理论力学(周衍柏第二版)答案汇总
理论力学(周衍柏第二版)思考题习题答案

第一章 质点力学矿山升降机作加速度运动时,其变加速度可用下式表示:⎪⎭⎫ ⎝⎛-=T t c a 2sin1π 式中c 及T 为常数,试求运动开始t 秒后升降机的速度及其所走过的路程。
已知升降机的初速度为零。
解 :由题可知,变加速度表示为⎪⎭⎫ ⎝⎛-=T t c a 2sin1π 由加速度的微分形式我们可知dtdv a =代入得 dt T t c dv ⎪⎭⎫ ⎝⎛-=2sin 1π 对等式两边同时积分dt T t c dv t v⎰⎰⎪⎭⎫⎝⎛-=002sin 1π 可得 :D T t c T ct v ++=2cos 2ππ(D 为常数)代入初始条件:0=t 时,0=v , 故c T D π2-=即⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=12cos 2T t T t c v ππ 又因为dtds v =所以 =ds dt T t T t c ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+12cos 2ππ 对等式两边同时积分,可得:⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=t T t T T t c s 2sin 22212πππ 直线FM 在一给定的椭圆平面内以匀角速ω绕其焦点F 转动。
求此直线与椭圆的焦点M 的速度。
已知以焦点为坐标原点的椭圆的极坐标方程为()θcos 112e e a r +-=式中a 为椭圆的半长轴,e 为偏心率,常数。
解:以焦点F 为坐标原点题1.8.1图则M 点坐标 ⎩⎨⎧==θθsin cos r y r x 对y x ,两式分别求导⎪⎩⎪⎨⎧+=-=θθθθθθcos sin sin cos r r yr r x 故()()22222cos sin sin cos θθθθθθ r r r r y xv ++-=+=222ωr r+= 如图所示的椭圆的极坐标表示法为()θcos 112e e a r +-=对r 求导可得(利用ωθ= ) 又因为()()221cos 111ea e e a r -+-=θ即 ()rer e a --=21cos θ所以()()2222222221211cos 1sin e r e ar r ea --+--=-=θθ故有 ()2222224222sin 1ωθωr e a r e v +-=()2224221e a r e -=ω()()]1211[2222222e r e ar r e a --+--22ωr +()()⎥⎦⎤⎢⎣⎡--+-⋅-=2222222221121e e ar r r e e a r ω()r r a b r -=2222ω即 ()r a r br v -=2ω(其中()b a e b ,1222-=为椭圆的半短轴)质点作平面运动,其速率保持为常数。
理论力学课后答案第五章(周衍柏)上课讲义

理论力学课后答案第五章(周衍柏)第五章思考题5.1虚功原理中的“虚功”二字作何解释?用虚功原理理解平衡问题,有何优点和缺点?5.2 为什么在拉格朗日方程中,a θ不包含约束反作用力?又广义坐标与广义力的含义如何?我们根据什么关系由一个量的量纲定出另一个量的量纲?5.3广义动量a p 和广义速度a q 是不是只相差一个乘数m ?为什么a p 比a q 更富有意义?5.4既然a q T ∂∂是广义动量,那么根据动量定理,⎪⎪⎭⎫ ⎝⎛∂∂αq T dt d 是否应等于广义力a θ?为什么在拉格朗日方程()14.3.5式中多出了aq T ∂∂项?你能说出它的物理意义和所代表的物理量吗?5.5为什么在拉格朗日方程只适用于完整系?如为不完整系,能否由式()13.3.5得出式()14.3.5?5.6平衡位置附近的小振动的性质,由什么来决定?为什么22s 个常数只有2s 个是独立的?5.7什么叫简正坐标?怎样去找?它的数目和力学体系的自由度之间有何关系又每一简正坐标将作怎样的运动?5.8多自由度力学体系如果还有阻尼力,那么它们在平衡位置附近的运动和无阻尼时有何不同?能否列出它们的微分方程?5.9 dL 和L d 有何区别?a q L ∂∂和aq L ∂∂有何区别? 5.10哈密顿正则方程能适用于不完整系吗?为什么?能适用于非保守系吗?为什么?5.11哈密顿函数在什么情况下是整数?在什么情况下是总能量?试祥加讨论,有无是总能量而不为常数的情况?5.12何谓泊松括号与泊松定理?泊松定理在实际上的功用如何?5.13哈密顿原理是用什么方法运动规律的?