高三数学《简单的有理函数与无理函数(第1课时)》学案

合集下载

人教A版数学必修1学案:1.3.1函数的基本性质课堂导学案(含答案)

人教A版数学必修1学案:1.3.1函数的基本性质课堂导学案(含答案)

1.3.1 函数的基本性质课堂导学三点剖析一、函数单调性【例1】 证明函数y=x-x1在(0,+∞)上单调递增. 思路分析:作为证明单调性的要求,不能只作简单定性分析,还要用定义严格证明.证明:设任意x 1、x 2∈(0,+∞)且x 1<x 2,则f(x 1)-f(x 2)=x 1-11x -(x 2-21x )=(x 1-x 2)+21x -11x =(x 1-x 2)+2121)(x x x x -=(x 1-x 2)(1+211x x ). ∵0<x 1<x 2,∴x 1-x 2<0,x 1x 2>0,1+211x x >0. 因此(x 1-x 2)(1+1x 1x 2)<0,∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2).∴f(x)=x-x1在(0,+∞)上单调递增. 温馨提示1.函数单调性的证明不同于对它判断,应严格按单调性定义加以证明.2.利用定义证明单调性,一般要遵循:(1)取值(任取给定区间上两个自变量);(2)作差变形〔将f(x 1)-f(x 2)进行代数恒等变形,一般要出现乘积形式,且有(x 1-x 2)的因式〕;(3)判断符号(根据条件判断差式的正负);(4)得出结论.3.有时需要通过观察函数的图象,先对函数是否具有某种性质做出猜想,然后通过逻辑推理,证明这种猜想的正确性,这是研究函数性质的一种常用方法.【例2】 f(x)是二次函数,且在x=1处取得最值,又f(2)<f(π),试判断f(-2)与f(2)的大小.思路分析:解决此题的关键是将f(-2)与f(2)置于某一单调区间内再进行比较大小. 解:由于f(x)是二次函数,且在x=1处取得最值,因此x=1是二次函数的对称轴.又∵1<2<π,f(2)<f(π),可以得f(x)在[1,+∞)上单调递增,∴二次函数的图象开口方向向上,f(x)在(-∞,1)上单调递减.由于0与2关于x=1对称,∴f(2)=f(0).∵-2<0,∴f(-2)>f(0),即f(-2)>f(2).温馨提示利用函数的单调性比较两函数值的大小,关键是将所比较的数值对应的自变量转化到同一单调区间上,才能进行比较.二、函数的最值【例3】 求f(x)=x+1-x 的最小值.思路分析:该题函数f(x)由x 与1-x 相加构成,x 与1-x 具有相同的单调性,因此该题可借助单调性直接解决,同时由于x 的次数不一致,出现了相当于2倍的关系,因此该题也可先转化为二次函数再利用二次函数的单调性解决.解法一:f(x)=x+1-x 的定义域为[1,+∞],在[1,+∞]上x 、1-x 同时单调递增,因此f(x)=x+1-x 在[1,+∞]上单调递增,最小值为f(1)=1+11-=1.解法二:f(x)=x+1-x 的定义域为[1,+∞],令1-x =t ≥0,x=t 2+1, ∴f(x)=g(t)=t 2+1+t=t 2+t+1=(t+21)2+43(t ≥0).由于g(t)的对称轴t=-21在[0,+∞)的左侧,g(t)的开口方向向上,如右图所示.二次函数在[0,+∞)上单调递增,当t=0时,g(t)min =1,∴f(x)的最小值为1.温馨提示1.本题的两种解法都是利用函数的单调性求最值,其中解法二是利用换元法,将原函数转化为已知二次函数在给定区间上的最值问题,该方法要特别注意正确确定中间变量的取值范围.2.利用单调性求最值,其规律为:若f(x)在[a,b ]上单调递增,则f(a)≤f(x)≤f(b),即最大值为f(b),最小值为f(a);若f(x)在[a,b ]上单调递减,则f(b)≤f(x)≤f(a),即最大值为f(a),最小值为f(b).三、函数单调性的应用【例4】 (1)若函数f(x)=x 2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a 的取值范围;(2)y=kx 2-32x+1在[0,+∞)上单调递减,求实数k 的取值范围. 思路分析:(1)二次函数的单调区间依赖于其对称轴的位置,处理二次函数的单调性问题需对对称轴进行讨论.(2)y=kx 2-32x+1中的k 是否为零要注意讨论. 解:(1)f(x)=x 2+2(a-1)x+2,其对称轴为x=12)1(2⨯--a =1-a ,若要二次函数在(-∞,4]上单调递减,必须满足1-a ≥4,即a ≤-3.如图所示.(2)k=0时,y=-32x+1满足题意;k>0时,抛物线开口向上,在[0,+∞)上不可能单调递减;k<0时,对称轴x=k31<0在[0,+∞]上单调递减. 综上,k ≤0.