的点1P ,2P ,…,使得1P ,2P ,…到线段AB 两端的距离相等,且1P ,2P ,…在网格点上.22.广元市某中学举行了“禁毒知识竞赛”,王老师将九年级(1)班学生成绩划分为A 、B 、C 、D 、E 五个等级,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题:(1)求九年级(1)班共有多少名同学?(2)补全条形统计图,并计算扇形统计图中的“C ”所对应的圆心角度数;(3)成绩为A 类的5名同学中,有2名男生和3名女生;王老师想从这5名同学中任选2名同学进行交流,请用列表法或画树状图的方法求选取的2名同学都是女生的概率. 23.A 、B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等.(1)A 、B 两种机器人每小时分别搬运多少千克化工原料?(2)某化工厂有3000kg 化工原料需要搬运,A 型机器人先工作若干小时,然后B 型机器人加入一起搬运化工原料,所有化工原料搬运完成.若A 、B 两种机器人合作的时间不超过10小时,则A 种机器人至少先工作多少小时?24.图1是某款篮球架,图2是其示意图,立柱OA 垂直地面OB ,支架CD 与OA 交于点A ,支架CG CD ⊥交OA 于点G ,支架DE 平行地面OB ,篮筺EF 与支架DE 在同一直线上,2.5OA =米,0.8AD =米,32AGC ∠=︒.(1)求GAC ∠的度数.(2)某运动员准备给篮筐挂上篮网,如果他站在凳子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin320.53,cos320.85,tan320.62︒≈︒≈︒≈)25.在ABC V 中,⊙O 是ABC V 的外接圆,连结CO 并延长,交AB 于点D ,交⊙O 于点E ,2ACE BCE ∠=∠.连结OB ,BE .(1)求证:ABE EOB ∠=∠.(2)求证:212BD ED EC =⋅. (3)已知2AC EB =,11AB =,是否能确定⊙O 的大小?若能,请求出⊙O 的直径;若不能,请说明理由.26.若一次函数y mx n =+与反比例函数k y x=同时经过点(,)P x y 则称二次函数2y mx nx k =+-为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =-与3y x=是否存在“共享函数”,如果存在,请求出“共享点”.如果不存在,请说明理由;(2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数(1)22y n x m =+++与反比例函数2024y x =存在“共享函数” 2()(10)2024y m t x m t x =++--,求m 的值. (3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.。

山西省晋城市泽州县多校2024届九年级下学期中考二模数学试卷(含答案)

山西省晋城市泽州县多校2024届九年级下学期中考二模数学试卷(含答案)

2024年初中学业水平考试——模拟测评(二)数学注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分.全卷共8页,满分120分,考试时间120分钟.2.答卷前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.3.答案全部在答题卡上完成,答在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.的相反数是()A.3B.C.D.2.在中国,鼓是精神的象征,舞是力量的表现,先贤孔子曾说过“鼓之舞之”,可见“鼓舞”一则起之早,如图是集会时击鼓瞬间的情景及鼓的立体图形,该立体图形的左视图是()A.B.C.D.3.下列运算结果正确的是()A.B.C.D.4.山西省2024年政府工作报告中指出,山西省煤炭产量在连续两年每年增产1亿多吨的基础上.再增产万吨,达到亿吨数据“8亿吨”用科学记数法表示为()A.吨B.吨C.吨D.吨5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.小明在探究二次函数的性质时,先用配方法将表达式化为顶点式,得到函数图象的顶点坐标及对称轴,然后在对称轴两侧对称地取值、列表、描点、连线得到函数图象,再借助函数图象研究该函数的增减性、对称性、最值等性质.这种研究方法主要体现的数学思想是()A.数形结合思想B.类比思想C.分类讨论思想D.公理化思想7.如图,、分别表示两块互相平行的平面镜,一束光线照射到平面镜上,反射光线为,光线经平面镜反射后的反射光线为(反射角等于入射角).若,的度数为()A.B.C.D.8.如图,内接于,为的直径,直线与相切于点C,过点O作,交于点E.若,则的度数为()A.B.C.D.9.在物理活动课上,某小组探究电压一定时,电流与电阻之间的函数关系,通过实验得到如下表所示的数据:根据表中数据,下列描述正确的是()A.在一定范围内,随的增大而增大B.与之间的函数关系式为C.当时,D.当时,10.如图,在中,,,,以点C为圆心作半圆,其直径.将沿方向平移5个单位长度,得到,则图中阴影部分的面积为()A.B.C.D.第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分.请将答案直接写在答题卡相应的位置)11.计算:.12.烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等的原料,通常用碳原子的个数命名为甲烷、乙烷、丙烷、…癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷……).甲烷的化学式为,乙烷的化学式为,丙烷的化学式为,…,其结构式如图所示,依此规律,十一烷的化学式为.13.李明计划利用周末的时间从“山西博物院”“山西青铜博物馆”“晋商博物院”“山西地质博物馆”四个博物馆中随机地选择两个博物馆参观.他制作了四个博物馆的卡片(除内容外,其余完全相同),将这四张卡片背面朝上,洗匀放好,从中随机抽取一张,不放回.再从中随机抽取一张,则恰好抽到“山西青铜博物馆”和“山西地质博物馆”的概率为.14.如图,在平面直角坐标系中,点在轴正半轴上,点的坐标为.将绕点逆时针旋转.得到(点、的对应点分别为点、),与交于点.当时,,则此时点的坐标为.15.如图,菱形的边长为,对角线、相交于点,为边的中点,连接交于点.若,则的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(1)计算:;(2)化简:.17.解方程:.18.为推动全民阅读、建设书香社会、增强青少年的爱国情感.某校举办“阅读红色经典,讲好思政故事”主题演讲活动.本次活动共有30名学生进入决赛.七名评委从演讲内容、语言表达、形象风度、综合印象四项对参赛选手评分、去掉一个最高分和一个最低分后取平均分得到每项成绩.再将演讲内容.语言表达、形象风度、综合印象四项成绩按4:3:2:1的比例计算出每人的最终成绩.小蕊,小迪的四项成绩和最终成绩如下表,30名学生最终成绩绘制成的频数直方图(每组包含最小值,不包含最大值)如下图.小蕊、小迪的四项成绩和最终成绩统计表四项成绩/分选手最终成绩/分演讲内容语言表达形象风度综合印象小蕊9796909495小迪888385请根据上述信息,解答下列问题:(1)七名评委给小迪的演讲内容打分分别为87、85、91、94、91、88、93.去掉一个最高分和一个最低分,剩余数据的中位数是________分,众数是________分,平均数是________分.(2)请你计算小迪的最终成绩.(3)学校决定根据最终成绩从高到低设立一等奖、二等奖、三等奖、优秀奖,占比分别为,2、、4.请你判断小蕊和小迪分别获几等奖,并说明理由.19.沁州黄小米是山西省沁县特产,原名糙谷,清朝康熙帝御赐“沁州黄”,以皇家贡米而久负盛名,享有“天下米王”和“国米”的尊号.某商场购进,两种包装的沁州黄小米作为活动奖品发放给顾客.活动开始前、该商场购进种沁州黄小米袋和种沁州黄小米袋,共花费元;活动中因奖品不够.该商场又购进种沁州黄小米袋和种沁州黄小米袋.共花费元.(1)求、两种沁州黄小米的单价.(2)为筹备下次活动,该商场计划再次购进、两种沁州黄小米共袋,若预算不超过元.则该商场最多能购进种沁州黄小米多少袋?20.应县木塔位于山西省朔州市应县佛宫寺院内,建于公元年,是世界上现存最高大、最古老的纯木结构楼阁式建筑.与比萨斜塔、埃菲尔铁塔并称“世界三大奇塔”.某校综合与实践小组的同学借助无人机测量应县木塔的高度.如图、先将无人机垂直上升至距地面的点C处.测得木塔顶端点的俯角为,再将无人机沿水平向木塔方向飞行到达点处,测得木塔底端点的俯角为.已知知点、、、在同一竖直平面内,求应县木塔的高度.(结果精确到;参考数据:,,,)21.阅读下列材料并完成相应的任务.三角形的旁心三角形一个内角的平分域和其他两个内角的外角平分线的交点,称为该三角形的旁心,每个三角形有三个旁心.已知:如图1,在中,的外角与的平分线,相交于点I.作射线.求证:平分.证明:如图2,过点I分别作于点D,于点E,于点F.平分,,.,用理可得.……任务:(1)请按照上面的证明思路,写出该证明过程的剩余部分.(2)图1中各角之间存在特殊的数量关系:①;②;③.请你选择一个结论进行证明.(3)如图3,在中,,点D是的一个旁心,过点D作,交的延长线于点E,且,则的长为________.22.综合与实践问题情境:如图1,在中,,,,、分别为,边的中点,连接.然后将绕点顺时针旋转,旋转角为,连接、,所在的直线与所在的直线交于点.观察发现:(1)在图1中,________.数学思考:(2)如图2,在旋转的过程中.①的值是否会发生变化?请说明理由.②当时,试判断四边形的形状,并说明理由.深入探究:(3)在旋转的过程中,当、、三点共线时,请你直接写出的长.23.综合与探究如图,抛物线与轴交于,,与轴交于点.作直线,是抛物线上的一个动点.(1)求抛物线的函数表达式并直接写出直线的函数表达式.(2)当点P在直线下方时,连接,,.当时,求点P的坐标.(3)在抛物线的对称轴上是否存在点,使以,,,为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.参考答案与解析1.A2.D3.B4.C5.C6.A7.C8.B9.B10.A11.12.13.14.15.##16.(1);(2)解:(1)原式(2)原式17.或解:,配方,得,即,,即或,解得或.18.(1)91,91,90(2)(3)小蕊获一等奖,小迪获三等奖(1)解:从小到大排列为:85、87、、91、91、93、94,去掉一个最高分和一个最低分,剩余数据为87、、91、91、93中位数为,众数是分,平均数是(分)故答案为:91,91,90.(2)(3)小蕊获一等奖,小迪获三等奖.理由:获一等奖的学生有(名),由频数直方图可知,最终成绩不低于95 分且小于100分的学生有2名,小蕊最终成绩95分在这一组,因此小蕊获一等奖;获一、二等奖的学生共有(名),获三等奖的学生有(名),由频数直方图可知,最终成绩不低于90分的学生获一等奖或二等奖,最终成绩不低于85分且小于90分的学生有9名,均获三等奖.又因为小迪最终成绩为分,所以小迪获三等奖.19.(1)种沁州黄小米的单价为元,种沁州黄小米的单价为元(2)该商场最多能购进B种沁州黄小米5袋(1)解:设种沁州黄小米的单价为元,种沁州黄小米的单价为元.根据题意,得解得答:种沁州黄小米的单价为元,种沁州黄小米的单价为元.(2)解:设该商场购进种沁州黄小米袋,则购进种沁州黄小米袋.根据题意,得.解得.为正整数,的最大值为答:该商场最多能购进B种沁州黄小米5袋.20.应县木塔的高度为解:如图,延长交直线于,则根据题意,得:在中,,.在中,.().答:应县木塔的高度为.21.(1)见解析(2)见解析(3)(1)证明:如图2,过点I分别作于点D,于点E,于点F.平分,,.,用理可得.;在内部,平分(2)解:选择结论①、证明如下:平分、平分,,选择结论②、证明如下:平分,平分选择结论③、证明如下:平分、平分、(3)如图所示,连接,过点作,垂足分别为,∴,又,则∵∴四边形是矩形,∵在中,,点D是的一个旁心,∴是的角平分线,,,∵,∴是等腰直角三角形,∴,∴矩形是正方形,∴,在中,∴,∴,同理可得,则,设,,∴,在中,,∴,解得:,∴,在中,.22.(1);(2)(2)①的值不会变化,理由见解析;②四边形是矩形,证明见解析(3)AE 的长为或解:(1)∵在中,,,,、分别为,边的中点,∴,∴;故答案为:.(2)①的值不会变化,理由如解图1,设与交于点,图1中,分别为,的中点,由旋转的性质知,的值不会发生变化,②四边形是矩形,理由:由旋转的性质,知,,.由①,得.又、,,四边形是矩形,(3)的长为或分以下两种情况讨论:当在的右侧时,如解图:由①得,设,则图中,,分别为,边的中点,,.,..由②,得在中,,解得:或舍弃解得:当在边的左侧时,如解图,同理综上所述,的长为或23.(1);直线的函数表达式为,(2)(3)存在,点的坐标为(),(),(1)解:把,分别代入得解得抛物线的函数表达式为当时,,则设直线的解析式为,将点代入,得,解得:,直线的函数表达式为,(2)如图过点作轴于点,交于,过点作于点,则四边形为矩形设则,解得(舍弃),(3)存在,点的坐标为()或()或()由题知,抛物线抛物线的对称轴,把代入,的)设)分以下三种情况讨论:当为对角线时,, ,解得)当为对角线时,,,解得)当为对角线时,,,解得综上所述,点的坐标为(),(),.。