为什么变分符号δ可置于积分号内也可移到积分号外?又全变分符号∆能否这样?5.14正则变换的目的及功用何在?又正则变换的关键何在?5.15哈密顿-雅可比理论的目的何在?试简述次理论解题时所应用的步骤.5.16正则方程()15.5.5与()10.10.5及()11.10.5之间关系如何?我们能否用一正则变换由前者得出后者?5.17在研究机械运动的力学中,刘维定理能否发挥作用?何故?5.18分析力学学完后,请把本章中的方程和原理与牛顿运动定律相比较,并加以评价.第五章思考题解答5.1 答:作.用于质点上的力在任意虚位移中做的功即为虚功,而虚位移是假想的、符合约束的、无限小的.即时位置变更,故虚功也是假想的、符合约束的、无限小的.且与过程无关的功,它与真实的功完全是两回事.从∑⋅=iii r F W δδ可知:虚功与选用的坐标系无关,这正是虚功与过程无关的反映;虚功对各虚位移中的功是线性迭加,虚功对应于虚位移的一次变分.在虚功的计算中应注意:在任意虚过程中假定隔离保持不变,这是虚位移无限小性的结果.虚功原理给出受约束质点系的平衡条件,比静力学给出的刚体平衡条件有更普遍的意义;再者,考虑到非惯性系中惯性力的虚功,利用虚功原理还可解决动力学问题,这是刚体力学的平衡条件无法比拟的;另外,利用虚功原理解理想约束下的质点系的平衡问题时,由于约束反力自动消去,可简便地球的平衡条件;最后又有广义坐标和广义力的引入得到广义虚位移原理,使之在非纯力学体系也能应用,增加了其普适性及使用过程中的灵活性.由于虚功方程中不含约束反力.故不能求出约束反力,这是虚功原理的缺点.但利用虚功原理并不是不能求出约束反力,一般如下两种方法:当刚体受到的主动力为已知时,解除某约束或某一方向的约束代之以约束反力;再者,利用拉格朗日方程未定乘数法,景观比较麻烦,但能同时求出平衡条件和约束反力.5.2 答 因拉格朗日方程是从虚功原理推出的,而徐公原理只适用于具有理想约束的力学体系虚功方程中不含约束反力,故拉格朗日方程也只适用于具有理想约束下的力学体系,αθ不含约束力;再者拉格朗日方程是从力学体系动能改变的观点讨论体系的运动,而约束反作用力不能改变体系的动能,故αθ不含约束反作用力,最后,几何约束下的力学体系其广义坐标数等于体系的自由度数,而几何约束限制力学体系的自由运动,使其自由度减小,这表明约束反作用力不对应有独立的广义坐标,故αθ不含约束反作用力.这里讨论的是完整系的拉格朗日方程,对受有几何约束的力学体系既非完整系,则必须借助拉格朗日未定乘数法对拉格朗日方程进行修正.广义坐标市确定质点或质点系完整的独立坐标,它不一定是长度,可以是角度或其他物理量,如面积、体积、电极化强度、磁化强度等.显然广义坐标不一定是长度的量纲.在完整约束下,广义坐标数等于力学体系的自由度数;广义力明威力实际上不一定有力的量纲可以是力也可以是力矩或其他物理量,如压强、场强等等,广义力还可以理解为;若让广义力对应的广义坐标作单位值的改变,且其余广义坐标不变,则广义力的数值等于外力的功由W q r F s i ni i δδθδααα==⋅∑∑==11 知,ααδθq 有功的量纲,据此关系已知其中一个量的量纲则可得到另一个量的量纲.若αq 是长度,则αθ一定是力,若αθ是力矩,则αq 一定是角度,若αq 是体积,则αθ一定是压强等.5.3 答 αp 与αq 不一定只相差一个常数m ,这要由问题的性质、坐标系的选取形式及广义坐标的选用而定。
理论力学(周衍柏第二版)思考题习题答案第二章

第二章质点组力学第二章思考题2.1一均匀物体假如由几个有规则的物体并合(或剜去)而成,你觉得怎样去求它的质心?2.2一均匀物体如果有三个对称面,并且此三对称面交于一点,则此质点即均匀物体的质心,何故?2.3在质点动力学中,能否计算每一质点的运动情况?假如质点组不受外力作用,每一质点是否都将静止不动或作匀速直线运动?2.4两球相碰撞时,如果把此两球当作质点组看待,作用的外力为何?其动量的变化如何?如仅考虑任意一球,则又如何?2.5水面上浮着一只小船。
船上一人如何向船尾走去,则船将向前移动。
这是不是与质心运动定理相矛盾?试解释之。
2.6为什么在碰撞过程中,动量守恒而能量不一定守恒?所损失的能量到什么地方去了?又在什么情况下,能量才也守恒?2.7选用质心坐标系,在动量定理中是否需要计入惯性力?2.8轮船以速度V 行驶。
一人在船上将一质量为m 的铁球以速度v 向船首抛去。