温馨提示f(x)在(-∞,4]上是减函数,只说明区间(-∞,4]是函数f(x)在定义域上单调递减区间的一个子集.各个击破类题演练1证明二次函数f(x)=ax 2+bx+c(a<0)在区间(-∞,-a b 2)上是增函数. 证明:设x 1、x 2∈(-∞,-ab 2),且x 1<x,则f(x 1)-f(x 2)=ax 12+bx 1-ax 22-bx 2=(x 1-x 2)[a(x 1+x 2)+b ]. ∵x 1,x 2∈(-∞,-ab 2), ∴x 1+x 2<-ab ,∴a(x 1+x 2)>-b, ∴a(x 1+x 2)+b>0.∵x 1-x 2<0,∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2).∴y=ax 2+bx+c 在(-∞,-a b 2]上单调递增. 变式提升1若函数f(x)=x+x1定义在(0,+∞)上,试讨论函数的单调区间. 解析:设任意x 1、x 2∈(0,+∞)且x 1<x 2, 则f(x 1)-f(x 2)=x 1+11x -(x 2+21x ) =(x 1-x 2)+2112x x x x - =(x 1-x 2)(1-211x x ) =(x 1-x 2)·21211x x x x -. 由于x 1-x 2<0,x 1x 2>0,只有x 1x 2-1>0或x 1x 2-1<0时,f(x)才具有单调性,而显然0<x 1<x 2≤1时,有x 1x 2<1,x 1x 2-1<0,f(x 1)-f(x 2)>0,即f(x 1)>f(x 2).∴f(x)在(0,1)上单调递减.当1≤x 1<x 2时,则有x 1x 2>1,从而x 1x 2-1>0,f(x 1)-f(x 2)<0,即f(x 1)<f(x 2).∴f(x)在[1,+∞]上单调递增.当0<x 1<1<x 2时,x 1x 2与1的大小关系无法确定,在(0,+∞)上不具备单调性.综上,f(x)在(0,1)上单调递减,在[1,+∞]上单调递增.类题演练2f(x)在(0,+∞)上单调递减,那么f(a 2-a+1)与f(21)的大小关系是_______________. 解析:∵a 2-a+1=(a-21)2+43>21, 又∵f(x)在(0,+∞)上单调递减,∴f(a 2-a+1)<f(21). 答案:f(a 2-a+1)<f(21) 变式提升2如果函数f(x)=x 2+bx+c 对任意实数t 都有f (2+t )=f(2-t),比较f(1),f(2),f(4)的大小.解析:∵f(2+t)=f(2-t),∴f(x)的对称轴为x=2.故f(x)在[2,+∞]上是增函数,且f(1)=f(3).∴f(2)<f(3)<f(4),即f(2)<f(1)<f(4).类题演练3已知函数f(x)=x x x 2122++,x∈[1,+∞],求函数f(x)的最小值.解析:f(x)=x+x 21+2, 设1≤x 1<x 2,f(x 2)-f(x 1)=(x 2-x 1)(1-2121x x ). 2x 1x 2>1,0<2121x x <1,得1-2121x x >0, 又x 2-x 1>0,∴f(x 2)-f(x 1)>0,f(x 1)<f(x 2),∴f(x)在区间[1,+∞]上为增函数,∴f(x)在区间[1,+∞]上的最小值为f(1)=27. 变式提升3求函数f(x)=-x 2+2ax+1在[0,2]上的最大值.解析:f(x)=-x 2+2ax+1=-(x 2-2ax+a 2)+a 2+1=-(x-a)2+a 2+1.由于f(x)的对称轴x=a 对于[0,2]有三种位置关系,如下图所示.当a<0时,f(x)在[0,2]上单调递减,则最大值为f(0)=1;当0≤a≤2时,x=a∈[0,2],则最大值在顶点处取得,为f(a)=a 2+1;当a>2时,f(x)在[0,2]上单调递增,则最大值为f(2)=4a-3.综上,f(x)在[0,2]上的最大值为 g(a)=⎪⎩⎪⎨⎧>-≤≤+<.2,34,20,1,0,12a a a a a 类题演练4二次函数y=x 2+mx+4在(-∞,-1]上是减函数,在[-1,+∞)上是增函数,则:(1)m 的值是多少?(2)此函数的最小值是多大?解析:(1)由于y=x 2+mx+4在(-∞,-1]上是减函数,在[-1,+∞)上是增函数,∴其对称轴为x=-1,故m=2.(2)y min =3.变式提升4已知f(x)=21++x ax 在区间(-2,+∞)上单调递增,求a 的取值范围. 解析:f(x)=21++x ax =221)2(+-++x a x a =a+221+-x a . ∴y-a=221+-x a 与y ′='x k 比较,知f (x )要在区间(-2,+∞)上单调递增只须1-2a<0即可.∴a>21. 温馨提示本题关键是将它化为y=m+cx n +型,再根据函数y=x k 的单调性来考虑a 应满足的条件,从而求出a 的取值.。