初中数学 2024年甘肃省兰州市安宁区中考数学模拟试卷(一)

初中数学 2024年甘肃省兰州市安宁区中考数学模拟试卷(一)

2024年甘肃省兰州市安宁区东方学校中考数学模拟试卷(一)一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.A.B.C.D.1.(3分)《国家宝藏》节目立足于中华文化宝库资源.通过对文物的梳理与总结,演绎文物背后的故事与历史,让更多的观走进博物馆,让一个个馆藏文物鲜活起来.下面四幅图是我国一些博物馆的标志,其中是轴对称图形的是( )A.a5b5B.a4b5C.ab5D.a5b62.(3分)计算(a2b)3•的结果是( )b2aA.B.C.D.3.(3分)不等式组的解集在数轴上可以表示为( ){-x≤-1x<3A.4b(b-a)+a2B.(2b-a)2C.(2b-a)(2b-a)D.(2b+a)24.(3分)因式分解4b2-4ab+a2正确的是( )A.130°B.140°C.150°D.160°5.(3分)如图是路政工程车的工作示意图,工作篮底部与支撑平台平行.若∠1=30°,∠2=50°,则∠3的度数为( )A .3-B .-2C .-1D .3-6.(3分)如图的数轴上,点A ,C 对应的实数分别为1,3,线段AB ⊥AC 于点A ,且AB 长为1个单位长度,若以点C 为圆心,BC 长为半径的弧交数轴于0和1之间的点P ,则点P 表示的实数为( )M 5M 5M 5M 10A .1B .2C .1.5D .07.(3分)若一次函数y =(k -1)x -2的函数值y 随x 的增大而减小,则k 值可能是( )A .B .C .D .8.(3分)《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:大容器5个,小容器1个,总容量为3斛(斛:古代容量单位);大容器1个,小容器5个,总容量为2斛,问大容器、小容器的容是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是( ){x +5y =35x +y =2{5x +y =3x +5y =2{5x =y +3x =5y +2{5x =y +2x =5y +3A .k <4B .k ≤4且k ≠3C.k >4D .k ≤49.(3分)已知二次函数y =(k -3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是( )A .本次抽样调查的样本容量是5000B .扇形统计图中的m 为10%C .扇形统计图中“自驾”所对应的扇形的圆心角是120°D .样本中选择公共交通出行的有2500人10.(3分)五一期间,某地相关部门对观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),根据图中的信息,下列结论错误的是( )11.(3分)如图,将正方形ABCD 绕着点A 逆时针旋转得到正方形AEFG ,点B 的对应点E 落在正方形ABCD 的对角线AC 上,D =1,则CF的长为( )A二、填空题:本大题共4小题,每小题3分,共12分.A .B .C .D .π√28π√24π8π4A .1B .C .2D .2.512.(3分)如图,在Rt △ABC 中,∠ACB =90°,AD 为中线,E 为AD 的中点,F 为BE 的中点,连结DF .若AC =4,DF ⊥BE ,则DF 的长为( )M 3M 313.(3分)函数y =的自变量x 的取值范围是 .M x -1214.(3分)中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要部分.若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《子》的概率是.15.(3分)如图,△ABC 与△DEF 是位似图形,点O 为位似中心,OC :CF =1:2.若△ABC 的周长为4,则△DEF 的周长是.16.(3分)已知正方形ABCD 的边长为4,若G 为AB 的中点,连接DG 交正方形的对角线AC 于点E ,F 是DG 延长线上一点,FB ⊥BE ,则AF 的长是.三、解答题:本大题共12小题,共72分.解答时写出必要的文字说明、证明过程或演算步骤.17.(4分)计算:2+-.M 813M 1834M 3218.(4分)解方程:-1=.y y -12y3y -319.(4分)先化简,再求值:[(x -y )2+(x +y )(x -y )]÷2x ,其中x =3,y =-1.5.20.(5分)请阅读下列材料,完成相应的任务:有这样一个题目:设有两只电阻,分别为R 1和R 2,问并联后的电阻值R 是多少?我们可以利用公式=+,求得R 的值,也可以设计一种图形直接得出结果,具体如下:如图①,在直线l 上任取两点A 、B ,分别过点A 、B 作直线l 的垂线,并在这两条垂线上分别截取AC =R 1,BD =R 2,且点C ,D 位线l 的同侧,连接AD 、BC ,交于点E ,过点E 作EF ⊥直线1,则线段EF 的长度就是并联后的电阻值R .证明:∵EF ⊥l ,CA ⊥l ,∴∠EFB =∠CAB =90°,又∵∠EBF =∠CBA ,∴△EBF ∽△CBA (依据1),∴=(依据2).同理可得:=,∴+=+,∴1=+,∴=+,即:=+.任务:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1:;依据2:;(2)如图②,两个电阻并联在同一电路中,已知R 1=3千欧,R 2=6千欧,总阻值R =千欧;(3)请仿照①的作图过程在图③中(1个单位长度代表1千欧,例:AB =CD =9千欧)画出(2)中表示该电路图中总阻值R 段长;用无刻度直尺和圆规将所给图形补充完整.(保留作图痕迹,不写作法)1R 1R 11R 2BF AB EF ACAF AB EFBDBF AB AF AB EF AC EFBDEF ACEF BD 1EF 1AC 1BD 1R 1R 11R 221.(5分)综合与实践【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动.【实践发现】同学们随机收集芒果树、荔枝树的树叶各10片,通过测量得到这些树叶的长y (单位:cm ),宽x (单位:cm )的数据后,分别计算长宽比,整理数据如下:12345678910芒果树叶的长宽比 3.8 3.7 3.5 3.4 3.8 4.0 3.6 4.0 3.6 4.0荔枝树叶的长宽比2.02.02.02.41.81.91.82.01.31.9【实践探究】分析数据如下:平均数中位数众数方差芒果树叶的长宽比 3.74m 4.00.0424荔枝树叶的长宽比 1.912.0n0.0669【问题解决】(1)上述表格中:m =,n =;(2)①A 同学说:“从树叶的长宽比的方差来看,我认为芒果树叶的形状差别大.”②B 同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”上面两位同学的说法中,合理的是(填序号);(3)现有一片长11cm ,宽5.6cm 的树叶,请判断这片树叶更可能来自于芒果、荔枝中的哪种树?并给出你的理由.22.(7分)在平面直角坐标系中,已知k 1k 2≠0,设函数=与函数y 2=k 2(x -2)+3的图象交于点A ,B .已知点A 的横坐标是2,点B 的纵坐标是-1.(1)求k 1,k 2的值.(2)连接OA 并延长至点P ,使得OA =AP ,过点P 作x 轴的垂线,交x 轴于点C ,交y 1的图象于点D ,连接OD .设△OPD 的面积为S 1,△OCD 的面积为S 2,求的值.y 1k 1x S 1S 223.(6分)实验是培养学生的创新能力的重要途径之一.如图是小红同学安装的化学实验装置,安装要求为试管略向下倾斜管夹应固定在距试管口的三分之一处.已知试管,AB =30cm ,BE =AB ,试管倾斜角α为10°.(1)求酒精灯与铁架台的水平距离CD 的长度;(2)实验时,当导气管紧贴水槽MN ,延长BM 交CN 的延长线于点F ,且MN ⊥CF (点C ,D ,N ,F 在一条直线上),经测得:D 1.7cm ,MN =8cm ,∠ABM =145°,求线段DN 的长度.(参考数据:sin 10°≈0.17,cos 10°≈0.98,tan 10°≈0.18)1324.(7分)如图,在△ABC 中,AB =AC .以AB 为直径的⊙O 与BC 交于点E ,与AC 交于点D ,点F 在边AC 的延长线上,且∠CBF =∠BAC .12(1)试说明FB 是⊙O 的切线;(2)过点C 作CG ⊥AF ,垂足为C .若CF =4,BG =3,求⊙O 的半径.25.(7分)如图,将⏥ABCD 的边AB 延长到点E ,使BE =AB ,连接DE ,交BC 于点F .(1)求证:△BEF ≌△CDF ;(2)连接BD ,CE ,若∠BFD =2∠A ,判断四边形BECD 的形状并给出证明.26.(6分)小明发现某乒乓球发球器有“直发式”与“间发式”两种模式,在“直发式”模式下,球从发球器出口到第一次接触台运动轨迹近似为一条抛物线;在“间发式”模式下,球从发球器出口到第一次接触台面的运动轨迹近似为一条直线,球第一次接面到第二次接触台面的运动轨迹近似为一条抛物线.如图1和图2分别建立平面直角坐标系xOy .通过测量得到球距离台面高度y (单位:dm )与球距离发球器出口的水平距离x (单位:dm )的相关数据,如下表所示:表1 直发式x (dm )024********…y (dm ) 3.843.9643.96m3.642.561.44…表2 间发式x (dm )024681012141618y (dm )3.36n1.680.841.402.4033.203根据以上信息,回答问题:(1)表格中m =,n =;(2)求“直发式”模式下,球第一次接触台面前的运动轨迹的解析式;(3)若“直发式”模式下球第一次接触台面时距离出球点的水平距离为d 1,“间发式”模式下球第二次接触台面时距离出球点的平距离为d 2,则d 1d 2(填“>”“=”或“<”).27.(8分)旋转是几何图形中最基本的图形变换之一,利用旋转可将分散的条件相对集中,以达到解决问题的目的.【探究发现】如图①,在等边三角形ABC 内部有一点P ,PA =2,PB =,PC =1,求∠BPC 的度数,爱动脑筋的小明发现:段BP 绕点B 逆时针旋转60°得到线段BP ′,连结AP ′、PP ′,则△BPC ≌△BP ′A ,然后利用△BPP ′和△APP ′形状的特殊性求出P ′A 的度数,就可以解决这道问题.下面是小明的部分解答过程:解:将线段BP 绕点B 逆时针旋转60°得到线段BP ′,连结AP ′、PP ′,∵BP =BP ′,∠P ′BP =60°,∴△PBP ′是等边三角形,∴∠BP ′P =60°,PP ′=PB =.∵△ABC 是等边三角形,M 3M 3∴∠ABC =60°,BC =BA ,∴∠ABC -∠ABP =∠P ′BP -∠ABP ,即∠PBC =∠P ′BA .(1)请你补全余下的解答过程.【类比迁移】(2)如图②,在正方形ABCD 内有一点P ,且PA =,PB =2,PC =1,求∠BPC 的度数.【拓展延伸】(3)如图③,在②的条件下,若正方形ABCD 的边长为2,则线段PD 的最小值为.M 17√228.(9分)在平面直角坐标系xOy 中,⊙O 的半径为1,对于直线l 和线段PQ ,给出如下定义:若线段PQ 关于直线l 的对称图形是⊙O 的弦P ′Q ′(P ′,Q ′分别为P ,Q 的对应点),则称线段PQ 是⊙O 关于直线l 的“对称弦”.(1)如图,点A 1,A 2,A 3,B 1,B 2,B 3的横、纵坐标都是整数.线段A 1B 1,A 2B 2,A 3B 3中,是⊙O 关于直线y =x +1的“对称弦”的是 ;(2)CD 是⊙O 关于直线y =kx (k ≠0)的“对称弦”,若点C 的坐标为(-1,0),且CD =1,求点D 的坐标;(3)已知直线y =-x +b 和点M (3,2),若线段MN 是⊙O 关于直线y =-x +b 的“对称弦”,且MN =1,直接写值.M 33M 3M 33。