有人认为:这时人作的功为()mvV mv mV v V m +=−+222212121你觉得这种看法对吗?如不正确,错在什么地方?2.9秋千何以能越荡越高?这时能量的增长是从哪里来的?2.10在火箭的燃料全部燃烧完后,§2.7(2)节中的诸公式是否还能应用?为什么?2.11多级火箭和单级火箭比起来,有哪些优越的地方?第二章思考题解答2.1.答:因均匀物体质量密度处处相等,规则形体的几何中心即为质心,故先找出各规则形体的质心把它们看作质点组,然后求质点组的质心即为整个物体的质心。
对被割去的部分,先假定它存在,后以其负质量代入质心公式即可。
2.2.答:物体具有三个对称面已足以确定该物体的规则性,该三平面的交点即为该物体的几何对称中心,又该物体是均匀的,故此点即为质心的位置。
2.3.答:对几个质点组成的质点组,理论上可以求每一质点的运动情况,但由于每一质点受到周围其它各质点的相互作用力都是相互关联的,往往其作用力难以预先知道;再者,每一质点可列出三个二阶运动微分方程,各个质点组有n 3个相互关联的三个二阶微分方程组,难以解算。
理论力学(周衍柏)的习题集答案,第五章.doc

第五章习题解答5.1解如题5.1.1图杆受理想约束,在满足题意的约束条件下杆的位置可由杆与水平方向夹角所唯一确定。
杆的自由度为1,由平衡条件:即mg y =0①变换方程y=2rcos sin-= rsin2②故③代回①式即因在约束下是任意的,要使上式成立必须有:rcos2-=0④又由于cos=故cos2=代回④式得5.2解如题5.2.1图三球受理想约束,球的位置可以由确定,自由度数为1,故。
得由虚功原理故①因在约束条件下是任意的,要使上式成立,必须故②又由得:③由②③可得5.3解如题5.3.1图,在相距2a的两钉处约束反力垂直于虚位移,为理想约束。
去掉绳代之以力T,且视为主动力后采用虚功原理,一确定便可确定ABCD的位置。
因此自由度数为1。
选为广义坐。
由虚功原理:w①又取变分得代入①式得:化简得②设因在约束条件下任意,欲使上式成立,须有:由此得5.4解自由度,质点位置为。
由①由已知得故②约束方程③联立②③可求得或又由于故或5.5解如题5.5.1图按题意仅重力作用,为保守系。
因为已知,故可认为自由度为1.选广义坐标,在球面坐标系中,质点的动能:由于所以又由于故取Ox为零势,体系势能为:故力学体系的拉氏函数为:5.6解如题5.6.1图.平面运动,一个自由度.选广义坐标为,广义速度因未定体系受力类型,由一般形式的拉格朗日方程①在广义力代入①得:②在极坐标系下:③故将以上各式代入②式得5.7解如题5.7.1图又由于所以①取坐标原点为零势面②拉氏函数③代入保守系拉格朗日方程得代入保守系拉格朗日方程得5.8解:如图5.8.1图.(1)由于细管以匀角速转动,因此=可以认为质点的自由度为1.(2)取广义坐标.(3)根据极坐标系中的动能取初始水平面为零势能面,势能:拉氏函数①(4),代入拉氏方程得:(5)先求齐次方程的解.②特解为故①式的通解为③在时:④⑤联立④⑤得将代回式③可得方程的解为:5.9解如题5.9.1图.(1)按题意为保守力系,质点被约束在圆锥面内运动,故自有度数为2. (2)选广义坐标,.(3)在柱坐标系中:以面为零势能面,则:拉氏函数-①(4)因为不显含,所以为循环坐标,即常数②对另一广义坐标代入保守系拉氏方程③有得④所以此质点的运动微分方程为(为常数)所以5.10解如题5.10.1图.(1)体系自由度数为2.(2)选广义坐标(3)质点的速度劈的速度故体系动能以面为零势面,体系势能:其中为劈势能.拉氏函数①(4)代入拉格郎日方程得:②代入拉格郎日方程得③联立②,③得5.11 解如题5.11.1图(1)本系统内虽有摩擦力,但不做功,故仍是保守系中有约束的平面平行运动,自由度(2)选取广义坐标(3)根据刚体力学其中绕质心转动惯量选为零势面,体系势能:其中C为常数.拉氏函数(4)代入保守系拉氏方程得:对于物体,有5.12解如题5.12.1图.(1)棒作平面运动,一个约束,故自由度. (2)选广义坐标(3)力学体系的动能根据运动合成又故设为绕质心的回转半径,代入①得动能②(4)由③(其中)则④因为、在约束条件下任意且独立,要使上式成立,必须:⑤(5)代入一般形式的拉氏方程得:⑥又代入一般形式的拉氏方程得:⑦⑥、⑦两式为运动微分方程(6)若摆动角很小,则,代入式得:,代入⑥⑦式得:⑧又故代入⑧式得:(因为角很小,故可略去项)5.13解如题5.13.1图(1)由于曲柄长度固定,自由度.(2)选广义坐标,受一力矩,重力忽略,故可利用基本形式拉格朗日方程:①(3)系统动能②(4)由定义式③(5)代入①得:得5.14.解如题5.14.1图.(1)因体系作平面平行运动,一个约束方程:(2)体系自由度,选广义坐标.虽有摩擦,但不做功,为保守体系(3)体系动能:轮平动动能轮质心转动动能轮质心动能轮绕质心转动动能.①以地面为零势面,体系势能则保守系的拉氏函数②(1)因为不显含,得知为循环坐标.