微分方程初值问题的数值解法

合集下载

常微分方程初值问题数值解法

常微分方程初值问题数值解法

常微分方程初值问题的数值解法在自然科学、工程技术、经济和医学等领域中,常常会遇到一阶常微分方程初值问题:(,),,(),y f x y a x b y a y '=≤≤⎧⎨=⎩ (1) 此处f 为,x y 的已知函数,0y 是给定的初始值。

本章讨论该问题的数值解法,要求f 在区域{(,)|,}G x y a x b y =≤≤<∞内连续,并对y 满足Lipschitz 条件,从而初值问题(1)有唯一的连续可微解()y y x =,且它是适定的。

1 几个简单的数值积分法1.1 Euler 方法(1)向前Euler 公式(显式Euler 公式)10(,),0,1,2,,(),n n n n y y hf x y n y y a +=+=⎧⎨=⎩(2) 其中h 为步长。

由此便可由初值0y 逐步算出一阶常微分方程初值问题(1)的解()y y x =在节点12,,x x 处的近似值12,,y y 。

该公式的局部截断误差为2()O h ,是一阶方法。

(2)向后Euler 公式(隐式Euler 公式)1110(,),0,1,2,,(),n n n n y y hf x y n y y a +++=+=⎧⎨=⎩(3) 这是一个隐格式,也是一阶方法。

这类隐格式的计算比显格式困难,一般采用迭代法求解。

首先用向前Euler 公式提供迭代初值,然后迭代计算:(0)1(1)()111(,),(,),0,1,2,n n n n k k n n n n y y hf x y y y hf x y k +++++⎧=+⎨=+=⎩ (4)1.2 梯形方法1110[(,)(,)],2(),(0,1,2,)n n n n n n h y y f x y f x y y y a n +++⎧=++⎪⎨⎪=⎩= (5) 这也是一个隐格式,是二阶方法。

一般也采用迭代法求解。

迭代公式如下:(0)1(1)()111(,),[(,)(,)],0,1,2,2n n n n k k n n n n n n y y hf x y h y y f x y f x y k +++++⎧=+⎪⎨=++=⎪⎩ (6)1.3 改进的Euler 方法11110(,),[(,)(,)],0,1,2,,2(),n n n n n n n n n n y y hf x y h y y f x y f x y n y y a ++++⎧=+⎪⎪=++=⎨⎪=⎪⎩(7) 为了便于上机编程计算,(7)可改写为110(,),(,),0,1,2,,1(),2(),p n n n cn n p n p c y y hf x y y y hf x y n y y y y y a ++=+⎧⎪=+⎪⎪=⎨=+⎪⎪=⎪⎩(8) 该格式是显式,也是二阶方法。

微分方程的数值解法

微分方程的数值解法

微分方程的数值解法微分方程是自然科学和现代技术领域中一种最基本的数学描述工具,它可以描述物理世界中的各种现象。

微分方程的解析解往往很难求出,因此数值解法成为解决微分方程问题的主要手段之一。

本文将介绍几种常见的微分方程的数值解法。

一、欧拉法欧拉法是微分方程初值问题的最简单的数值方法之一,它是由欧拉提出的。

考虑一阶常微分方程:$y'=f(t,y),y(t_0)=y_0$其中,$f(t,y)$表示$y$对$t$的导数,则$y(t_{i+1})=y(t_i)+hf(t_i,y_i)$其中,$h$为步长,$t_i=t_0+ih$,$y_i$是$y(t_i)$的近似值。

欧拉法的精度较低,误差随着步长的增加而增大,因此不适用于求解精度要求较高的问题。

二、改进欧拉法改进欧拉法又称为Heun方法,它是由Heun提出的。

改进欧拉法是在欧拉法的基础上进行的改进,它在每个步长内提高求解精度。

改进欧拉法的步骤如下:1. 根据当前$t_i$和$y_i$估算$y_{i+1}$:$y^*=y_i+hf(t_i,y_i),t^*=t_i+h$2. 利用$y^*$和$t^*$估算$f(t^*,y^*)$:$f^*=f(t^*,y^*)$3. 利用$y_i$、$f(t_i,y_i)$和$f^*$估算$y_{i+1}$:$y_{i+1}=y_i+\frac{h}{2}(f(t_i,y_i)+f^*)$改进欧拉法具有比欧拉法更高的精度,但是相较于其他更高精度的数值方法,它的精度仍然较低。