高中数学第三章函数的概念与性质函数的概念学案新人教A版必修第一册

高中数学第三章函数的概念与性质函数的概念学案新人教A版必修第一册

3.1.1 函数的概念课程标准(1)通过丰富实例,学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.(2)了解构成函数的三要素,能求简单函数的定义域.(3)能够正确使用“区间”的符号表示某些集合.(4)理解同一个函数的概念,能判断两个函数是否是同一个函数.新知初探·课前预习——突出基础性教材要点要点一函数的概念要点二同一个函数如果两个函数的________相同,并且________完全一致,即相同的自变量对应的函数值相同,那么这两个函数是同一个函数❷.要点三区间及有关概念1.一般区间的表示设a,b∈R,且a<b,规定如下:2.特殊区间的表示助学批注批注❶抓住两点:(1)可以“多对一”、“不可一对多”;(2)集合A中的元素无剩余,集合B中的元素可剩余.批注❷只有当两个函数的定义域和对应关系分别相同时,这两个函数才是同一个函数.定义域和值域都分别相同的两个函数,它们不一定是相同的函数,因为函数对应关系不一定相同.批注❸这里的实数a与b都叫做相应区间的端点.区间的左端点一定要小于右端点,即a <b.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)任何两个集合之间都可以建立函数关系.( )(2)函数的定义域必须是数集,值域可以为其他集合.( )(3)根据函数的定义,定义域中的任何一个x可以对应着值域中不同的y.( )(4)区间是数集的另一种表示方法,任何数集都能用区间表示.( )2.下列选项中(横轴表示x轴,纵轴表示y轴),表示y是x的函数的是( )A B C D3.区间(0,1)等于 ( )A.{0,1}B.{(0,1)}C.{x|0<x<1}D.{x|0≤x≤1}4.若f(x)=x-√x+1,则f(3)=________.题型探究·课堂解透——强化创新性题型 1 函数的概念例1 (1)(多选)下列图形中是函数图象的是( )(2)下列从集合A到集合B的对应关系f是函数的是( ) A.A={-1,0,1},B={0,1},f:A中的数平方B.A={0,1},B={-1,0,1},f:A中的数开方C.A=Z,B=Q,f:A中的数取倒数D.A={平行四边形},B=R,f:求A中平行四边形的面积方法归纳1.根据图形判断对应关系是否为函数的一般步骤2.判断一个对应关系是否为函数的方法巩固训练1 (多选)下列对应关系是集合A到集合B的函数的是( )A.A=R,B={x|x≥0},f:x→y=|x|B.A=Z,B=Z,f:x→y=x2C.A=Z,B=Z,f:x→y=√xD.A={x|-1≤x≤1},B={0},f:x→y=0题型 2 求函数值(x∈R,且x≠-1),g(x)=x2+2(x 例2 [2022·山东青岛高一期中]已知f(x)=11+x∈R).(1)求f(2),g(2)的值;(2)求f(g(3))的值.方法归纳求函数值的2种策略巩固训练2 已知函数f(x)=x+1.x+2(1)求f(2);(2)求f(f(1)).题型 3 求函数的定义域例3 求下列函数的定义域.; (2)y=√x2−2x−3;(1)y=2+3x−2(3)y=√3−x·√x−1; (4)y=(x-1)0+√2.x+1方法归纳求函数定义域的常用策略巩固训练3 (1)函数f (x )=√1+x −1x的定义域是( )A .[-1,0)∪(0,+∞)B .[-1,+∞)C .(-∞,0)∪(0,+∞)D .R(2)函数f (x )=√−x 2+6x −5的定义域为________.题型 4 同一函数的判断例4 下面各组函数中表示同一个函数的是( ) A .f (x )=x ,g (x )=(√x )2B .f (t )=|t |,g (x )=√x 2C .f (x )=x 2−1x−1,g (x )=x +1 D .f (x )=|x |x ,g (x )={1,x ≥0−1,x <0方法归纳判断同一函数的三个步骤和两个注意点(1)判断同一函数的三个步骤(2)两个注意点:①在化简解析式时,必须是等价变形; ②与用哪个字母表示无关.巩固训练4 下列函数中与函数y =x 2是同一函数的是( ) A .u =v 2B .y =x ·|x |C .y =x 3x D .y =(√x )43.1.1 函数的概念新知初探·课前预习[教材要点]要点一实数集 任意一个数x 唯一 要点二定义域 对应关系 要点三1.(a ,b ) (a ,b ]2.(-∞,+∞) [a ,+∞) (a ,+∞) (-∞,a ] (-∞,a )[基础自测]1.答案:(1)× (2)× (3)× (4)×2.解析:只有D 的函数图象与垂直于x 轴的直线至多有一个交点,故选D. 答案:D 3.答案:C4.解析:f (3)=3-√3+1=3-2=1. 答案:1题型探究·课堂解透例1 解析:(1)A 中至少存在一处如x =0,一个横坐标对应两个纵坐标,这相当于集合A 中至少有一个元素在集合B 中对应的元素不唯一,故A 不是函数图象,其余B ,C ,D 均符合函数定义.(2)对于选项B ,集合A 中的元素1对应集合B 中的元素±1,不符合函数的定义;对于选项C ,集合A 中的元素0取倒数没有意义,在集合B 中没有元素与之对应,不符合函数的定义;对于选项D ,A 集合不是数集,故不符合函数的定义.答案:(1)BCD (2)A巩固训练1 解析:选项A 中,对于A 中的任意一个实数x ,在B 中都有唯一确定的数y 与之对应,故是A 到B 的函数.选项B 中,对于集合A 中的任意一个整数x ,按照对应关系f :x →y =x 2在集合B 中都有唯一一个确定的整数x 2与其对应,故是集合A 到集合B 的函数.选项C 中,集合A 中的负整数没有平方根,在集合B 中没有对应的元素,故不是集合A 到集合B 的函数.选项D 中,对于集合A 中任意一个实数x ,按照对应关系f :x →y =0在集合B 中都有唯一一个确定的数0和它对应,故是集合A 到集合B 的函数.答案:ABD例2 解析:(1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=22+2=6. (2)∵g (3)=32+2=11,∴f (g (3))=f (11)=11+11=112.巩固训练2 解析:(1)f (2)=2+12+2=34; (2)∵f (1)=1+11+2=23;∴f (f (1))=f (23)=23+123+2=58.例3 解析:(1)当且仅当x -2≠0,即x ≠2时,函数y =2+3x−2有意义,所以这个函数的定义域为{x |x ≠2}.(2)要使函数有意义,需x 2-2x -3≥0,即(x -3)(x +1)≥0,所以x ≥3或x ≤-1,即函数的定义域为{x |x ≥3或x ≤-1}.(3)函数有意义,当且仅当{3−x ≥0,x −1≥0,解得1≤x ≤3,所以这个函数的定义域为{x |1≤x ≤3}.(4)函数有意义,当且仅当{x −1≠0,2x+1≥0,x +1≠0,解得x >-1,且x ≠1,所以这个函数的定义域为{x |x >-1且x ≠1}.巩固训练3 解析:(1)由{1+x ≥0x ≠0,解得:x ≥-1且x ≠0.∴函数f (x )=√1+x −1x 的定义域是[-1,0)∪(0,+∞). (2)由-x 2+6x -5≥0,得x 2-6x +5≤0,(x -1)(x -5)≤0, 解得1≤x ≤5,所以函数的定义域为[1,5]. 答案:(1)A (2)[1,5]例4 解析:对于A ,f (x )=x 的定义域为R ,而g (x )=(√x )2的定义域为[0,+∞),两函数的定义域不相同,所以不是同一个函数;对于B ,两个函数的定义域都为R ,定义域相同,g (x )=√x 2=|x |,这两个函数是同一个函数;对于C ,f (x )=x 2−1x−1的定义域为{x |x ≠1},而g (x )=x +1的定义域是R ,两个函数的定义域不相同,所以不是同一个函数;对于D ,f (x )=|x |x 的定义域为{x |x ≠0},而g (x )={1,x ≥0−1,x <0的定义域是R ,两个函数的定义域不相同,所以不是同一个函数.答案:B巩固训练4 解析:函数y =x 2的定义域为R ,对于A 项,u =v 2的定义域为R ,对应法则与y =x 2一致,则A 正确;对于B 项,y =x ·|x |的对应法则与y =x 2不一致,则B 错误;对于C 项,y =x 3x 的定义域为{x |x ≠0},则C 错误;对于D 项,y =(√x )4的定义域为{x |x ≥0},则D 错误;故选A.答案:A。