故=常数③开始时:则代入得又时,所以5.15解如题5.15.1图(1)本系统作平面平行运动,干限制在球壳内运动,自由度;选广义坐标,体系摩擦力不做功,为保守力系,故可用保守系拉氏方程证明①(2)体系动能=球壳质心动能+球壳转动动能+杆质心动能+杆绕中心转动动能②其中代入②得以地面为零势面,则势能:(其中为常数)(3)因为是循环坐标,故常熟③而代入①式得④联立③、④可得(先由③式两边求导,再与④式联立)⑤⑤试乘并积分得:又由于当5.16解如题图5.16.1.(1)由已知条件可得系统自由度.(2)取广义坐标.(3)根据刚体力学,体系动能:①又将以上各式代入①式得:设原点为零势能点,所以体系势能体系的拉氏函数②(1)因为体系只有重力势能做工,因而为保守系,故可采用③代入③式得即(5)解方程得5.17解如题5.17.1图(1)由题设知系统动能①取轴为势能零点,系统势能拉氏函数②(2)体系只有重力做功,为保守系,故可采用保守系拉氏方程.代入拉氏方程得:又代入上式得即③同理又代入上式得④令代入③④式得:欲使有非零解,则须有解得周期5.18解如题5.18.1图(1)系统自由度(2)取广义坐标广义速度(3)因为是微震动,体系动能:以为势能零点,体系势能拉氏函数(4)即①同理②同理③设代入①②③式得欲使有非零解,必须解之又故可得周期5.19解如题5.19.1图(1)体系自由度(2)取广义坐标广义速度(3)体系动能体系势能体系的拉氏函数(4)体系中只有弹力做功,体系为保守系,可用①将以上各式代入①式得:②先求齐次方程③设代入③式得要使有非零,必须即又故通解为:其中又存在特解有②③式可得式中及为积分常数。
大学所有课程课后答案

我为大家收集了大学所有课程的课后答案,这里只列出了一部分,要想找到更多的答案,请到查找。
资料打开方法:按住 Ctrl键,在你需要的资料上用鼠标左键单击资料搜索方法:Ctrl+F 输入关键词查找你要的资料【数学】∙01-08数值分析清华大学出版社第四版课后答案∙01-08微分几何第三版梅向明黄敬之主编课后答案∙01-07高等代数与解析几何陈志杰主编第二版课后答案∙01-07高等代数第三版北京大学数学系主编高等教育出版社出版课后答案∙01-07数学分析陈纪修主编第二版课后答案∙01-07数学分析华东师大第三版课后答案∙12-27高等数学同济大学出版社第五版课后答案∙12-08积分变换(第四版)东南大学数学系张元林编高等教育出版社课后答案∙11-30微积分复旦大学出版社曹定华主编课后答案∙11-21人大-吴赣昌-高等数学/微积分(经管类)课后答案∙11-09概率统计简明教程同济版课后答案∙11-09复变函数钟玉泉课后答案∙11-09微积分范培华章学诚刘西垣中国商业出版社课后答案∙11-09线性代数同济大学第四版课后答案∙11-08概率论与数理统计浙大版盛骤谢式千课后答案∙11-08复变函数西安交通大学第四版高等教育出版社课后答案∙11-07离散数学教程肖新攀编著课后习题答案∙11-07离散数学(第三版)清华大学出版社(耿素云,屈婉玲,张立昂)课后习题答案∙11-04高等数学同济大学出版社第六版课后答案∙10-27高等数学北大版课后答案∙【通信/电子/电气/自动化】∙01-08信号与线性系统分析吴大正第4版课后答案∙01-08信号与系统刘泉主编课后答案∙01-08信号与系统奥本海姆英文版课后答案∙01-08数字信号处理吴镇扬高等教育出版社课后答案∙01-08通信原理樊昌信第六版国防大学出版社课后答案∙01-08通信原理北京邮电大学课后答案∙12-10数字逻辑第四版(毛法尧著) 高等教育出版社∙12-10数字逻辑第二版(毛法尧著) 高等教育出版社课后答案∙12-08电路第五版邱关源罗先觉高等教育出版社课后答案∙12-03数字信号处理教程(程佩青第二版) 清华大学出版社课后答案∙12-02数字信号处理教程程佩青(第三版)清华大学出版社课后答案∙11-09模拟电子技术基础童诗白第三版习题答案∙11-09数字电子技术基础阎石第五版课后答案∙11-06信号与系统郑君里主编第二版课后答案∙11-06信号与系统哈工大课后答案∙10-31模拟电子技术基础(第四版童诗白、华成英主编)习题答案∙10-29模拟电路康华光【计算机/网络/信息】∙01-08数据结构(C语言版) 李春葆主编课后答案∙12-05计算机网络教程第五版谢希仁电子工业出版社课后答案∙11-09c程序设计谭浩强主编清华大学出版社习题答案及上机指导∙10-26C语言程序设计教程习题参考答案∙10-26MATLAB程序设计与应用(第二版)刘卫国主编实验答案【经济/金融/营销/管理/电子商务】∙01-06现代西方经济学(宏观)尹伯平主编课后答案∙01-06现代西方经济学(微观经济学) 