山东省潍坊市2024届九年级下学期中考一模数学试卷(含答案)

山东省潍坊市2024届九年级下学期中考一模数学试卷(含答案)

2024年初中学业水平模拟考试(一)数学试题2024.04注意事项:1.本场考试时间120分钟,试卷分为第Ⅰ卷和第Ⅱ卷,共22小题,满分150分;2.答卷前,请将试卷密封线内和答题卡上面的项目填涂清楚;3.请在答题卡相应位置作答,不要超出答题区域,不要答错位置.第Ⅰ卷选择题(共44分)一、单项选择题(本大题共6小题,每小题4分,共24分.在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得4分,错选、不选均记0分)1.下列用于证明勾股定理的图形中,是轴对称图形的是()A. B. C. D.2.爱达·魔都号,是中国第一艘国产大型邮轮,全长323.6米,总吨位为13.55万吨,可搭载乘客5246人.将13.55万吨用科学记数法表示为()A.吨B.吨C.吨D.吨3.中国古代数学名著《九章算术注》中记载:“邪解立方,得两堑堵.”意即把一长方体沿对角面一分为二,这相同的两块叫做“堑堵”.如图是“堑堵”的立体图形,它的俯视图为()A. B. C. D.4.实数a,b在数轴上的位置如图所示,则下列判断正确的是()A. B. C. D.5.如图,正五边形ABCDE内接于,P为劣弧上的动点,则的大小为()A. B. C. D.不能确定6.如图,在直角坐标系中,一次函数的图象与反比例函数的图象交于,两点,与y轴、x轴分别交于C,D两点,下列结论正确的是()A. B.C.当时,D.连接OA,OB,则二、多项选择题(本大题共4小题,每小题5分,共20分.每小题的四个选项中,有多项正确,全部选对得5分,部分选对得3分,错选、多选均记0分)7.下列运算正确的是()A. B. C. D.8.如图,在中,,,观察尺规作图的痕迹,下列结论正确的是()第8题图A. B. C. D.9.如图,是用计算机模拟随机投掷一枚图钉的某次实验的结果.下面是根据实验结果所作出的四个推断,其中合理的是()第9题图A.当投掷次数是1000时,“钉尖向上”的次数是620B.当投掷第1000次时,“钉尖向上”的概率是0.620C.随着实验次数的增加,“钉尖向上”的频率趋近于0.618,故可以估计其概率是0.618D.若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.62010.如图,圆柱体的母线长为2,BC是上底的直径.一只蚂蚁从下底面的点A处出发爬行到上底面的点C处.设沿圆柱体侧面由A处爬行到C处的最短路径长为,沿母线AB与上底面直径BC形成的折线段爬行到C 处的路径的长为.当圆柱体底面半径r变化时,为比较与的大小,记,则d是r的二次函数,下列说法正确的是()A.该函数的图象都在r轴上方B.该函数的图象的对称轴为C.当时,D.当时,第Ⅱ卷非选择题(共106分)说明:将第Ⅱ卷答案用0.5mm的黑色签字笔答在答题卡的相应位置上.三、填空题(本大题共4小题,每小题4分,共16分.只填写最后结果)11.因式分解:______.12.已知x是满足的整数,且使的值为有理数,则______.13.已知关于x的一元二次方程的两个根为,,且,则______.14.如图,在中,,,,以B为圆心BC为半径画弧,分别交CD,AB 于点F,E,再以C为圆心CD为半径画弧,恰好交AB边于点E,则图中阴影部分的面积为______.四、解答题(本大题共8小题,共90分.请写出必要的文字说明、证明过程或演算步骤)15.(本题10分)(1)下面是小亮解一道不等式的步骤,请阅读后回答问题.解不等式:解去分母,得…… 第一步移项,得…… 第二步合并同类项,得…… 第三步系数化为1,得…… 第四步①小亮的解法有错吗?如果有,错在哪一步?并给出改正.②小亮解不等式的过程中从第一步到第二步的变形依据是什么?(2)先化简再求值:,已知.16.(本题10分)如图,在平面直角坐标系中,的顶点坐标分别是,,,按要求完成下列问题.(1)将向左平移2个单位长度得到,直接写出点,,的坐标;(2)将绕点A顺时针旋转得到,画出,并写出,的坐标;(3)点C的坐标为,用作图的方法在x轴上确定一点M,使最小,并写出点M的坐标.17.(本题11分)如图1,某社区服务中心在墙外安装了遮阳棚,便于居民休憩.在如图2的侧面示意图中,遮阳棚AM长为5米,其与墙面的夹角,其靠墙端离地高AB为3.9米,ME是为了增加纳凉面积加装的一块前挡板(前挡板垂直于地面).(参考数据:,,,)图1 图2(1)求出遮阳棚前端M到墙面AB的距离;(2)已知本地夏日正午的太阳高度角(太阳光线与地面夹角)最小为,若此时房前恰好有3.7米宽的阴影BC,则加装的前挡板的宽度ME的长是多少?18.(本题11分)随着快递行业在农村的深入发展,全国各地的特色农产品有了更广阔的销售空间.不同的快递公司在配送、服务、收费和投递范围等方面各具优势,某农产品种植户经过前期调研,打算从甲、乙两家快递公司中选择一家合作.为此,该种植户收集了10家农产品种植户对两家公司的相关评价,并整理、描述、分析如下:配送速度和服务质量得分统计表项目配送速度得分服务质量得分统计量快递公司平均数中位数平均数方差甲7.8m7乙887(1)补全频数直方图,并求扇形统计图中圆心角的度数;(2)表格中的______;______(填“>”“=”或“<”);(3)综合上表中的统计量,你认为该农产品种植户应选择哪家公司?请说明理由;(4)如果A,B,C三家农产品种植户分别从甲、乙两个快递公司中任选一个公司合作,求三家种植户选择同一快递公司的概率.19.(本题12分)某校羽毛球社团的同学们用数学知识对羽毛球技术进行分析,下面是他们对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网AB与y轴的水平距离米,米,米,击球点P在y轴上.他们用仪器收集了扣球和吊球时,羽毛球的飞行高度y(米)与水平距离x(米)的部分数据,并分别在直角坐标系中描出了对应的点,如下图所示.同学们认为,可以从,,中选择适当的函数模型,近似的模拟两种击球方式对应的羽毛球的飞行高度y(米)与水平距离x(米)的关系.(1)请从上述函数模型中,选择适当的模型分别模拟两种击球方式对应的羽毛球的飞行高度y(米)与水平距离x(米)的关系,并求出函数表达式;(2)请判断上面两种击球方式都能使球过网吗?如果能过,选择哪种击球方式使球的落地点到C点的距离更近;如果不能,请说明理由.20.(本题12分)如图,内接于,AB是直径,点E在圆上,连接EB,EC,交AB于点F,过点C作CD交AB 的延长线于点D,使.(1)求证:CD是的切线;(2)若,,,求的长.21.(本题11分)某无人机租赁公司有50架某种型号的无人机对外出租,该公司有两种租赁方案:方案A:如果每架无人机月租费300元,那么50架无人机可全部租出.如果每架无人机的月租费每增加5元,那么将少租出1架无人机.另外,公司为每架租出的无人机支付月维护费20元.方案B:每架无人机月租费350元,无论是否租出,公司均需一次性支付月维护费共计185元.说明:月利润=月租费-月维护费.设租出无人机的数量为x架,根据上述信息,解决下列问题:(1)当时,按方案A租赁所得的月利润是______元,按方案B租赁所得的月利润是______元;(2)如果按两种方案租赁所得的月利润相等,那么租出的无人机数量是多少?(3)设按方案A租赁所得的月利润为,按方案B租赁所得的月利润为,记函数,求w的最大值.22.(本题13分)【问题情境】综合与实践课上,老师发给每位同学一张正方形纸片ABCD.在老师的引导下,同学们在边BC上取中点E,取CD边上任意一点F(不与C,D重合),连接EF,将沿EF折叠,点C的对应点为G,然后将纸片展平,连接FG并延长交AB所在的直线于点N,连接EN,EG.探究点F在位置改变过程中出现的特殊数量关系或位置关系.图1 图2 图3【探究与证明】(1)如图1,小亮发现:.请证明小亮发现的结论.(2)如图2、图3,小莹发现:连接CG并延长交AB所在的直线于点H,交EF于点M,线段EN与CH 之间存在特殊关系.请写出小莹发现的特殊关系,并从图2、图3中选择一种情况进行证明.【应用拓展】在图2、图3的基础上,小博士进一步思考发现:将EG所在直线与AB所在直线的交点记为P,若给出BP 和BC的长,则可以求出CF的长.请根据题意分别在图2、图3上补画图形,并尝试解决:当,时,求CF的长.九年级数学试题参考答案一、单选题(本大题共6小题,每小题4分,共24分.在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来每小题选对得4分,错选、不选均记0分)二、多项选择题(共4小题,每小题5分,共20分.每小题的四个选项中,有多项正确,全部选对得5分,部分选对得3分,错选、多选均记0分)三、填空题(本大题共4小题,每小题4分,共16分.只填写最后结果)11.12.5 13.214.四、解答题(本题共8小题,共90分.请写出必要的文字说明、证明过程或演算步骤)15.解:(本题10分,第(1)题4分,第(2)题6分)(1)①有错误,第四步,……2分②不等式的基本性质1(只答不等式的基本性质不得分)………………………4分(2) (1)分 (3)分……4分由得………………………………………………………5分所以,原式…………………………………………………………………6分16.(本题10分)(1),,……3分题号123456答案CBADCD题号78910答案BDACDACBCD(2)……5分,…………………………………………………………………7分(3)……9分……………………………………………………………………………10分17.(本题11分)解:(1)过点M作,垂足为F,在中,……2分所以,………………………………………3分(2)延长ME交BC于点N,由题意可知,垂足为N,又因为,,所以四边形MFBN为矩形,所以,,……………………………………4分所以,……………………………………5分在中,………………7分在中,……………9分所以,,所以,……………………………………………10分所以,…………………………11分18.(本题11分)解:(1)……………………………………………1分……………………………………………2分(2)7.5,<…………………………………………………………………………………4分(3)应选择甲公司(答案不唯一),……………………………………………………5分理由:因为,甲和乙配送速度得分的平均数和中位数相差不大,服务质量得分的平均数相同,但是甲的方差明显小于乙的方差.所以,甲更稳定,故应选择甲公司.…………………………………………………7分(4)……………………………9分所以,三家种植户选择同一快递公司的概率是…………………………………11分19.(本题12分)(1)扣球方式:将,代入得:…………………………………………………………………………1分解得:………………………………………………………………………2分所以,………………………………………………………………3分吊球方式:将,代入中,得:……………………………………………………………4分解得:…………………………………………………………………………5分所以,…………………………………………………………6分(2)能,将代入,得,,将代入,得,,所以,两种击球方式都能过网…………………………………………………………8分将代入,得,,将代入,得,,(舍去)…………………………………………10分因为米,米,所以米,所以点C的横坐标为5.因为………………………………………………………………11分所以,选择吊球方式,球的落地点到C点的距离更近………………………………12分20.(本题12分)(1)证明:连接OC,因为AB为的直径所以,所以………………………………1分因为,所以,因为,所以--------------------------------2分所以,因为,所以----------------------------------3分所以---------------------------4分所以,所以CD是的切线-------------------------------5分(2)解:因为,AB为的直径,所以,---------7分在中,,所以-------------------------------------------------8分所以------------9分因为,所以为等边三角形,所以---------------------------10分所以的长度--------------12分21.(本题11分)解:(1)当时,,……………………………………………1分当每月租出的无人机为10架时,按方案A租赁所得的月利润是4800元;,………………………………………………………………2分当每月租出的无人机为10架时,按方案B租赁所得的月利润是3315元;(2)由题意可得:,……………………………4分解得:或(舍),……………………………………………………………6分∴当租出的无人机为37架时,按两种方案租赁所得的月利润相等;………………7分(3)根据题意,得………………………………………8分…………………………………………………………………………9分因为,函数图象开口向下,因为对称轴为直线,………………………………………………………10分所以当时,w最大,.………………11分22.(本题13分)(1)证明:因为四边形ABCD是正方形,所以,因为是由沿EF折叠所得,点C的对应点为G,所以,,.…………………………………1分所以.所以和均为直角三角形.因为E为BC的中点,所以.所以.因为,…………………………………………………2分所以.所以.…………………………………………3分所以.所以.……………………………………………4分图1(2)且.证明:因为是由沿EF折叠所得所以.…………………5分因为,所以.所以.所以.…………………6分所以.…………………7分因为E为BC中点,所以.所以,即N为BH的中点,图2 图3(3)解:①如图4,因为E为BC中点,,所以.所以.因为,所以在中,.所以.………………………………………………………………9分因为,所以.设GN为x,所以.所以.所以在中,.所以.解得.所以.…………………………………………………………………………10分因为,所以.因为,所以在中,.所以,又因为,所以.所以.图4②如图5因为E为BC中点,,所以.所以.因为,所以在中,.所以.因为,,所以.所以.所以.所以.…………………………………………………12分同①可得,所以.所以…………………………………………………………13分图5。