3.1.1函数概念(第1课时)教学设计.docx

3.1.1函数概念(第1课时)教学设计.docx

3.1.1函数的概念(第一课时)(人教A版普通高中教科书数学必修第一册第三章)一、教材地位本节课是普通高中课程标准实验教科书人教A版第三章第一节第一课时(第60~64页).1.概念本身角度:函数是高中数学最抽象的概念,初中曾用运动变化的观点给出函数的描述性定义,并把函数看作两个变量间的依赖关系,但这一定义有一定的阶段性和局限性.2.学科角度:函数是高中数学的核心概念,是整个高中函数知识体系的基石,它不仅将函数概念由“对应论”发展到“集合论”,更承上启下,为后继研究基本初等函数,比如指数函数、对数函数、幂函数、三角函数以及函数的性质等提供研究方法和理论依据,让我们体会到重要概念对数学发展和数学学习的巨大作用;同时,函数的基础知识在日常生活、社会经济、以及等其他学科也有着广泛应用.3.高考角度:函数是高考数学的热点,函数图象性质、函数与代数式方程不等式数列三角解析几何导数的结合问题常考常新,从基础题、中档题到压轴题,每年高考都是绝对重点,高考所考察的五大数学思想中的数形结合思想、函数与方程思想贯穿高中数学学习的全过程.有人说,“得函数者得数学,得数学者得高考”,更是形象的道出了函数在高考中的重要地位.二、学情分析1.从学生知识层面看:通过初中函数相关知识的学习,学生具备了一定的知识经验和基础;通过必修一第一章“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数、从根本上揭示函数的本质提供了知识保证.2.从学生能力层面看:学生已有一定的分析、推理和概括能力,初步具备了运用数形结合思想解决问题的能力,但数形结合的意识和思维的深刻性还有待进一步加强.3.从学生情感培养方面看:多数学生对教学新内容的学习有很高学习兴趣和积极性,但探究能力以及合作交流等能力仍需要通过课堂主渠道加以培养和提高.三、教学目标1.知识与技能:会用集合与对应的语言来刻画函数,理解函数的概念;理解函数符号y=f(x)的含义;了解函数的三要素;会求一些简单函数的定义域.(重点)2.过程与方法:让学生亲身经历函数概念的形成过程,经历从具体到抽象、从特殊到一般、从感性到理性的认知过程,培养学生抽象概括能力,让学生学会数学表达和交流,激发数学学习兴趣,发展数学应用意识.(难点)3.情感、态度与价值观:培养学生细心观察、认真分析、严谨表达的良好思维习惯,养成用函数模型描述和解决现实世界中蕴含的规律,培养学生提出问题的能力,培养创新意识.四、教学重点用集合语言和对应关系刻画函数的概念.五、教学难点对函数概念的理解.六、教学过程1.函数概念的形成1.1创设情境,引发思考思考1:(1)若正方形的边长为1,则其周长l= ;(2)若正方形的边长为2,则其周长l= ; (3)若正方形的边长为x ,则其周长l= ;【预设答案】(1)4(2)8(3)4x【设计意图】通过具体的例子复习函数的概念,让学生再次体会函数高度“抽象”的作用.思考2:初中学习的函数的概念是什么?【预设答案】设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说y 是x 的函数.其中x 叫自变量,y 叫因变量.【设计意图】复习初中函数概念,强调函数是一种特殊的对应.思考3:请同学们考虑以下两个问题【设计意图】从初中的概念来看,这两组中的两个函数没什么不同,但我们有感觉它们是不同函数.让学生体会初中函数概念不够精确,从而有些问题解决不了.1.2探究典例,形成概念问题1: 某“复兴号”高速列车到350km/h 后保持匀速运行半小时.这段时间内,列车行进的路程S (单位:km )与运行时间t (单位:h )的关系可以表示为 S=350t.思考:根据对应关系S=350t ,这趟列车加速到350km/h 后,运行1h 就前进了350km ,这个说法正确吗?44y x l x ==(1)与周长是同一函数吗?22x y x y x==()与是同一函数吗?【预设答案】不正确.对应关系应为S=350t ,其中 }1750|{},5.00|{11≤≤=∈≤≤=∈s s B s t t A t .问题2 :某电气维修告诉要求工人每周工作至少1天,至多不超过6天.如果公司确定的工资标准是每人每天350元,而且每周付一次工资,那么你认为该怎样确定一个工人每周的工资?一个工人的工资w (单位:元)是他工作天数d 的函数吗?【预设答案】是函数,对应关系为w=350d,其中},6,5,4,3,2,1{2=∈A d}2100,1750,1400,1050,700,350{2=∈B w .