宋承先主编第3版笔记和课后习题详解∙01-06微观经济学:现代观点范里安主编第5版课后答案∙01-05微观经济学平狄克主编第4和5版笔记和课后习题详解∙01-05宏观经济学曼昆主编第五版课后答案∙01-05宏观经济学多恩布什主编课后习题答案∙01-05企业会计学赵惠芳主编课后答案∙12-05市场调研与预测习题与实例陈启杰上海财经大学出版社课后答案∙11-28西方经济学高鸿业第四版(微观宏观)课后答案∙11-10中级财务会计刘兵初宜红山东人民出版社课后答案∙11-09经济法概论课后答案∙11-08中级财务会计(第二版)刘永泽东北财经大学课后答案【物理/光学/声学/热学/力学】∙01-19机电传动控制华中科技大学出版社邓星钟主编课后答案∙01-05量子力学张永德主编课后答案∙01-04量子力学导论曾谨言著第二版课后答案∙01-04量子力学曾谨言著高等教育出版社第三版第一卷课后答案∙01-04量子力学教程周世勋著高等教育出版社课后答案∙01-04量子力学教程曾谨言著课后答案∙01-04电动力学郭硕鸿主编第三版课后答案∙01-04理论力学卢圣治著课后答案∙01-03理论力学周衍柏著第二版课后答案∙11-09普通物理学程守洙江之咏第五版习题分析与解答∙11-09物理学马文蔚(第五版) 习题分析与解答∙11-09大学基础物理学.2版.清华.张三慧习题答案∙11-06大学物理学赵近芳主编第二版课后答案【土建/机械/车辆/制造/材料】∙01-08机械设计基础(第五版) 高等教育出版社课后答案∙01-07材料力学单辉祖主编课后答案∙01-06材料力学刘鸿文主编哈工大第四版课后答案∙11-11机械原理第六版课后答案【化学/环境/生物/医学/制药】∙01-03高分子化学潘祖仁著第四版课后答案∙01-03物理化学辅导与习题详解第五版傅献彩著∙01-02物理化学南开大学第五版课后答案∙01-02物理化学周亚平天津大学第四版课后答案∙01-02分析化学武汉大学第四版思考题答案∙01-02分析化学武汉大学第四版课后答案∙01-02基础有机化学邢其毅著课后答案∙01-01有机化学莫里森著课后答案∙12-31有机化学(第四版)高鸿宾著课后答案∙12-31有机化学(汪小兰著) 课后答案∙12-31无机化学第三版武汉大学吉林大学编高等教育出版社课后答案∙12-31中级无机化学(朱文祥著) 高等教育出版社课后答案∙12-31无机化学第三版(宋天佑著) 高等教育出版社课后答案∙12-30生物化学解题指导与测验张楚富高等教育出版社课后答案∙12-30生物化学简明教程第四版(张丽萍著) 高等教育出版社课后答案∙12-30生物化学原理(张洪渊著) 科学出版社课后答案∙12-30生物化学第三版(沈同王镜岩著) 高等教育出版社课后答案∙10-31有机化学第三版(胡宏纹著) 高等教育出版社课后答案∙10-29有机化学第四版答案曾昭琼主编高等教育出版社【法学/哲学/心理学/政治学】∙12-29实验心理学杨治良版练习题及答案07年心理学考研∙12-29《心理学》考试题库及答案程素萍浙江大学出版社∙12-29教育心理学第三版(皮连生著) 上海教育出版社课后答案∙12-04毛邓三(2007 华中科技大学版)(毛邓三编写组著) 高等教育出版社课后答案∙11-07毛邓三课后简答题答案∙10-29逻辑学参考答案∙10-26思想道德修养与法律基础罗国杰主编高教版课后答案∙10-26毛泽东思想和中国特色社会主义理论体系概论(吴树青等著) 高等教育出版社课后答案∙10-25马克思主义基本原理概论左伟清华南理工大学出版社课后答案∙10-25毛邓三思考题课后答案【英语/文学/史学/外语/教育】∙01-30step_by_step 2000 第四册听力答案课后答案∙01-30step_by_step 2000 第三册听力答案课后答案∙01-30step_by_step 2000 第二册听力答案课后答案∙01-30step_by_step 2000 第一册听力答案课后答案∙01-09大学体验英语综合教程第四册课后答案及课文翻译∙01-09大学体验英语综合教程第三册课后答案及课文翻译∙01-09大学体验英语综合教程第二册课后答案及课文翻译∙01-09大学体验英语综合教程第一册课后答案及课文翻译∙01-09新视野大学英语第五册课后答案∙01-09新视野大学英语第四册课后答案及课文翻译∙01-09新视野大学英语第三册课后答案及课文翻译∙01-09新视野大学英语第二册课后答案及课文翻译∙01-09新视野大学英语第一册课后答案及课文翻译∙01-05文学理论童庆炳主编修订二版课后答案∙01-05语言学教程胡壮麟主编课后答案[适合背诵]∙11-08中国近代史纲要沙健孙高等教育出版社课后答案∙11-07全新版大学英语综合教程第四册课后答案及课文翻译∙11-07全新版大学英语综合教程第三册课后答案及课文翻译∙11-06全新版大学英语综合教程第二册课后答案及课文翻译∙11-06全新版大学英语综合教程第一册课后答案及课文翻译∙11-06新世纪大学英语综合教程3 课后答案∙11-06新世纪大学英语综合教程2 课后答案∙11-06新世纪大学英语综合教程1 课后答案∙10-25新编大学英语(第一册)习题答案第二版∙10-25新编大学英语(第二册)习题答案∙10-25新编大学英语(第三册)习题答案10-25新编大学英语(第四册)课文翻译及课后习题答案。