三、龙格-库塔法龙格-库塔法是一种广泛使用的高精度数值方法,它不仅能够求解一阶和二阶常微分方程,还能够求解高阶常微分方程和偏微分方程。

其中,经典的四阶龙格-库塔法是最常用的数值方法之一。

四阶龙格-库塔法的步骤如下:1. 根据当前$t_i$和$y_i$估算$k_1$:$k_1=f(t_i,y_i)$2. 根据$k_1$和$y_i$估算$k_2$:$k_2=f(t_i+\frac{h}{2},y_i+\frac{h}{2}k_1)$3. 根据$k_2$和$y_i$估算$k_3$:$k_3=f(t_i+\frac{h}{2},y_i+\frac{h}{2}k_2)$4. 根据$k_3$和$y_i$估算$k_4$:$k_4=f(t_i+h,y_i+hk_3)$5. 根据$k_1$、$k_2$、$k_3$和$k_4$计算$y_{i+1}$:$y_{i+1}=y_i+\frac{h}{6}(k_1+2k_2+2k_3+k_4)$龙格-库塔法的精度较高,在求解一些对精度要求较高的问题时,龙格-库塔法是一个比较好的选择。

第7章 常微分方程初值问题的数值解法

第7章 常微分方程初值问题的数值解法

例1 函数f ( t , y ) = t y 在区域D0 = {( t , y ) | 1 ≤ t ≤ 2, −3 ≤ y ≤ 4}
关于y满足Lipschitz条件,相应的Lipschitz常数可取为L = 2
3 存在性定理 定理1 设函数f ( t , y )在凸集D ⊂ R 2中有定义,若存在常数
(7.2.7)
称为显式Runge-Kutta(龙格-库塔 )方法,简称R-K方法,
其中正整数N 称为R-K方法的级,所有ci , ai , bij 都是待定 常数。
根据定义(7.2.7),N 级R-K方法(7.9)的局部截断误差为
Rn+1 = y( t n+1 ) − y( t n ) − h∑ ci ki
dy 其斜率为 = f ( t0 , y0 ) dt ( t0 , y0 ) 由 点 斜 式 写 出 切线 方 程 dy y = y0 + ( t − t0 ) = y0 + ( t − t0 ) f ( t0 , y0 ) dt ( x0 , y )
0
等步长为h,则t1 - t0 = h, 可由切线算出 y1 : 则 y1 = y0 + hf ( t0 , y0 ) 按此逐步计算y( tn ), 在tn +1处的值 : yn+1 = yn + hf ( tn , yn ) y 注意: 这是“ 注意 : 这是 “ 折 yN 线法” 而非“ 线法 ” 而非 “ 切 线法” 线法 ” 除第一个 点是曲线切线外, 点是曲线切线外 , 其他点不是切线 y2 而是折线(如右 y1 y0 图所示)。 图所示 。
பைடு நூலகம்
则称数值解法(7.5)为显式方法。否则,称数值解法(7.3) 为隐式方法。

计算方法 常微分方程初值问题数值解法-Euler公式-龙格-库塔法

计算方法 常微分方程初值问题数值解法-Euler公式-龙格-库塔法

[xi , xi 1 ]上积分得,
y(xi 1 ) y(xi )

xi 1
xi
f[x, y(x)]dx
(9.4 )
改用梯形方法计算其积分项,即

xi 1
x i 1 x i [f(x i , y(x i )) f(x i 1 , y(x i 1 ))] 2
xi
f[x, y(x)]dx
0 1 n1 n
… , y(xn ) (未知) 处的函数值 y(x 0 ), y(x1 ),
, yn 的近似值 y 0 , y1 ,…
y=y(x)
a=x0 x1
x2
x3
xn=b
• 相邻两个节点的间距 h xi 1 xi 称为步长,
步长可以相等,也可以不等。
• 本章总是假定h为定数,称为定步长,这时节 点可表示为
第9章 常微分方程初值问题数值解法
§9.1 引言
包含自变量、未知函数及未知函数的导数的方程称 为微分方程。
自变量个数只有一个的微分方程称为常微分方 程。
微分方程中出现的未知函数最高阶导数的阶数 称为微分方程的阶数。 如果未知函数y及其各阶导数
y, y, … , y
(n)
都是一次的,则称其为线性的,否则称为非线性的。
• 如下是一些典型方程求解析解的基本方法 可分离变量法、 常系数齐次线性方程的解法、 常系数非齐次线性方程的解法等。
• 但能求解的常微分方程仍然是很少的,大多数
的常微分方程是不可能给出解析解。例如,一
阶微分方程
y x y
2
2
的解就不能用初等函数及其积分来表达。
• 从实际问题当中归纳出来的微分方程,通常主 要依靠数值解法来解决。 • 本章主要讨论一阶常微分方程初值问题