思考:在问题1和问题2中的函数有相同的对应关系,你认为它们是同一个函数吗?为什么?【预设答案】不是.自变量的取值范围不一样.问题3 :如图,是北京市2016年11月23日的空气质量指数变化图.如何根据该图确定这一天内任一时刻th 的空气质量指数的值I ?你认为这里的I 是t 的函数吗?【预设答案】是,t 的变化范围是}240|{A 3≤≤=t t ,I 的范围是}1500|{I B 3<<=I .问题4: 国际上常用恩格尔系数)总支出金额食物支出金额=r r ( 反映一个地区人民生活质量的高低,恩格尔系数越低,生活质量越高.上表是我国某省城镇居民恩格尔系数变化情况,从表中可以看出,该省城镇居民的生活质量越来越高.你认为该表给出的对应关系,恩格尔系数r 是年份y 的函数吗?思考:上述问题1到问题4中的函数有哪些共同点和不同点?【预设答案】共同点有:(1)都包含两个非空数集,用A ,B 来表示;(2)都有一个对应关系不同点有:(1)(2)是通过解析式表示对应关系,(3)是通过图象,(4)是通过表格【设计意图】通过四个具体的例子,发现要在集合的基础上定义函数会比较准确,同时让学生体会函数对应关系的3种表示形式.函数概念:一般地,设A , B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A B →为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}()f x x A |∈叫做函数的值域.函数的三个要素:定义域,对应关系,值域.常见函数的三要素:正比例函数:y kx =的定义域是R ,值域也是R .对应关系f 把R 中的任意一个数x ,对应到R 中唯一确定的数(0)ax b a +≠.一次函数:(0)y ax b a =+≠的定义域是R ,值域也是R .对应关系f 把R 中的任意一个数x ,对应到R 中唯一确定的数(0)ax b a +≠.二次函数:2(0)y ax bx c a =++≠的定义域是R ,值域是B .当a >0时,244ac b B y y a ⎧⎫-⎪⎪=≥⎨⎬⎪⎪⎩⎭;当a <0时,244ac b B y y a ⎧⎫-⎪⎪=≤⎨⎬⎪⎪⎩⎭.对应关系f 把R 中的任意一个数x ,对应到B 中唯一确定的数2(0)ax bx c a ++≠. 反比例函数:(0)k y k x =≠的定义域为{}0x x ≠,对应关系为“倒数的k 倍”,值域为{}0y y ≠.反比例函数用函数定义叙述为:对于非空数集{}0A x x =≠中的任意一个x 值,按照对应关系f :“倒数(0)k k ≠倍”,在集合{}0B y y =≠中都有唯一确定的数k x 和它对应,那么此时f :A B →就是集合A 到集合B 的一个函数,记作()(0),.k f x k x A x=≠∉2.例题讲解,理解概念例1.判断下列对应是否是函数【预设答案】(1)是(2)是(3)不是【设计意图】让学生体会函数只能是“一对一”或“多对一”,不能“一对多”.例2. 判断下列图象能表示函数图象的是()【预设答案】D【设计意图】让学生体会概念中的“唯一”二字例3 .你能构建一个问题情景,使其中函数的对应关系为y=x(10-x)吗?【预设答案】长方形的周长为20,设一边长为x,面积为y,那么y=x(10-x),其中x的取值范围是A={x|0<x<10},y的取值范围是B={y|0<y≤25}.对应关系f把每一个长方形的边长x,对应到唯一确定的面积x(10-x)【设计意图】让学生体会数学建模,数学应用思想,同时巩固函数概念是建立在集合基础上的.3.课堂练习,巩固新知练习1.若函数y=f(x)的定义域为{x|−3≤x≤8,x≠5},值域为{y|−1≤y≤2,y≠0},则y=f(x)的图象可能是()A. B.C. D.【答案】B练习2.已知函数f(x),g(x)分别由下表给出.则g(f(5))=;f(g(2))=.【答案】4 3练习3.集合A,B与对应关系f,如图所示,f:A→B是否为从集合A到集合B的函数?如果是,那么定义值域与对应关系各是什么?【答案】由图知A中的任意一个数,B中都有唯一确定数,与之对应,所以f:A→B 是从A 到B的函数定义域是A={1,2,3,4,5},值域C={2,3,4,5}4.构建一个问题情景,使其中的变量关系能用解析式y=√x来描述.【答案】正方形的面积为x,其边长为y,则y=√x,其中x的取值范围是A={x|0<x},y的取值范围是B={y|0<y}4.课堂小结,思想升华本节课主要是在集合的基础上重新定义了函数,让函数的概念更加清晰准确.。