理论力学(周衍柏 第二版)第2章习题解答

垂直 x 轴方向有:
mv0 = mv1 cosθ1 + mv2 cosθ2 ①
可知
0 = mv1 sinθ1 − mv2 sinθ2 ②
( ) v02 = v12 + v22 + 2v1v2 cos θ1 + θ2 ③
整个碰撞过程只有系统内力做功,系统机械能守恒:
由③④得
1 2
mv02
=
1 2
mv12
求绕此轴的动量矩。
2.6 一炮弹的质量为 M1 + M 2 ,射出时的水平及竖直分速度为U 及V 。当炮弹达到最高点 时,其内部的炸药产生能量 E ,使此炸弹分为 M1 及 M2 两部分。在开始时,两者仍沿原方
向飞行,试求它们落地时相隔的 距离,不计空气阻力。
2.7 质量为 M ,半径为 a 的光滑半球,其低面放在光滑的水平面上。有一质量为 m 的 质点 沿此半球面滑下。设质点的初位置与球心的连线和竖直向上的直线间所成之角为α ,并且 起始时此系统是静止的,求此质点滑到它与球心的连线和竖直向上直线间所成之角为θ 时θ
机枪后退的速度为
M ′ u − (M + M ′)2 − M 2 μg
M
2mM
2.16 雨滴落下时,其质量的增加率与雨滴的表面积成正比例,求雨滴速度与时间的关系。
2.17 设用某种液体燃料发动的火箭,喷气速度为 2074 米/秒,单位时间内所消耗的燃料为
原始火箭总质量的 1 。如重力加速度 g 的值可以认为是常数,则利用此种火箭发射人造太 60
竖直方向
vx = u cosθ − V ③
vy = usiaθ ④ 在 m 下滑过程中,只有保守力(重力)做功,系统机械能守恒: (以地面为重力零势能面)
理论力学第二版习题答案

理论力学第二版习题答案理论力学第二版习题答案理论力学是力学的基础学科,它研究物体在力的作用下的运动规律。
对于学习理论力学的学生来说,做习题是非常重要的一部分,通过做习题可以巩固理论知识,提高解题能力。
本文将为大家提供理论力学第二版习题的答案,希望对广大学生有所帮助。
第一章:牛顿力学的基本概念和基本定律1. 问题:一个质点从速度为v0的位置自由下落,求它下落的时间。
答案:根据自由下落的运动学公式,下落的时间t可以通过以下公式计算:t =√(2h/g),其中h为下落的高度,g为重力加速度。
由于自由下落是垂直向下的,所以h可以表示为h = (1/2)gt^2。
将h代入上述公式,可得t = √(2h/g) =√(2(1/2)gt^2/g) = √t^2 = t。
2. 问题:一个质点在水平方向上以初速度v0做匀速直线运动,求它在时间t内所走的距离。
答案:由于匀速直线运动的速度保持不变,所以在时间t内,质点所走的距离s 可以通过以下公式计算:s = v0t。
第二章:质点的运动方程1. 问题:一个质点在x轴上做直线运动,其运动方程为x = 2t^2 + 3t + 1,求其速度和加速度。
答案:质点的速度可以通过对运动方程求导得到:v = dx/dt = 4t + 3。
质点的加速度可以通过对速度求导得到:a = dv/dt = 4。
2. 问题:一个质点在y轴上做直线运动,其运动方程为y = 3t^3 + 2t^2 + t,求其速度和加速度。
答案:质点的速度可以通过对运动方程求导得到:v = dy/dt = 9t^2 + 4t + 1。
质点的加速度可以通过对速度求导得到:a = dv/dt = 18t + 4。
第三章:质点系和刚体的运动1. 问题:一个质点系由两个质点组成,质点1质量为m1,质点2质量为m2,它们之间通过一根质量可忽略不计的绳子连接,求质点系的重心位置。
答案:质点系的重心位置可以通过以下公式计算:x = (m1x1 + m2x2)/(m1 + m2),其中x1和x2分别为质点1和质点2的位置坐标。
理论力学第二版习题答案

理论力学第二版习题答案理论力学是物理学中研究物体运动规律的基础学科,它包括经典力学、相对论力学和量子力学等。