常微分方程初值问题数值解法

常微分方程初值问题数值解法
根据微分方程的性质和初始条件,常 微分方程初值问题可以分为多种类型, 如一阶、高阶、线性、非线性等。
数值解法的必要性
实际应用需求
许多实际问题需要求解常微分方程初值问题,如物理、 化学、生物、工程等领域。
解析解的局限性
对于复杂问题,解析解难以求得或不存在,因此需要 采用数值方法近似求解。
数值解法的优势
未来发展的方向与挑战
高精度算法
研究和发展更高精度的算法,以提高数值解的准确性和稳定性。
并行计算
利用并行计算技术,提高计算效率,处理大规模问题。
自适应方法
研究自适应算法,根据问题特性自动调整计算精度和步长。
计算机技术的发展对数值解法的影响
1 2
硬件升级
计算机硬件的升级为数值解法提供了更强大的计 算能力。
它首先使用预估方法(如欧拉方法)得到一个 初步解,然后使用校正方法(如龙格-库塔方法) 对初步解进行修正,以提高精度。
预估校正方法的优点是精度较高,且计算量相 对较小,适用于各种复杂问题。
步长与误差控制
01
在离散化过程中,步长是一个重要的参数,它决定 了离散化的精度和计算量。
02
误差控制是数值逼近的一个重要环节,它通过设定 误差阈值来控制计算的精度和稳定性。
能够给出近似解的近似值,方便快捷,适用范围广。
数值解法的历史与发展
早期发展
早在17世纪,科学家就开始尝 试用数值方法求解常微分方程。
重要进展
随着计算机技术的发展,数值 解法在20世纪取得了重要进展, 如欧拉法、龙格-库塔法等。
当前研究热点
目前,常微分方程初值问题的 数值解法仍有许多研究热点和 挑战,如高精度算法、并行计
软件优化
软件技术的发展为数值解法提供了更多的优化手 段和工具。

第五章 常微分方程初值问题数值解法

第五章 常微分方程初值问题数值解法

则有
yn 1 yn hf ( xn , yn )
( 5.2 ) Euler格式
例5.1 用Euler格式解初值问题
2x y y y y (0) 1
取步长h=0.1.
(0 x 1)
Euler格式的具体形式为
y n 1 y n hf ( x n , y n ) 2 xn yn 0.1( yn ) yn 0.2 xn 1.1 yn yn
计算公式的精度 常以Taylor展开为工具来分析计算公式的精度. 为简化分析,假定yn是准确的,即在 yn y ( xn ) 的前提下估计误差 y ( xn 1 ) yn 1 Euler格式的局部截断误差 由 从而 局部截断误差
f ( xn , yn ) f ( xn , y ( xn )) y '( xn ) y ( xn 1 ) yn 1 y ( xn 1 ) ( yn hf ( xn , yn )) y ( xn 1 ) y ( xn ) hy '( xn )
y ( xn ), y ( xn 1 ), 的近似值 y1 , y2 , , yn , yn 1 ,
相邻两个节点的间距 h xi 1 xi 称为步长,步 长可以相等,也可以不等.本章总是假定h为定数, 称为定步长,这时节点可表示为
xn x0 nh , n 0,1, 2,
由f ( xn 1 , yn 1 ) f ( xn 1 , y ( xn 1 )) f y ( xn 1 , )( yn 1 y ( xn 1 )) f ( xn 1 , y ( xn 1 )) y '( xn 1 )(在xn点Taylor展开) h2 y '( xn ) hy ''( xn ) y '''( xn ) ... 2 3 2 h h 因此yn 1 y ( xn ) hy '( xn ) y ''( xn ) y '''( xn ) 2 4 h f y ( xn 1 , )( yn 1 y ( xn 1 )) 2 h2 h3 y ( xn 1 ) y ( xn ) hy '( xn ) y ''( xn ) y '''( xn ) 2 3!