高中数学必修一《函数的概念及其表示》优质教案

高中数学必修一《函数的概念及其表示》优质教案

高中数学必修一《函数的概念及其表示》优质教案教材分析课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.教学目标与素养课程目标1、明确函数的三种表示方法;2、在实际情境中,会根据不同的需要选择恰当的方法表示函数;3、通过具体实例,了解简单的分段函数,并能简单应用.数学学科素养1.数学抽象:函数解析法及能由条件求出解析式;2.逻辑推理:由条件求函数解析式;3.数学运算:由函数解析式求值及函数解析式的计算;4.数据分析:利用图像表示函数;5.数学建模:由实际问题构建合理的函数模型。

重难点重点:函数的三种表示方法,分段函数的概念.难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.课前准备教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

教学过程一、情景导入初中已经学过函数的三种表示法:列表法、图像法、解析法,那么这三种表示法定义是?优缺点是?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本67-68页,思考并完成以下问题1.表示两个变量之间函数关系的方法有几种?分别是什么?2.函数的各种表示法各有什么特点?3.什么是分段函数?分段函数是一个还是几个函数?4.怎样求分段函数的值?如何画分段函数的图象?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

2.11简单的有理函数与无理函数

2.11简单的有理函数与无理函数

2.11简单的有理函数与无理函数1.有理函数:_______________________________举例:_______________________2.无理函数:_______________________________举例:_______________________1.已知函数1()1f x x =+,则()f x 的单调递减区间为 对称中心为 值域为2.已知函数2()f x b x a -=++的对称中心为(2,1)-,则a = ;b = 。

3.设函数y =,则该函数的单调递减区间为 ;单调递增区间为4. 已知函数()f x =()f x 的值域为 。

5.已知函数22()2f x x x =++,则()f x 的值域为四、例题精选题型一: 简单有理函数与无理函数的基本性质例75. 已知函数21()23f x x x =--,求(1)()f x 的定义域;(2)()f x 的单调区间; (3)作出()f x 的示意图。

一、复习要求三、基础训练例76. 求函数y =题型二:简单有理函数的最值问题例77. 已知函数2()1x f x x =+,求()f x 的最大值与最小值。

例78. 已知函数2224()4x x f x x x -+=-+,求()f x 的最值。

题型三:简单无理函数的最值问题例79. 求函数y x =题型四: 用换元法求简单有理函数与无理函数的最值例80. 已知函数22122x y x x +=++,求该函数的最值。

.五、巩固练习 1.若0x <,则函数221x y x+=的最大值为 。

2.函数()f x x =的最小值为 。

3.函数()f x =的值域为 。

4.已函数2()1x f x x x =-+,当x = 时,()f x 取最小值;当x = 时,()f x 取最大值。

【配套K12】2018版本高中数学必修一:1.2.1《函数的概念》教案(1)

【配套K12】2018版本高中数学必修一:1.2.1《函数的概念》教案(1)