在经典力学中,牛顿运动定律是核心内容,而理论力学则进一步发展了这些定律,提供了更深入的分析和理解。
第二版的理论力学教材通常会包含更丰富的习题和更详尽的解答,以帮助学生更好地掌握力学的基本概念和方法。
习题1:牛顿运动定律的应用题目:一个质量为m的物体在水平面上受到一个恒定的力F作用,求物体的加速度。
解答:根据牛顿第二定律,力F等于物体质量m与加速度a的乘积,即F=ma。
因此,物体的加速度a等于力F除以质量m,即a=F/m。
习题2:动能和势能的计算题目:一个质量为m的物体从高度h自由落体,求落地时的动能。
解答:物体在自由落体过程中,重力势能转化为动能。
落地时的动能E_k等于重力势能的减少量,即E_k=mgh。
习题3:圆周运动的动力学分析题目:一个质量为m的物体以角速度ω在半径为R的圆周上做匀速圆周运动,求物体所受的向心力。
解答:匀速圆周运动的向心力F_c由公式F_c=mω^2R给出,其中m是物体的质量,ω是角速度,R是圆周的半径。
习题4:简谐振动的周期计算题目:一个质量为m的弹簧振子,弹簧的劲度系数为k,求其振动周期。
解答:简谐振动的周期T可以通过公式T=2π√(m/k)计算,其中m是振子的质量,k是弹簧的劲度系数。
习题5:刚体转动的动力学分析题目:一个均匀分布质量的刚体,其转动惯量为I,角速度为ω,求其转动动能。
解答:刚体的转动动能E_r可以通过公式E_r=0.5Iω^2计算,其中I是转动惯量,ω是角速度。
习题6:相对论效应的讨论题目:一个质量为m的物体以接近光速的速度v运动,求其相对论质量。
解答:在相对论中,物体的相对论质量m_r可以通过洛伦兹变换公式m_r=m/√(1-v^2/c^2)计算,其中m是静止质量,v是物体速度,c是光速。
习题7:量子力学的初步介绍题目:简述量子力学与经典力学的主要区别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章习题1.1沿水平方向前进的枪弹,通过某一距离s 的时间为t 1,而通过下一等距离s 的时间为2t .试证明枪弹的减速度(假定是常数)为()()2121122t t t t t t s +- 1.2 某船向东航行,速率为每小时15km,在正午某一灯塔。
另一船以同样速度向北航行,在下午1时30分经过此灯塔。
问在什么时候,两船的距离最近?最近的距离是多少? 1.3 曲柄,r A O =以匀角速ω绕定点O 转动。
此曲柄借连杆AB 使滑块B 沿直线Ox 运动。
求连杆上C 点的轨道方程及速度。
设a CB AC ==,ψϕ=∠=∠ABO AOB ,。
x第1.3题图1.4 细杆OL 绕O 点以角速ω转动,并推动小环C 在固定的钢丝AB 上滑动。
图中的d 为已知常数,试求小球的速度及加速度的量值。
A BOCLxθd 第1.4题图1.5 矿山升降机作加速度运动时,其变加速度可用下式表示:⎪⎭⎫ ⎝⎛-=T t c a 2sin 1π 式中c 及T 为常数,试求运动开始t 秒后升降机的速度及其所走过的路程。
已知升降机的初速度为零。
1.6 一质点沿位失及垂直于位失的速度分别为r λ及μθ,式中λ及μ是常数。
试证其沿位矢及垂直于位失的加速度为⎪⎭⎫ ⎝⎛+-r r r μλμθθμλ,2221.7 试自θθsin ,cos r y r x ==出发,计算x 及y。
并由此推出径向加速度ra 及横向加速度θa 。
1.8 直线FM 在一给定的椭圆平面内以匀角速ω绕其焦点F 转动。
求此直线与椭圆的焦点M 的速度。
已知以焦点为坐标原点的椭圆的极坐标方程为()θcos 112e e a r +-=式中a 为椭圆的半长轴,e 为偏心率,都是常数。
1.9 质点作平面运动,其速率保持为常数。
试证其速度矢量v 与加速度矢量a 正交。
1.10 一质点沿着抛物线px y 22=运动其切向加速度的量值为法向加速度量值的k 2-倍。
如此质点从正焦弦⎪⎭⎫⎝⎛p p ,2的一端以速度u 出发,试求其达到正焦弦另一端时的速率。
1.11 质点沿着半径为r 的圆周运动,其加速度矢量与速度矢量间的夹角α保持不变。
求质点的速度随时间而变化的规律。
已知出速度为0v 。
1.12 在上题中,试证其速度可表为()00θθ-=e v v αctg式中θ为速度矢量与x 轴间的夹角,且当0=t 时,0θθ=。
1.13 假定一飞机从A 处向东飞到B 处,而后又向西飞回原处。
飞机相对于空气的速度为v ',而空气相对于地面的速度为0v 。
A 与B 之间的距离为l 。
飞机相对于空气的速度v '保持不变。