第9章 常微分方程初值问题数值解法

第9章 常微分方程初值问题数值解法

oa
b
a f ( x)dx (b a) f (b)
中矩形公式
b
ab
a f ( x)dx (b a) f ( 2 )
计算方法
梯形公式
bx
右矩形公式 中矩形公式 左矩形公式
§ 欧拉方法几何意义
y y y(x)
y0 y1 y2 0 x0 x1 x2
计算方法
x
§ 隐式欧拉方法
➢隐式欧拉法 /* implicit Euler method */
初 值 问 题 的 解 必 存 在 且唯 一 。
计算方法
§9.1 引言
三. 数值解法含义
所谓数值解法, 就是设法将常微分方程离散化, 建 立差分方程, 给出解在一些离散点上的近似值。
微分方程的数值解: 设方程问题的解y(x)的存在区 间是[a,b], 令a= x0< x1<…< xn =b, 其中hk=xk+1-xk, 如是等距节点h=(b-a)/n, h称为步长。
yi1 yi1 2h f ( xi , yi ) i 1, ... , n 1
计算方法
预估-校正法
三. 预估 — 校正法
/* predictor-corrector method */
方法 显式欧拉 隐式欧拉 梯形公式
中点公式
简单
稳定性最好
精度提高
精度低
精度低, 计算量大
计算量大
精度提高, 显式
在x0 x X上的数值解法。
四. 误差估计、收敛性
和稳定性
计算方法
§9.2 简单的数值方法与基本概念
一. 欧拉(Euler)格式
设 节 点 为xi a ih (i 0,1,2 , n) 方 法 一 :Taylor展 开 法

常微分方程初值问题的数值解法中三种算法的比较

常微分方程初值问题的数值解法中三种算法的比较

常微分方程初值问题的数值解法中三种算法的比较
常微分方程初值问题的数值解法是数学分析中的一个重要的研究内容,众多的
算法都有助于我们更好地求解一般的初值问题,在这里我们将介绍常微分方程初值问题的三种基本算法,它们是欧拉法、改进欧拉法以及四阶龙格-库塔法。

欧拉法是常微分方程初值问题中最常用的算法,他是一种简洁而又灵活的方法,其基本思想是根据给定的常微分方程和初值,通过积分形式求解精确解,此方法解决的问题比较简单,但它的误差公式与时间步长的N次方有关,误差较大,而且容易出现严重的误差误差,当时间步长To增大时会出现误差振荡。

改进欧拉法是弥补欧拉法缺陷的一种优化算法,它使用线性插值,代替欧拉法
用积分形式计算出来的结果,从而更准确地求出结果,且误差降低,由于它对动态系统的误差有一定的抑制,使得它的运算误差相对于欧拉法是高准确度的,但在某些特殊情况下仍然可能出现误差波动的情况。

四阶龙格-库塔法是在现实生活中最常用的数值解法。

它把问题分解成5种不
同形式的积分公式,并分别交由5个层次的方法来解决,仔细把握每一步的运算,把数值舍入后再运算,虽然该法运算量大,但它的准确性更高,误差相对于其它两种方法要小得多,且具有良好的精度稳定性,具有很好的鲁棒性和适应性,可以很好地用于对解初值问题作出估计和预测。

综上,这三种数值解法都有自身的特点,欧拉法计算简单,但误差较大;改进
欧拉法的精度和误差抑制能力更强;四阶龙格-库塔法的算术精度更高,出现误差
波动的概率最低,在可靠性方面更加准确。

因此,应用的时机对于三种算法的选择就显得尤为重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

积分法:
yk 1 yk h f ( xk , yk ) y ( x0 ) y0
积分项利用矩形公式计算
(1) y( xk 1 ) y( xk )
xk 1
xk
f (t , y(t ))dt
(★)