2024年山东省东营市东营区胜利第一初级中学中考模拟考试数学试卷(含解析)

2024年山东省东营市东营区胜利第一初级中学中考模拟考试数学试卷(含解析)

2024年山东省东营市东营区胜利一中中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列各组数中,互为相反数的是( )A. ―(―2)和2B. 1和―2 C. ―(+3)和+(―3) D. ―(―5)和―|+5|22.如图所示的几何体,若每个小正方体的棱长为2,则左视图的面积为( )A. 24B. 20C. 10D. 163.下列计算正确的是( )A. (x+2y)(x―2y)=x2―2y2B. (―x+y)(x―y)=x2―y2C. (2x―y)(x+2y)=2x2―2y2D. (―x―2y)(―x+2y)=x2―4y24.如图,已知直线a、b、c相交于A、B、C三点,则下列结论:①∠1与∠2是同位角;②内错角只有∠2与∠5;③若∠5=130°,则∠4=130°;④∠2<∠5;正确的个数是( )A. 1B. 2C. 3D. 45.75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是( )A. 6cmB. 7cmC. 8cmD. 9cm6.周日早晨,妈妈送张浩到离家1000m的少年宫,用时20分钟.妈妈到了少年宫后直接返回家里,还是用了20分钟.张浩在少年宫玩了20分钟的乒乓球,然后张浩跑步回家,用了15分钟.如图中,正确描述张浩离家时间和离家距离关系的是( )A. B.C. D.7.某列车提速前行驶400km与提速后行驶500km所用时间相同,若列车平均提速20km/ℎ,设提速后平均速度为x km/ℎ,所列方程正确的是( )A. 400x =500x+20B. 400x=500x―20C. 400x―20=500xD. 400x+20=500x8.如图,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( )A. 15B. 25C. 35D. 459.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D是AC的中点,连接BD交AC于点E,连接OE,且∠OEB=45°,若OB=10,则OE的长为( )A. 6B. 33C. 25D. 21010.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是( )A. 12B. 24C. 36D. 48第II卷(非选择题)二、填空题:本题共6小题,每小题3分,共18分。