《函数的概念》教案教学目标1、理解函数的概念及其符号表示,能够辨别函数的例证和反例.2、会求简单函数的定义域与值域.3、掌握构成函数的三要素,学会判别两个函数是否相等,理解函数的整体性.4、通过情景,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.5、通过函数概念学习的过程,培养学生从“特殊到一般”的分析问题能力以及抽象概括能力.教学重难点重点:函数的概念,构成函数的三要素.难点:函数符号y=f(x)的理解.教学过程一、情景导入情景一:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距地面的高度h(单位:m)随时间t(单位:s)变化的规律是:21305=-;h t t提问:你能得出炮弹飞行5秒、10秒、20秒时距地面多高吗?其中,时间t的变化范围是什么?炮弹距离地面高度h的变化范围是什么?情景二:示了南极上空臭氧层空洞的面积从1979~2001年的变化情况.提问:观察分析图中曲线,时间t的变化范围是多少?臭氧层空洞面积s的变化范围是多少?尝试用集合与对应的语言描述变量之间的依赖关系.情景三:国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.表1中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.表1:“八五”计划以来我国城镇居民恩格尔系数变化情况提问:恩格尔系数与时间之间的关系是否和前两个情景中的两个变量之间的关系相似?如何用集合与对应的语言来描述这个关系?请仿照(1)(2)描述表中恩格尔系数和时间(年)的关系.二、交流展示回顾初中所学函数(如一次函数y=ax+b a≠0等)及函数的概念:(传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说y 是x 的函数,x 叫做自变量);指出用函数可以描述变量之间的依赖关系;强调函数是描述客观世界变化规律的重要数学模型.三、合作探究(1)(小组讨论)思考:分析、归纳以上三个情景,变量之间的关系有什么不同点和共同点?归纳以上三个情景,可看出其不同点是:情景一是用解析式刻画变量之间的对应关系,情景二是用图像刻画变量之间的对应关系,情景三是用表格刻画变量之间的对应关系.其共同点是:①都有两个非空数集A 和B ;②两个数集之间都有一种确定的对应关系;③对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都有唯一确定的y 值和它对应.记作:f A B →(2)函数的概念(让学生用集合与对应的语言刻画函数,抽象概括出函数的概念) 一般地,设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记作(),y f x x A =∈.其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{()}f x x A ∈叫做函数的值域.显然,值域是集合B 的子集.(B A x x f ⊆∈}|)({). 解剖分析:①函数是两个数集之间建立的对应 ②“任意”、“唯一”③认真理解)(x f y =的含义:)(x f y =是一个整体,)(x f 并不表示f 与x 的乘积,它是一种符号,它可以是解析式,如情景一;也可以是图像,如情景二;也可以是表格,如情景三;)(x f y =如同一个加工厂,把把输入的数x ,按照某种加工过程如解析式,图像,表格,加工称另外一个数值y .(3)区间的概念.],[}|{b a b x a x =≤≤ ),[}|{b a b x a x =<≤ ],(}|{b a b x a x =≤< ),(}|{b a b x a x =<< ],(}|{b b x x -∞=≤ ),[}|{+∞=≤a x a x学生要明确以下几点:①区间的左端点必小于右端点②以“∞+”或“∞-”为区间一端时,这一端必须是小括号 学生独自完成下列表格(可以用区间表示)例1、已知函数()12f x x =+, (1)求函数的定义域; (2)求()23,3f f ⎛⎫-⎪⎝⎭的值; (3)当0a >时,求()(),1f a f a -的值.分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例。

高中数学函数的概念 讲学案(一) 苏教版必修一

2°、f(x)与f(a)的区别:f(x)是x的函数,在通常情况下,它是一个变量.f(a)表示自变量x=a时所得的函数值,它是一个常量即是一个数值.f(a)是f(x)的一个当x=a时的特殊值.
3°如果两个函数的定义域和对应法则相同虽然表示自变量的与函数的字母不相同,那么它们仍然是同一个函数,但是如果定义域与对应法则中至少有一个不相同,那么它们就不是同一个函数.
4、体现的思想方法:初步了解,感受用函数思想解决变量问题。理解静与动的辩证关系,激发学生学习的兴趣和积极性。
〖讲学过程〗:
一、预习反馈:
二、探究精讲:
(Ⅰ)引入问题
师:我们在初中学过函数,请同学们回忆一下,我们学过哪些函数?
生:正比例函数y=kx(k≠0).反比例函数
一次函数y=kx+b(k≠0).二次函数y=ax2+bx+c(a≠0).
(II)导入新课
首先来看一个例子:
(1)一枚炮弹发射后我们,经过60s到地面击中目标。炮弹的射高为4410m,且炮弹距地面的高度H随时间t的变化规律是:H=294t-4.9t ( )
师:大家可以看到,这个*式是我们学过的……
生:一元二次函数
师:我们再来看一下上面的例子,两个变量H和t,其中t的变化范围是0到60,用集合A来表示的话,A={t|0 },高度H从地面到最高点4410m,因此高度H的变化范围是从0到4410,用集合B来表示的话,B={ }。按照函数的定义,t在数集A中的每一个确定的值,都有H在数集B中唯一确定的值与之对应。换句话说,对于数集A中的任意一个时间t,按照对应关系( ),在数集B中都有唯一确定的高度H和它对应。
(III)新课讲授
由此我们可以得出另一种函数的概念:一般地,我们有:

河北省临漳县第一中学人教版高中数学必修一 1.2.1 函数的概念 教学设计

教学过程
教学环节(注明每个环节预设的时间)
教师活动
学生活动
设计意图
时间:约6分钟
教师启发学生用集合与对应语言描述变量之间的依赖关系:在t的变化范围内,任给一个t,按照给定的解析式,都有唯一的一个高度h与之相对应。
用计算器计算然后用集合与对应的语言描述变量之间的依赖关系
体会用解析式刻画变量之间的对应关系,关注t和h的范围。
布置作业
1分钟
作业:举例生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系。
板书设计
1.2.1函数的概念
一、三个实例的展示 二、归纳总结函数的概念 三、例题解析
教学反思
1.本设计通过创设问题情境,让学生经历概括、交流、反思等思维过程。在“巩固概念”环节中,创设“想一想”“练一练”“试一试”等问题,营造一种民主的、愉悦的、生动活泼的课堂氛围,让学生快乐的学习,放飞思维,体验成功的喜悦。通过题后反思,课后小结,培养学生良好的学习习惯。课堂效果较为满意。
教学设计
基本信息
名称
1.2.1函数的概念
执教者
郭敬敏
课时
1课时
所属教材目录
高中数学( 必修一)第一章 集合与函数的概念 ---1.2.1函数的概念
教材分析
函数的概念是数学中最重要的基本概念之一,《集合与函数概念》一章在高中数学中起着承上启下的作用。本课学习的函数概念及其反映出来的数学思想方法已广泛渗透到数学的各个领域,是进一步学习数学的重要基础。
2.本节课从“图”到“式”符合从直观到抽象的认知规律,使学生的思维步步提升。
3.存在问题:由三个实例归纳共性会遇到困难。原因是由具体实例到抽象的数学语言,要求学生具备较强的归纳概括能力;而对高一学生抽象思维能力相对较弱。