xk 1
xk
f (t , y(t ))dt h f ( xk , yk ) y( xk 1 ) y( xk ) h f ( xk , yk )
引言
初值问题的数值解法:求初值问题的解在一系列节点的值 y ( xn )的近似值 yn 的方法.本章数值解法的特点:都是采用“步进 式”,即求解过程顺着节点排列的次序一步步向前推进. 常微分方程初值问题: dy f ( x, y ), x [a, b] dx y ( x0 ) y0
替 f (x , y)关于 y 满足Lipschitz条件. 除了要保证(1)有唯一解外,还需保证微分方程本身是稳定的,即 (1)的解连续依赖于初始值和函数 f (x , y). 也就是说, 当初始值 y0 及函数 f (x , y)有微小变化时, 只能引起解的微小变化.
注: 如无特别说明,总假设(1)的解存在唯一且足够光滑. 在 f 连续有界, 则 f (x , y)对变量 y 可微的情形下, 若偏导数 y 可取L为
也称折线法 x
2. 梯形法
若采用梯形公式计算(★)中的积分项,则有 h y ( xk 1 ) y ( xk ) [ f ( xk , y ( xk )) f ( xk 1 , y ( xk 1 ))] 2 h yk 1 yk [ f ( xk , yk ) f ( xk 1 , yk 1 )] 2 称之为梯形公式.这是一个隐式公式,通常用迭代法求解.具体做 法: (0) (0) 先用Euler法求出初值 yk ,1 即 ,将其代入梯形公式 yk 1 yk h f ( xk , yk ) 的右端,使之转化为显式公式,即 h ( l 1) (l ) yk 1 yk [ f ( xk , yk ) f ( xk 1 , yk (☆ ) 1 )] 2
( l 1) (l ) 直至满足: | yk y 1 k 1 |
(l 1) y y 取 k 1 类似地,可得 yk 2 , yk 3 , k 1
注: 当 f (x , y)关于y满足Lipschitz条件且步长h 满足
1 hL 1 2
时,迭代格式 (☆) 收敛 .
(1)
求未知函数 y= y (x) . 基本知识: R} 定理1: 如果函数 f (x , y)在区域 D {( x, y) | a x b, y 上 连续,且关于 y 满足Lipschitz条件
| f ( x, y1 ) f ( x, y2 ) | L | y1 y2 | ( x, y1 ) D, ( x, y2 ) D, 0 L
Taylor公式推导:
h2 y ( xk 1 ) y ( xk ) h y( xk ) y ( k ), xk k xk 1 2 yk 1 yk h f ( xk , yk ) k 0,1, , n 1
Euler公式几何意义:
y
P1 P0
P2 Pk
x0
x
a x0 x1
xn
b
. xi xi xi 1 称为
, yn ,
代要用到 yn1, yn2 ,…, ynk+1 .
显式单步迭代: 隐式单步迭代:
yn1 yn h ( xn , yn , h)
yn1 yn h ( xn , yn , yn1 , h)
R} 定理2: 如果函数 f (x , y)在区域 D {( x, y) | a x b, y 上 关于 y 满足Lipschitz条件, 则(1)是稳定的.
初值问题(1)与下列积分方程的解等价:
y( x) y0 f (t , y(t ))dt
初值问题的数值解就是求一系列节点 上函数 y= y (x)的近似值 y0 , y1 , 步长. 一般取等步长 h . 单步迭代: 计算 yn+1时仅用 yn ; 多步迭代: 计算 yn+1时除用 yn 外, 还要用到 yn1, yn2 ,…; k 步迭
(2)
一、Euler方法及其改进
1. 显式Euler方法
将[a , b ]n 等分, 记 微分法:
ba h , xk a kh (k 0,1, n
, n)
y ( xk 1 ) y ( xk ) y ( xk 1 ) y ( xk ) y( xk ) xk 1 xk h k 0,1, , n 1
3. 改进的Euler方法
把Euler法作为预报(称为预估公式),把隐式的梯形公式作为校 正(称为校正公式 ),则得改进的Euler方法:
yk 1 yk h f ( xk , yk ) h y y [ f ( xk , yk ) f ( xk 1 , yk 1 )] k 1 k 2
(其中L 称为Lipschitz常数),则对任何 [a ,b]上存在唯一连续可微解 y = y (x).
( x, y ) L max | | ( x , y )D y f 此时Lipschitz条件显然成立. 故常用 在D上连续有界来代 y
h yk 1 yk [ f ( xk , yk ) f ( xk 1 , yk h f ( xk , yk ))] 或 2 也称为预估-校正法.
有时为了方便,预估-校正格式也写成下面形式:
yk 1 yk 1 2 [ K1 K 2 ] K1 h f ( xk , yk ) K h f ( x h, y hK ) k k 1 2
相关文档
最新文档