2024年浙江省嘉兴市海宁第一中学中考数学模拟试卷

2024年浙江省嘉兴市海宁第一中学中考数学模拟试卷

浙江省嘉兴市海宁一中2024年初中学业水平模拟测试数学试题卷卷I一、选择题(本题有10小题,每小题3分,共30分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.数1,01中,是负数的是()A.1B.0C D.-12.如图所示的几何体,它的主视图是()A.B.C.D.3.2023年12月27日,第58颗北斗卫星成功定点于距地球36000公里的同步轨道上,数据36000用科学记数法表示为()A.0.36×105B.3.6×105C.3.6×104D.36×1034.一个不透明的布袋里装有5个只有颜色不同的球,其中3个白球,2个红球.从布袋里任意摸出1个球,是白球的概率()A.45B.35C.25D.155.如图,△ABC与△DEF是位似三角形,点O为位似中心.OA=AD,则△ABC与△DEF的位似比为()A.1∶1B.2∶3C.1∶2D.1∶36.化简(-2a)3∙a=()A.-8a4B.-8a3C.-6a4D.-6a37.如图所示的△ABC,进行以下操作:①以A,B为圆心,大于12AB为半径作圆弧,相交点D,E;②以A,C为圆心,大于12AC为半径作圆弧,相交于点F,G.两直线DE,FG相交于△ABC外一点P,且分别交BC点M,N.若∠MAN=50°,则∠MPN等于()A.60°B.65°C.70°D.75°8.已知y是关于x的一次函数,下表列出了部分对应值,则m的值为()A.-1B.12C.0D.129.如图1,在矩形ABCD中,点E在BC上,连结AE,过点D作DF⊥AE于点F.设AE=x,DF=y,已知x,y满足反比例函数y=kx(k>0,x>0),其图象如图2所示,则矩形ABCD的面积为()图1图2A.B.9C.10D.10.如图,量筒的液面A-C-B呈凹形,近似看成圆弧,读数时视线要与液面相切于最低点C(即弧中点).小温想探究仰视、俯视对读数的影响,当他俯视点C时,记录量筒上点D的高度为37mm;仰视点C(点E,C,B在同一直线),记录量筒上点E的高度为23mm,若点D在液面圆弧所在圆上,量筒直径为10mm,则平视点C,点C的高度为()mm.A.30-B.37-C.23+D.23+卷Ⅱ二、填空题(本题有6小题,每小题3分,共18分)11.分解因式:m 2-4= .12.某校九(1)班同学每周课外阅读时间的频数直方图如图所示(每组含前一个边界值,不含后一个边界值).由图可知,该班每周阅读时间不低于4小时的学生一共有 人.13.已知扇形的圆心角为120°,它的半径为2,则扇形的面积为 (计算结果保留π).14.不等式2(x -1)>x +3的解为 .15.已知二次函数y =x 2+bx +c (b ,c 为常数且b >0,c <0),当-5≤x ≤0时,-11≤y ≤5,则c 的值为 . 16.如图1是古塔建筑中的方圆设计,寓意天圆地方.据古塔示意图,以塔底座宽AB 为边作正方形ABCD (图2),塔高AF =AC ,分别以点A ,B 为圆心,AF 为半径作圆弧,交于点G .正方形ABCD 内部由四个全等的直角三角形和一个小正方形组成,若点G 落在AM 的延长线上,连接GP 交DQ 于点T ,则GT GP的值为 .图1 图2三、解答题(本题有8小题,共72分)17.(本题8分)(10(1)|5|---.(2)计算:223221a a a a a a --+--. 18.(本题8分)如图,在△ABC 中,AB =AC ,AD 是BC 边上的高线,点E ,F 分别在AC ,CD 上,且∠1=∠2(1)求证:AD∥EF.(2)当CE∶AE=3∶5,CF=6时,求BC的长.19.(本题8分)如图,是3个相同大小的6×6的方格,图1中放置一副七巧板组成的正方形图案,其顶点均在格点上,称之为格点图形.利用七巧板中的3种图形,按下列要求作出符合条件的格点图形.(1)在图2中,拼成一个轴对称但不是中心对称的图形.(2)在图3中,拼成一个中心对称但不是轴对称的图形.图1图2图320.(本题8分)某校组织的知识竞赛中,每班参加的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次为100分,90分,80分,70分,学校将九年级一班和九年级二班的成绩整理并绘制统计图,如图所示.(1)分别求出九年级一班成绩的平均数、中位数和众数;(2)规定成绩在90分以上为优秀(含90分),已知九年级二班成绩的平均数为87.6分,中位数为80分,众数为100分,优秀率为48%,请你选择两个统计量综合评价两个班的成绩.21.(本题8分)汽车刹车后,还会继续向前滑行一段距离,这段距离称为“刹车距离”.刹车距离y(m)与刹车时间的速度x(m/s)有以下关系式:y=ax2+bx(a,b为常数,且a≠0).某车辆测试结果如下:当车速为10m/s时,刹车距离y为3m;当车速为15m/s,刹车距离y为7.5m.(1)求出a,b的值;(2)行车记录仪记录了该车行驶一段路程的过程,汽车在刹车前匀速行驶了20s,然后刹车直至停下.测得刹车距离为5m,问:记录仪中汽车行驶路程为多少米?22.(本题10分)在Y ABCD中,E,F分别是AB,CD的中点,EG⊥BD于点G,FH⊥BD于点H,连接GF,EH.(1)求证:四边形EHFG是平行四边形.(2)当∠ABD=45°,tan∠EHG=14,EG=1时,求AD的长.23.(本题10分)综合与实践:测算校门所在斜坡的坡度.【背景】如图1,某学校校门在一道斜坡上,该校兴趣小组想要测量斜坡的坡度.图1图2【素材1】校门前的斜坡上铺着相同的长方形石砖,如图2,从测量杆AB到校门所在位置DE在斜坡上有15块地砖.【素材2】在点A处测得仰角tan∠1=19,俯角tan∠2=524;在点B处直立一面镜子,光线BD反射至斜坡CE的点N处,测得点B的仰角tan∠3=15;测量杆上AB∶BC=5∶8,斜坡CE上点N所在位置恰好是第9块地砖右边线.【讨论】只需要在∠1,∠2,∠3中选择两个角,再通过计算,可得CE的坡度.24.(本题12分)如图,在Rt△ABC中,∠ABC=90°,BC=6,AB=8,点D在AC上,过点B,D,C所作的弧为优弧BDC,交AB于点E,作DF//BC交BDC于点F,BF与CE,CD分别交于点G,H,连接DE.(1)求证:点H 是AC 的中点.(2)当»BE,»ED ,»DF 中的两段相等时,求DE 的长. (3)记△ADE 的面积为1S ,△CDF 的面积为2S ,若122596S S ,求¼BDC 所在圆的半径.。

2024年中考数学二模试卷(徐州卷)(全解全析)

2024年中考数学二模试卷(徐州卷)(全解全析)