高中数学必修1精品教案导学案—1.3.1-1函数的单调性

§1.3.1函数的单调性与最大(小)值(1)第一课时 单调性【教学目标】1. 通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;2. 学会运用函数图象理解和研究函数的性质;3. 能够熟练应用定义判断与证明函数在某区间上的单调性. 【教学重点难点】重点:函数的单调性及其几何意义.难点:利用函数的单调性定义判断、证明函数的单调性 【教学过程】(一)创设情景,揭示课题1. 观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律: ○1 随x 的增大,y 的值有什么变化? ○2 能否看出函数的最大、最小值? ○3 函数图象是否具有某种对称性? 2. 画出下列函数的图象,观察其变化规律:(1)f(x) = x ○1 从左至右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ .(2)f(x) = -x+2○1 从左至右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ . (3)f(x) = x 2 ○1在区间 ____________ 上,f(x)的值随着x 的增大而 ________ .○2 在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ .3、从上面的观察分析,能得出什么结论?学生回答后教师归纳:从上面的观察分析可以看出:不同的函数,其图象的变化趋势不同,同一函数在不同区间上变化趋势也不同,函数图象的这种变化规律就是函数性质的反映,这就是我们今天所要研究的函数的一个重要性质——函数的单调性(引出课题)。

(二)研探新知1、y = x 2的图象在y 轴右侧是上升的,如何用数学符号语言来描述这种“上升”呢? 学生通过观察、思考、讨论,归纳得出:函数y = x 2在(0,+∞)上图象是上升的,用函数解析式来描述就是:对于(0,+∞)上的任意的x 1,x 2,当x 1<x 2时,都有x 12<x 22. 即函数值随着自变量的增大而增大,具有这种性质的函数叫增函数。

高一数学函数教案5篇

高一数学函数教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、个人总结、教师总结、学生总结、企业总结、活动总结、党建总结、心得体会、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, personal summaries, teacher summaries, student summaries, enterprise summaries, activity summaries, party building summaries, reflections, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学函数教案5篇认真准备好教案帮助我们更好地掌握学生的学习进度和学习效果,及时调整教学策略和方法,成功的教案应该能够引导学生形成批判性思维和解决问题的能力,下面是本店铺为您分享的高一数学函数教案5篇,感谢您的参阅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题 简单的有理函数与无
理函数
课型 复习课 上课时间 20 年 月 日
教学目标
1、简单的有理函数与无理函数是由一、二次函数与幂函数的复合。

2、对所给的有理函数与无理函数,能进行适当的化简并研究其性质。

重点难点 重点:求有理函数的值域
难点:求无理函数的值域
教学过程
记录
一、知识回顾 1、在研究分式函数值域时,除了分离常数法、导数法、单调性法、直接法、逆求法等外,还有一种重要的解法就是判别式法。

判别式法的
理论依据是:任何一个函数的定义域应是非空数集,故将原函数看成关
于x 的方程应有实数解,利用方程思想、等价转化思想将二次分式函数
表达式变形成为关于自变量的一元二次方程,从而将函数自变量变成方
程的 “元”,根据定义域求函数值域的问题就自然转化成为方程解的问
题。

注意:在用判别式法求函数的值域时,由于变形过程中易出现不可
逆得步骤,从而改变了函数定义域和值域,因此,如果原函数定义域不
是全体实数,判别式法求出来的值域很可能比实际上的范围要大。

2、分式函数求值域的常用方法: c y ax b =
+、122222
(0)c y a a x b x c =≠++ 法; )0(≠++=a b
ax d cx y 、 法; 211112(0)a x b x c y a b x ++=≠、2111122
(0)a x b x c y a b x c ++=≠+ 法; 2cx y ax b =+、122222(0)b x y a a x b x c =≠++ 法; )0,(212
2221121不同时为a a c x b x a c x b x a y ++++= 、 法; d
x c b x a y ++=cos sin 法;
二、基础练习
1、已知函数1()1
f x x =+,则()f x 的单调递减区间为 ,对称中心为 值域为 。

2、已知函数2()f x b x a -=
++的对称中心为(2,1)-,则a = ,b = 。

3、函数112
y x =+-的值域为 4、函数312
x y x +=-的值域为 5、函数234
y x =-的值域为
6、已知函数22()2
f x x x =++,则()f x 的值域为 。

三、例题讲解
例1、《数学之友》第25页,例题1、3、4、6
例3、已知函数1sin 2cos x y x
-=
-,求该函数的值域。

例4、函数1220125320y x x y x y ∙∙∙++++最大值为
四、课堂练习
1、若0x <,则函数221x y x
+=的最大值为 。

2、已函数2()1
x f x x x =-+,当x = 时,()f x 取最小值; 当x = 时,()f x 取最大值。

3、函数1
222--+=x x x y 的值域为 4、函数3
22122+-+-=x x x x y 的值域为 。

四、小结与作业
1、(08重庆文)函数f (x )=
sin 54cos x x
+(0≤x ≤2π)的值域是 2、求下列函数的值域:(1)2221x x y x +-=-(2)2211()212
x x y x x -+=>- (3)1sin 2cos x y x -=-
学后反思(通过这节课的学习活动你有哪些收获?还有什么困惑?)。

相关文档
最新文档