2024年中考第二次模拟考试(徐州卷)数学·全解全析注意事项:1.本试卷共6页.全卷满分140分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.第Ⅰ卷一、选择题(本大题共8个小题,每小题3分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.2024年夏季奥运会将在法国巴黎举行,平移如图所示的巴黎奥运会图标可以得到的图形是()A.B.C.D.【答案】D【解析】解:由图形可知,选项D与原图形完全相同.故选:D2.8-的倒数是()A.8B.18C.18-D.8-【答案】C【解析】解:∵1818⎛⎫-⨯-= ⎪⎝⎭,∴8-的倒数为18-,故选:C .3.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约1700万吨.将数据1700万用科学记数法表示为()A .71.710⨯B .80.1710⨯C .81.710⨯D .71710⨯【答案】A【解析】解:将数据1700万用科学记数法表示为71.710⨯.故选:A .4.下列运算正确的是()A .()325a a -=-B .3515a a a ⋅=C .22321a a -=D .()22346a b a b -=【答案】D【解析】解:A 、()326a a -=-,故A 不正确,不符合题意;B 、358a a a ⋅=,故B 不正确,不符合题意;C 、22232a a a -=,故C 不正确,不符合题意;D 、()22346a b a b -=,故D 正确,符合题意;故选:D .5.一个含45︒的三角板和一个直尺按如图所示方式叠合在一起,若1123=︒∠,则2∠的度数是()A .67︒B .68︒C .77︒D .78︒【答案】D【解析】解:1=123∠︒ ,123EFB ∴∠=︒,EF BD ∥,123EFB ∠=︒,18012357ABD ∴∠=︒-︒=︒,又90ABC ∠=︒ ,905733DBC ∴∠=︒-︒=︒,2453378C DBC ∠=∠+∠=︒+︒=︒.故选:D .6.如图,,OA OB 是O 的两条半径,点C 在O 上,连接,AC BC ,若36C ∠=︒,则AOB ∠的度数为()A .72︒B .62︒C .54︒D .36︒【答案】A 【解析】解:∵36C ∠=︒,∴272AOB C ∠︒=∠=,故选:A .7.某校射击比赛所用的靶子有8环,9环,10环三个环次,每一环又有10个小环,小新、小华、小宇三人每人射击三次,成绩如图所示,则射击成绩的平均数约为9.0环的是()A .小新B .小宇C .小华D .三人都有可能【答案】C 【解析】解:由图可知:小新的成绩2个在10环上,一个在9环上,平均成绩不可能为9.0环;小宇的成绩一个在10环,一个接近10环,一个接近9环,平均数不可能为9.0环;小华的成绩均在9环附近,射击成绩的平均数约为9.0环;故选C .8.如图,在平面直角坐标系中,矩形ABOC 的顶点C 在y 轴上,A 在x 轴上,把矩形ABOC 沿对角线BO 所在的直线翻折,点A 恰好落在反比例函数()0k y k x=≠的图象上点D 处,BD 与y 轴交于点E ,点D 恰好是BE 的中点.已知A 的坐标为()4,0,则反比例函数的表达式为()A .232y =B .43y =C .4y x =D .1633y x=【答案】B 【解析】解:∵矩形ABOC ,A 的坐标为()4,0,∴4OA =,点B 的横坐标为4,∵折叠,∴4OD OA ==,∵E 在y 轴上,D 为BE 的中点,∴点D 的横坐标为2,过点D 作DF OA ⊥,∴2OF =,∴2223DF OD OF =-,∴(2,23D ,∴22343k =⨯=∴反比例函数的表达式为43y =故选B .第Ⅱ卷二、填空题(本大题共10个小题,每小题3分,共30分)9.0.0081的平方根是.【答案】0.09±【解析】解:因为20.090.0081()±=,所以0.0081的平方根是0.09±;故答案为:0.09±.10.当x =时,分式43xx --无意义.【答案】3【解析】 分式43xx --无意义30x ∴-=3x ∴=.故答案为:3.11.如图,由三个正方形拼成的图形中,字母B 所代表的正方形面积是.【答案】144【解析】解:由勾股定理得,字母B 所代表的正方形面积16925144=-=.故答案为:144.12.如图,第4套人民币中菊花1角硬币采用“外圆内凹正九边形”设计,则内凹正九边形的外角的度数为.【答案】40︒【解析】解:内凹正九边形的外角的度数为360940︒÷=︒,故答案为:40︒.13.若分式方程12x x a +=+的解是3x =,则=a .【答案】1-【解析】解:分式方程去分母得:122x x a +=+,由分式方程的解为3x =,代入整式方程得:31232a +=⨯+,解得:1a =-,故答案为:1-.14.某节活动课上,安安用一张半径为18cm 的扇形纸板做了一个圆锥形帽子(如图,接缝处忽略不计).若圆锥形帽子的半径为10cm ,则这张扇形纸板的面积为cm².【答案】180π【解析】解:解:这张扇形纸板的面积为121018180cm²2ππ⨯⨯⨯=,故答案为:180π.15.已知20ax bx c ++=的两根为2,3,则20cx bx a -+=的两个根分别为.【答案】121123x x =-=-,【解析】解:∵20ax bx c ++=的两根为2,3,∴235236bca a -=+==⨯=,,∴56b a c a =-=,,∴方程20cx bx a -+=即为2560a ax x a ++=,∴26510x x +=+,∴()()21310x x ++=,解得121123x x =-=-,,故答案为:121123x x =-=-,.16.如图,边长为1的正方形ABCD 绕点A 逆时针旋转60︒得到正方形AEFG ,连接CF ,则CF 的长是.2【解析】解:如图所示,连接AC 、AF ,∵四边形AEFD 是四边形ABCD 逆时针旋转60︒,∴AC AF =,60CAF ∠=︒,∴ACF △是等边三角形,∴AC CF AF ==,在Rt ABC △中,222AC AB BC =+=∴2AC CF =2.17.如图,在矩形ABCD 中,4AB =,2AD =,点E 是AD 边的中点,连接,AC BE 交于点,F CAD ∠的平分线AG 交CD 边于点G ,点A 关于过点E 的某条直线的对称点H 恰好在AG 上,且点H 不与点A 重合,连接FH ,则FH 的长为.46363【解析】解:∵在矩形ABCD 中,4AB =,42AD =E 是AD 边的中点,∴90BAD ∠=︒,122AE ED AD ===∴222tan 42AE ABE AB ∠==,2tan 242CD CAD AD ∠=,∴tan tan ABE CAD ∠=∠,∴ABE CAD ∠=∠,∴90ABE BAF CAD BAF BAD ∠+∠=∠+∠=∠=︒,∴90BFA ∠=︒,即BE AC ⊥,∵在矩形ABCD 中,4AB =,22AE =∴()224226BE =+AE BC ∥,∴AEF CBF ∽△△,∴12EF AE BF BC ==,∴12633EF BE =,连接EH ,∵点A 关于过点E 的某条直线的对称点H 恰好在AG 上,∴2AE EH ==∴EAH EHA ∠=∠,∵AG 是CAD ∠的平分线,∴EAH CAH ∠=∠,∴EHA CAH ∠=∠,∴HE AC ∥,∵BE AC ⊥,∴BE EH ⊥,即90FEH ∠=︒,∴()222224622633FH EF EH ⎛⎫=+=+= ⎪⎝⎭463.18.如图,在矩形ABCD 中,6,10AB BC ==,点E 是AD 边的中点,点F 是线段AB 上任一点,连接EF ,以EF 为直角边在AD 下方作等腰直角EFG ,FG 为斜边,连接DG ,则DEG 周长最小值为.【答案】555【解析】解:如图,过点G 作GH AD ⊥于点H ,∵四边形ABCD 是矩形,∴90,6,10A AB CD AD BC ∠=︒====,∴5AE ED ==,∵90A FEG GHE ∠∠∠===︒,∴90,90AEF GEH GEH EGH ∠∠∠∠+=︒+=︒,∴AEF EGH ∠∠=,∵EF EG =,∴(AAS)AEF GHE ≌ ,∴5GH AE ==,过点G 作直线l AD ∥,∵5GH =,GH AD ⊥,∴点G 在直线l 上运动,作点D 关于直线l 的对称点T ,连接ET ,在Rt EDT 中,90,5,10DET DE DT ∠=︒==,∴2255ET DE DT +=∵GD GT =,∴GE GD EG GT ET +=+≥,∴55GE GD +≥,∴GE GD +的最小值为55,∴DEG 周长最小值为555,故答案为:555.三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤)19.计算.(1)()()220240221π433-⎛⎫-+--- ⎪⎝⎭;(2)21111x x x ⎛⎫-÷ ⎪+-⎝⎭.【解析】(1)解:原式411199=+--39=13=;(2)原式21111x x x x+--=⨯+(1)(1)1x x x x x+-=⨯+1x =-.20.解方程或方程组:(1)解方程:2450x x --=;(2)解不等式组:()432123x x x x ⎧+≤+⎪⎨-<⎪⎩①②.【解析】(1)解:因式分解得,(5)(1)0x x -+=,∴10x +=或50x -=,∴15=x ,21x =-;(2)解:解不等式①得,1x ≥-,解不等式②得,3x <,∴不等式组的解集为:13x -≤<.21.一个不透明的笔袋里装有若干支黑色、红色和蓝色这三种颜色的中性笔(除笔芯颜色外,其余都相同),其中黑色中性笔有2支,红色中性笔有1支,从中任意摸出的一支笔是黑色中性笔的概率为12.(1)求笔袋中蓝色中性笔有多少支?(2)第一次任意摸出一支笔(不放回),第二次再摸出一支笔,请用树状图或列表法求出两次摸到的都是黑色中性笔的概率.【解析】(1)解:122112÷--=(支),答:笔袋中蓝色中性笔有1支.(2)解:解法一:树状图法由树状图可知,共有12种等可能的结果,其中两次摸到的都是黑色中性笔的情形有2种,∴两次摸到的都是黑色中性笔的概率为21126=.解法二:列表法第一次第二次黑1黑2红蓝黑1(黑1,黑2)(黑1,红)(黑1,蓝)黑2(黑2,黑1)(黑2,红)(黑2,蓝)红(红,黑1)(红,黑2)(红,蓝)蓝(蓝,黑1)(蓝,黑2)(蓝,红)由列表可知,共有12种等可能的结果,其中两次摸到的都是黑色中性笔的情形有2种,∴两次摸到的都是黑色中性笔的概率为21126=.22.某市教育局为了解“双减”政策落实情况,随机抽取几所学校部分初中生进行调查、统计他们平均每天完成作业的时间,并根据调查结果绘制如下不完整的统计图:请根据图表中提供的信息,解答下面的问题:(1)在调查活动中,教育局采取的调查方式是(填写“普查”或“抽样调查”);(2)教育局抽取的初中生有人,扇形统计图中m的值是;(3)若该市共有初中生12000人,则平均每天完成作业时长在“7080t≤<”分钟的初中生约有多少人.【解析】(1)解:抽查方式为随机抽取几所学校部分初中生进行调查,则在调查活动中,教育局采取的调查方式是抽样调查,故答案为:抽样调查;(2)解:4515%300÷=人,∴教育局抽取的初中生有300人,∴每天完成作业时长在“7080t≤<”分钟的初中生人数有3004513521990----=人,∴90%100%30%300m=⨯=,∴30m=,故答案为:300;30;(3)解:1200030%3600⨯=人,∴平均每天完成作业时长在“7080t≤<”分钟的初中生约有3600人.23.新能源汽车因其废气排放量比较低,被越来越多的家庭所喜爱,老疆车行销售甲、乙两种型号的新能源汽车,十月的第一周售出1辆甲型车和3辆乙型车,销售额为65万元;第二周售出4辆甲型车和5辆乙型车,销售额为155万元.(1)求每辆甲型车和乙型车的售价各为多少万元?(2)茅溪科技发展有限公司准备向老疆车行购买甲、乙两种型号的新能源汽车共8辆,其购车费用不少于145万元,且不超过153万元,问有哪几种购车方案?【解析】(1)解:设每辆甲型车的售价为x 万元,每辆乙型车的售价为y 万元,根据题意得:36545155x y x y +=⎧⎨+=⎩解得:2015x y =⎧⎨=⎩,答:每辆甲型车的售价为20万元,每辆乙型车的售价为15万元;(2)解:设购买甲型车a 辆,则购买乙型车为()8a -辆,依题意得:()14520158153a a ≤+-≤,解得:5 6.6a ≤≤∵a 为正整数,∴a 取5或6.∴有两种购车方案:方案一:购买甲型车5辆,购买乙型车3辆,此时的费用是145万元,;方案二:购买甲型车6辆,购买乙型车2辆,此时的费用是150万元;24.如图,AC 是菱形ABCD 的对角线.(1)在AC 上求作一点E ,使得BEC BCD ∠=∠(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若140D ∠=︒,求CBE ∠的度数.【解析】(1)解:如图,点E 即为所求;(2)解: 四边形ABCD 是菱形,AD CB ∴∥,ACD ACB ∠=∠,180D BCD ︒∴∠+∠=,18014040BCD ∴∠=︒-︒=︒,20ACD ACB ∴∠=∠=︒,又∵40BEC BCD ∠=∠=︒,1801802040120CBE ACB BEC ∴∠=︒-∠-∠=︒-︒-︒=︒.25.如图,CD 是O 的直径,点B 在O 上,点A 为DC 延长线上一点,过点O 作OE BC ∥交AB 的延长线于点E ,且D E∠=∠(1)求证:AE 是O 的切线;(2)若线段OE 与O 的交点F 是OE 的中点,O 的半径为3,求阴影部分的面积.【解析】(1)证明:连接OB ,∵CD 是O 的直径,∴BC BD ⊥,即90CBD ∠=︒,∵OE BC ∥,∴90DGO CBD ∠=∠=︒,∴90BGE DGO ∠=∠=︒,90D DOG ∠+∠=︒,∵D E ∠=∠,∴DOE DBE ∠=∠,∵OD OB =,∴D OBD ∠=∠,∴90OBD DBE D DOG ∠+∠=∠+∠=︒,∴90OBE ∠=︒,∵OB 是O 的半径,∴AE 是O 的切线;(2)解:连接BF ,∵90OBE ∠=︒,F 是OE 的中点,∴BF OF =,∵O 的半径为3,90∠=︒DGO ,∴3BF OF OB ===,18090BGO DGO ∠=︒-∠=︒,∴OBF 是等边三角形,∴60BOF ∠=︒,∴9030OBG BOF ∠=︒-∠=︒,∴1322OG OB ==,2222333322BG OB OG ⎛⎫=-=-= ⎪⎝⎭,∴阴影部分的面积为:2603133339336022228OBG OBF S S ⨯π⨯π-=-⨯=-扇形△,∴阴影部分的面积为39328π26.如图,山区某教学楼后面紧邻着一个土坡,坡面BC 平行于地面AD ,斜坡AB 的坡比为51:12i =,且26AB =米.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53︒时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离BE 的长.(2)为了消除安全隐患,学校计划将斜坡AB 改造成AF (如图所示),那么BF 至少是多少米?(结果精确到1米)(参考数据:sin530.8︒≈,cos530.6︒≈,tan 53 1.33︒≈,cot 530.75)︒≈.【解析】(1)解: 斜坡AB 的坡比为51:12i =,:12:5BE EA ∴=,设12BE x =,则5EA x =,由勾股定理得,222BE EA AB +=,即222(12)(5)26x x +=,解得,2x =,则1224BE x ==,510AE x ==,答:改造前坡顶与地面的距离BE 的长为24米;(2)解:作FH AD ⊥于H ,则tan FH FAH AH ∠=,24181.33AH ∴=≈,18108BF ∴=-=,答:BF 至少是8米.27.如图,在ABC 中,10AB AC ==,45BC =AD BC ⊥于点D ,点P 从点A 出发,沿折线AC CD →向终点D 运动,点P 在AC 上以每秒5个单位长度的速度匀速运动,在CD 5匀速运动,当点P 不与点A 、D 重合时,作PQ AB ∥,PQ 与射线AD 交于点Q ,以PQ 为一边向左侧作正方形PQMN .设点P 的运动时间为()s t .(1)直接写出AD =______.(2)求sin BAC ∠的值.(3)当正方形PQMN 与ABC 重叠部分图形是四边形时,直接写出t 的取值范围.(4)连接BM ,直接写出BM AB ⊥时t 的值.【解析】(1)解:∵,=⊥AB AC AD BC ,∴1145522BD BC ==⨯=在Rt △ABD 中,根据勾股定理得:2245AD AB BD -=故答案为:45(2)解:如图1,作CE AB ⊥于点E .分别以AB BC 、为底表示ABC 的面积两式相等,可得:8BC ADCE AB ⋅==;∴4sin 5CEBAC AC ∠==;(3)解:正方形PQMN 与ABC 重叠部分图形随着t 的变化而变化.①如图2,当Q 点与D 点重合时,正方形PQMN 与ABC 重叠部分图形,由四边形变为五边形.∵PQ AB ∥,∴1APBDPC DC ==,∴此时:1215ACt ==.②如图3:当MQ 经过B 点时,正方形PQMN 与ABC重叠部分图形,由五边形变为四边形.∵4sin 5BAC ∠=,∴243cos 155BAC ⎛⎫∠=-= ⎪⎝⎭;∵,PQ AB PN PQ ⊥∥,∴PN AB ⊥.∴此时,cos AP BAC PQ AB ⋅∠+=,即355105t t ⨯+=,解得:54t =.如图4:当P 与C 重合时,正方形PQMN 与ABC 重叠部分图形,由四边形变为三角形.此时,1025t ==.综上:t 的取值范围为:01t <≤或524t ≤<;(4)解:由(3)可知54t =时,MQ 经过点B 时BM AB ⊥;另外当P 在DC 上时,也会出现BM AB ⊥,如图5.∵,PQ AB MQ PQ ⊥∥;∴MQ AB ⊥,∴ABD BQD QPD ∽∽ .∴::::::AB BQ PQ AD BD QD BD QD PD ==,即10::45225:BQ PQ QD QD PD ==;得:52PD =∴535452522CP BC PD BD =--=-=;∴3572225t ==.故BM AB ⊥时t 的值为:54,72.28.如图,抛物线2y x bx c =-++交x 轴于A 、B 两点(点A 在点B 的左侧)坐标分别为()2,0-,()4,0,交y 轴于点C .(1)求出抛物线解析式;(2)如图1,过y 轴上点D 作BC 的垂线,交直线BC 于点E ,交抛物线于点F ,当355EF =F 的坐标;(3)如图2,点H 的坐标是()0,2,点Q 为x 轴上一动点,点()2,8P 在抛物线上,把PHQ 沿HQ 翻折,使点P 刚好落在x 轴上,请直接写出点Q 的坐标.【解析】(1)解:将()2,0-,()4,0代入表达式得:4201640b c b c --+=⎧⎨-++=⎩,解得:28b c =⎧⎨=⎩,∴抛物线解析式为228y x x =-++;(2)过点F 作x 轴的垂线交BC 于N ,交x 轴于M ,∵FNE BNM ∠=∠,90FNE EFN BNM MBN ∠+∠=∠+∠=︒,∴EFN MBN ∠=∠,在Rt BOC 中,90BOC ∠=︒,由勾股定理得:22224845BC OB OC =+=+=∴cos cos OB EF EFN MBN BC FN ∠=∠=35545FN =,∴3FN =,∵()4,0B ,()0,8C ,∴直线BC :28y x =-+,设()2,28F m m m -++,(),28N m m -+,∴()228283m m m -++--+=或()28²283m m m -+--++=,∴243m m -+=或243m m -+=-,解得:11m =,23m =,327m =427m =,∴()1,9F 或()3,5或(27,17-或()27,271其中()1,9F 和(27,17-两点所对应的E 点不在线段BC 上,所以舍去,∴点F 的坐标为()3,5或()27,271;(3)分两种情况讨论:①如图所示,当点Q 位于x 轴负半轴时,过点P 作PM y ∥轴交x 轴于点M ,作PN x ∥轴交y 轴于点N ,则四边形OMPN 为矩形,∵()2,8P ,∴2NP OM ==,8ON PM ==,∵()0,2H ,∴826NH =-=,∴222226210PH NP NH =+=+=,由折叠可知:210PH HP '==QP QP '=,∴()222221026OP P H OH =--'=',设OQ x =,∴6QP QP x '==+,2QM x =+,∵222P M Q M P Q +=,∴()()222826x x ++=+,∴4x =,∴Q 点的坐标为()4,0-;②如图所示,当点Q 位于x 轴正半轴时,过点P 作PM y ∥轴交x 轴于点M ,作PN x ∥轴交y 轴于点N ,由①得:210PH P H '==,P Q PQ '=,∴()222221026OP P H OH =--'=',设OQ m =,则6P Q PQ m '==+,2QM m =-,∵222P M Q M P Q +=,∴()()222286m m -+=+,∴2m =,∴Q 点的坐标为()2,0,综上所述,Q 点的坐标为()4,0-或()2,0.。

初中数学 2024年广东省深圳市南山中考数学模拟试卷(6月份)

初中数学 2024年广东省深圳市南山中考数学模拟试卷(6月份)

2024年广东省深圳市南山外国语学校滨海中学中考数学模拟试卷(6月份)一、选择题(共10小题,每小题3分,共30分)A .收入18元B .收入6元C .支出6元D .支出12元1.(3分)手机移动支付给生活带来便捷.如表是小颖某天微信账单的收支明细(正数表示收入,负数表示支出,单位:元),小颖当天微信收支的最终结果是( )转账——来自天青色+18.00微信红包——发给高原红-12.00A .B .C .D .2.(3分)体育是一个锻炼身体,增强体质,培养道德和意志品质的教育过程,是培养全面发展的人的一个重要方面,下列体育图标是轴对称图形的是( )A .34×10-9B .34×10-8C .3.4×10-8D .3.4×10-73.(3分)石墨烯是目前世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.00000034毫米,将数000000034用科学记数法表示为( )A .a 2+a 2=a 4B .a 3•a 2=a 6C .a 6÷a 2=a 3D .(a 3)3=a 94.(3分)下列计算正确的是( )5.(3分)如图,南外大冲学校(X )、文华学校(Y )、科华学校(Z )坐落于有深圳硅谷之称的南山科技园核心位置.其中,XY =500m ,XZ =400m ,YZ =300m ,若计划在XY 中点M 处建一个5G 基站助力南外集团发展,其覆盖半径为260m ,则这三个学校中在该5G 基站覆盖范围内的是( )A .只有YB .只有Y ,ZC .只有X ,ZD .X ,Y ,ZA .∠BEAB .∠DEBC .∠ECAD .∠ADO6.(3分)如图是脊柱侧弯的检测示意图,在体检时为方便测出Cobb 角∠O 的大小,需将∠O 转化为与它相等的角,则图中与∠O 相等的角是( )A .24B .12C .8D .367.(3分)如图,在矩形ABCD 中,分别以点A ,C 为圆心,大于AC 的长为半径作弧,两弧相交于点M ,N 作直线MN ,交BC 于点E ,交AD 于点F ,若BE =3,AF =5,则矩形的周长为( )12A .6cmB .8cmC .(30-36)cmD .(30-48)cm8.(3分)千斤顶的工作原理是利用四边形的不稳定性,图中的菱形ABCD 是一种型号千斤顶的示意图.已知AB =30cm 时BD 的长为30cm ,如果使BD 的长达到36cm ,那么AC 的长需要缩短( )M 3M 3A .=B .=C .=D .=9.(3分)在《九章算术》“勾股”章中有这样一个问题:“今有邑方不知大小,各中开门,出北门二十步有木,出南门十回步,折而西行一千七百七十五步见木,问邑方几何.”大意是:如图,DEFG 是一座正方形小城,北门H 位于DG 的中点,南门K 位于EF 的中点,出北门20步到A 处有一树木,出南门14步到C ,向西行1775步到B 处正好看到A 处的树木(即点D 在直线AB 上),小城的边长为多少步,若设小城的边长为x 步,则可列方程为( )20x +14x 17752020+x +14x 12177520x +14x 1217752020+x +14x 1775二、填空题(共5小题,每小题3分,共15分)A.B .C .D .10.(3分)如图,在四边形ABCD 中,AD ∥BC ,∠BAD =90°,AB =3,BC =4,AD =5,动点P 从点A 出发按A →B →C 的方向在AB ,BC 边上移动,记PA =x (x >0),点D 到直线PA 的距离为y ,则y 关于x 的函数图象大致是 ( )11.(3分)若x =2y (y ≠0),则= .x y 12.(3分)已知m 是方程x 2-x -2=0的一个根,则m 2-m +2022的值为 .13.(3分)如图是某路口的部分通行路线示意图,一辆车从入口A 驶入,行至每个岔路口选择前方两条线路的可能性相同,则该车从F 口驶出的概率是 .14.(3分)如图,在平面直角坐标系xOy 中,点A (0,3),B (4,0),将△AOB 向右平移到△CDE 位置,点A ,O 分别与点C ,D 对应,函数y =(k >0)的图象经过点C 和CE 的中点F ,则k 的值为 .k x 15.(3分)如图,在Rt △ABC 中,∠B =90°,BD =2AD ,∠CDA =3∠A ,则tanA 的值为 .三、解答题(共7小题,第16题5分,第17题7分,第18题8分,第19题8分,第20题8分,第21题10分,第22题9分,共5分)16.(5分)计算:|-3|+2cos 30°-(-.13)-1√1217.(7分)先化简÷(1+),再从-3,0,3,-中选择一个适当的数作为a 的值代入求值.a-9a 23a -37218.(8分)“十二年学习在南外,十二年成长在深圳湾”的南外集团教育历程和“葆有外语特色,做强数理实力”的南外教育内涵获得了全社会的广泛认可.为了不断提升学生对南外集团的归属感,集团举办了一次南外校史知识竞赛,并随机抽取部分学生,将竞赛成绩按以下五组进行整理(得分用x 表示):A :50≤x <60,B :60≤x <70,C :70≤x <80,D :80≤x <90,E :90≤x ≤100,并绘制出如图的统计图1和图2.请根据相关信息,解答下列问题:(1)图1中A 组所在扇形的圆心角度数为°,并将条形统计图补充完整.(2)若“90≤x ≤100”这一组的数据为:90,96,92,95,93,96,96,95,97,100.则这组数据的众数是,中位数是 .(3)经过初赛,进入决赛的同学有1名女生(记为A )和2名男生(记为B ,C ),现从这三位同学中决出冠亚军,请用列表或画树状图法求冠亚军的两人恰好是一男一女的概率.19.(8分)已知:如图,在⏥ABCD 中,过点D 作DE ⊥AB 于E ,点F 在边CD 上,DF =BE ,连接AF和BF .(1)求证:四边形BFDE 是矩形;(2)如果AF 平分∠DAB ,BF =4,sinC =,求DC 的长.4520.(8分)六月是离别的季节,三年的初中时光就将告一段落,为了给大家的青春留下纪念,各班家委决定为同学们采购南外特色钢笔和笔记本两种商品,具体信息如表:根据以上信息解答下列问题:班级购买数量(件)购买总费用(元)钢笔笔记本九(1)班40201100九(2)班20601300(1)求钢笔和笔记本的单价;(2)若九(3)班购买这两种商品共60件,且钢笔的数量不少于笔记本数量的2倍,请设计出最省钱的购买方案,并说明理由.21.(10分)根据以下情境信息,探索完成任务.公路涵洞改造方案的设计与解决情境1图1是某公路涵洞,图2是其截面示意图,它由圆心在点O 的劣弧AED 和矩形ABCD 构成.测得公路宽BC =12m ,涵洞直壁高AB =2m ,涵洞顶端E 高出道路(BC )6m (即EG =6m ).情境2现需对公路进行拓宽,改造成双向隔离车道,并同步拓宽涵洞,中间设置宽为a (m )的隔离带,两边为机动车道.如图3,改造后的公路宽BC =20m ,涵洞直壁高AB 和涵洞顶端E 到BC 的距离保持不变.改造方案方案一如图4,将涵洞上半部分劣弧AED 改造成顶点为E 的抛物线一部分的形式.方案二如图5,将涵洞上半部分劣弧AED 改造成仍为劣弧的形式问题解决任务1按方案一改造以点G 为坐标原点,BC 所在直线为x 轴建立平面直角坐标系,求抛物线的函数表达式.任务2按方案二改造求涵洞上半部分劣弧AED 所在圆的半径.任务3隔离带最大宽度a 的确定要使高5.5m ,宽2.3m 的货运车能通过此公路涵洞,分别求出两种改造方案下a 的最大值(≈1.41,≈7.55,结果精确到0.1m ).√2M 5722.(9分)在Rt △ABC 中,AB =AC ,点D 为CB 延长线上任一点,连接AD .(1)如图1,若AD =,BD =2,求线段BC 的长;(2)如图2,将线段AD 绕着点A 逆时针旋转90°得到线段AE ,连接BE ,CE .点F 为BE 的中点,连接AF .求证:DC =2AF ;(3)在(2)的条件下,设点K 为直线CE 上的点,AE 交BC 于点P .点D 在CB 延长线上运动的过程中,当AB ⊥BE 时,将△ABE 沿直线AE 翻折到△ABE 所在平面内得到△ANE ,同时将△PCK 沿直线PK 翻折到△PCK 所在平面内得到△PKM .在MN 取得最大值时,请直接写出的值.M 34MN BN。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年初三中考模拟(一)
数学试卷
时间:120分钟 总分:120
一、选择题(本大题共有5小题,每小题3分,共15分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置.......上) 1、平面直角坐标系内,点A (-2,-3)在( )
A.第一象限 B 第二象限 C.第三象限 D 。

第四象限 2.下列图形中,既是..轴对称图形又是..中心对称图形的是( )
3.下列事件中最适合使用普查方式收集数据的是( )
A .了解某班同学的身高情况
B .了解全国每天丢弃的废旧电池数
C .了解一批炮弹的杀伤半径
D .了解我国农民的年人均收入情况 4.下面右边的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的左视图是( )
5、如图,平面直角坐标系中,在边长为1的正方形ABCD 的边上有一动点P 沿A B C D A →→→→运动一周,则P 的纵坐标y 与点
P 走过的路程s 之间的函数关系用图象表示大致是( )
二、填空题(共12小题,每小题2分,共24分。

请将答案写在答题卡相应位置.......
上)
1 2 3 4
1 2
y
s O 1 2 3 4 1
2 y s O s 1 2
3
4 1 2 y s
O 1 2 3 4 1 2 y O A B . C . D . D
C B A A B C D
A
B
C D
E 第16题图 6计算:2
332x x • ,
()3
22x。

7、分解因式:2
28x −= 。

8、已知数据:2,1−,3,5,6,5,则这组数据的众数是 ,极差是 。

9 函数2
1+=
x y 中,自变量x 的取值范围是 .
10.如图5,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=0
70,则∠AED 的度数是_________________ .
第10题 第12题 第13题 11、已知双曲线x
k
y =
过点(-2,3),则k = 。

12、AB ∥CD ,AC ⊥BC ,∠BAC =65°,则∠BCD =______________度。

13、如图,O ⊙是ABC △的外接圆,AB 是直径.若80BOC ∠=°,则A ∠等于
14、圆锥形烟囱帽的底面直径为80cm ,母线长为50cm ,则这样的烟囱帽的侧面积是等
于 cm 2. 15、20092010
73
⨯的计算结果的末位数字
是 。

16、如图,斜边长为6cm ,∠A=30°的直角三角板 ABC 绕点C 顺时针方向旋转90°至ΔEDC 的位置,再沿CB 向左平移,使点D 落在原三角板ABC 的斜边AB
上,则三角板向左平移的距离是 cm ; 17、将一些半径相同的小圆按如图所示的规律摆放:
第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 个小圆
三、解答题:(18—22题每题6分,23—26题每题8分,27题9分,28题10分)
第1个图形
第2个图形
第3个图形
第4个图形

1
2
3
4 D
C B A E
18、(1)计算 |4|2145cos 2)3(1
−−⎪⎭

⎝⎛+−−−
π; ⑵解方程:2512112x x +=−−
19(1)解不等式组 ⎪⎩⎪
⎨⎧−≥+>−13
1538x x x x
(2)、先化简,再求值:11212−÷⎪⎪⎭
⎫ ⎝⎛−−−x x
x x x x ,其中3−=x ;
20、如图,已知在
ABCD 中,点E 为BC 边的中点,延长DE 、AB 相交于点F 。

求证:CD=BF.
21、某中学图书馆将图书分为自然科学、文学艺术、社会百科、数学四类。

在“读书月”活动中,为了了解图书的借阅情况,图书管理员对本月各类图书的借阅进行了统计,
A
B
C D
E F
图(1)和图(2)是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图。

请你根据图表中提供的信息,解答以下问题:
各种图书 频数 频率 自然科学 400 0.20 文学艺术 1000 0.50
社会百科 500 0.25
数学
图(1)
(1)填充图(1)频率分布表中的空格;
(2)在图(2)中,将表示“自然科学”的部分补充完整;
(3)若该学校打算采购一万册图书,请你估算“数学”类图书应采购多少册较合适? (4)根据图表提供的信息,请你提出一条合理化的建议。

22、(8分)小明和爸爸、妈妈排成一横排照相,小明正好排在爸爸妈妈中间的概率是多少?请用表格或树状图加以分析和说明。

23、统计数据显示,2007年底某市共有私人汽车10万辆,到2009年底共有私人汽车14.4万辆。

(1)若2008年、2009年两年中每年比上一年年私人汽车平均增长率相同,求这两
图(2)
图书 600 借阅量(册)
400
800 1000 200 数学 社会 百科 文学 艺术
自然科学 0
年该市私人汽车的年平均增长率是多少?
(2)如果从2009年开始,每年年底比上一年底新增汽车的数量相同,并且都有上一年底汽车数量的10%报废。

要使2010年底该市私人汽车拥有量不超过15.464万辆,问从2009年开始,每年年底比上一年最多新增汽车多少辆?
24、已知:三角形ABC 三边a 、b 、c 满足bc c b a −+=2
2
2
,ac c a b −+=2
2
2

ab b a c −+=222,
(1)求证:ABC ∆是等边三角形;
(2)若等边ABC ∆的面积为4,其内心为1O ,连结1BO ,以1BO 为边作等边11B BO ∆,记等边11B BO ∆的面积1S ,取11B BO ∆的内心2O ,连2BO ,以2BO 为边作等边
22B BO ∆,记等边22B BO ∆的面积为2S ,依次作等边三角形……记20102010B BO ∆的面
积为2010S ,求1S 、2S 及2010S 的值。

25、(8分)如图,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离()AB 是 1.7m ,看旗杆顶部M 的仰角为45;小红的眼睛与地面的距离
()CD 是1.5m ,看旗杆顶部M 的仰角为30.两人相距28米且位于旗杆两侧(点
B A
C
1
O 2
O 2B 1B
B N D ,,在同一条直线上)
. 请求出旗杆MN 的高度.(参考数据:2 1.4≈,3 1.7≈,结果保留整数)
26、(8分)如图,AB 为⊙O 的直径,点C 在⊙O 上,过点C 作⊙O 的切线交AB 的延长线于点D ,已知∠D =30°.
⑴求∠A 的度数; ⑵若点F 在⊙O 上,CF ⊥AB ,垂足为E ,CF =34,求图中阴影部分的面积. (3)填空:圆上有 个点到直线CF 的距离为2
27、阅读下列材料:
对于函数1−=x y ,研究其图象时我们发现,与函数1−=x y 的图象相比较,仅仅是将直线1−=x y 在x 轴下方的图象沿x 轴翻折到x 轴上方,原x 轴上方的图象不变。

(如图(1)中实线部分图象)
M
N B
A D
C
30° 45°
E D
C B
A
O F
同理,对于函数x y 2=的图象,依上述办法将双曲线x
y 2
=作一翻折即可(如图(2)实线部分图象) 解决下列问题:
(1)在给定的坐标系内画出函数322
−−=x x y 的图象
(2)利用图象讨论:对于不同的m 值,方程1322
−=−−m x x 的根的情况如何? (3)通过题(2)的解决我们知道,方程的根可以看成是两个函数图象交点的横坐标。

若)(n m n m <、是关于x 的方程()()0x 1=−−−b x a 的两根,且b a <,请判断
n m b 、、、a 的大小关系并说明理由。

28、已知:如图12所示,在平面直角坐标系xOy 中,直线64
3
+−
=x y 与x 轴、y 轴的交点分别为A,B,将OBA ∠对折,使点O 的对应点H 落在直线AB 上,折横交x 轴于点C
(1)求出点C 的坐标,并求过A ,B ,C 三点的抛物线的解析式。

(2)若抛物线的顶点为D ,在直线BC 上是否存在点P ,使得四边形ODAP 为平行四边形?若存在,求出点P 的坐标;若不存在,说明理由。

图1
图2
1 1
-1
(3)在x 轴上找一点Q ,使得QH QB −最大,求出Q 点的坐标,并说明理由。

O 1
1 C
D
A
H
B

x
y。

相关文档
最新文档