()a 假定o v o =,即空气相对于地面是静止的,试证来回飞行的总时间为v l t '=20()b 假定空气速度为向东(或向西),试证来回飞行的总时间为20021v v t t B '-=()c 假定空气的速度为向北(或向南),试证来回飞行的总时间为20021v v t t N '-=1.14 一飞机在静止空气中每小时的速率为100千米。
如果飞机沿每边为6千米的正方形飞行,且风速为每小时28千米,方向与正方形的某两边平行,则飞机绕此正方形飞行一周,需时多少?1.15 当一轮船在雨中航行时,它的雨篷遮着篷的垂直投影后2米的甲板,篷高4米。
但当轮船停航时,甲板上干湿两部分的分界线却在篷前3米。
如果雨点的速度为8米/秒,求轮船的速率。
1.16 宽度为d 的河流,其流速与到河岸的距离成正比。
在河岸处,水流速度为零,在河流中心处,其值为c 。
一小船以相对速度u 沿垂直于水流的方向行驶,求船的轨迹以及船在对岸靠拢的地点。
1.17 小船M 被水冲走后,由一荡桨人以不变的相对速度2C 朝岸上A 点划回。
假定河流速度1C 沿河宽不变,且小船可以看成一个质点,求船的轨迹。
1.18 一质点自倾角为α的斜面上方O 点,沿一光滑斜槽OA 下降。
如欲使此质点到达斜面上所需的时间为最短,问斜槽OA 与竖直线所成之角θ应为何值?θαOA第1.18题图1.19 将质量为m 的质点竖直抛上于有阻力的媒质中。
设阻力与速度平方成正比,即22gv mk R =。
如上抛时的速度为0v ,试证此质点又落至投掷点时的速度为22011vk v v +=1.20 一枪弹以仰角α、初速度0v 自倾角为β的斜面的下端发射。
试证子弹击中斜面的地方和发射点的距离d (沿斜面量取)及此距离的最大值分别为()ββαα202cos sin cos 2-=g v d ⎪⎭⎫ ⎝⎛-=24sec 2202max βπg v d 。
1.21 将一质点以初速0v 抛出,0v 与水平线所成之角为α。
此质点所受到的空气阻力为其速度的mk 倍,m 为质点的质量,k 为比例系数。
试求当此质点的速度与水平线所成之角又为α时所需的时间。
1.22 如向互相垂直的匀强电磁场E 、B 中发射一电子,并设电子的初速度V 与E 及B 垂直。
试求电子的运动规律。
已知此电子所受的力为e ()B v E ⨯+,式中E 为电场强度,e 为电子所带的电荷,v 为任一瞬时电子运动的速度。
1.23 在上题中,如()a 0=B ,则电子的轨道为在竖直平面()平面xy 的抛物线;()b 如0=E ,则电子的轨道为半径等于eBmV的圆。
试证明之。
1.24 质量为m 与m 2的两质点,为一不可伸长的轻绳所联结,绳挂在一光滑的滑轮上。
在m 的下端又用固有长度为a 、倔强系数k 为amg 的弹性绳挂上另外一个质量为m的质点。
在开始时,全体保持竖直,原来的非弹性绳拉紧,而有弹性的绳则处在固有的长度上。
由此静止状态释放后,求证这运动是简谐的,并求出其振动周期τ及任何时刻两段绳中的张力T 及T '。
T T T 'T'第1.24题图1.25 滑轮上系一不可伸长的绳,绳上悬一弹簧,弹簧另一端挂一重为W 的物体。
当滑轮以匀速转动时,物体以匀速0v 下降。
如将滑轮突然停住,试求弹簧的最大伸长及最大张力。
假定弹簧受W 的作用时的静伸长为0λ。
1.26 一弹性绳上端固定,下端悬有m 及m '两质点。
设a 为绳的固有长度,b 为加m 后的伸长,c 为加m '后的伸长。
今将m '任其脱离而下坠,试证质点m 在任一瞬时离上端O 的距离为t bg c b a cos++ 1.27 一质点自一水平放置的光滑固定圆柱面凸面的最高点自由滑下。
问滑至何处,此质点将离开圆柱面?假定圆柱体的半径为r 。
1.28 重为W 的不受摩擦而沿半长轴为a 、半短轴为b 的椭圆弧滑下,此椭圆的短轴是竖直的。
如小球自长2轴的端点开始运动时,其初速度为零,试求小球在到达椭圆的最低点时它对椭圆的压力。
1.29 一质量为m 的质点自光滑圆滚线的尖端无初速地下滑。
试证在任何一点的压力为θcos 2mg ,式中θ为水平线和质点运动方向间的夹角。
已知圆滚线方程为()()θθθ2cos 1,2sin 2c a y a x =-=+=1.30 在上题中,如圆滚线不是光滑的,且质点自圆滚线的尖端自由下滑,达到圆滚线的最低点时停止运动,则摩擦系数μ应满足下式12=μπμe试证明之。
1.31 假定单摆在有阻力的媒质中振动,并假定振幅很小,故阻力与θ 成正比,且可写为θmkl R 2-=,式中m 是摆锤的质量,l 为摆长,k 为比例系数。
试证当2k <lg 时,单摆的振动周期为lk g l 22-=πτ 1.32 光滑楔子以匀加速度0a 沿水平面运动。
质量为m 的质点沿楔子的光滑斜面滑下。
求质点的相对加速度a '和质点对楔子的压力P 。
1.33 光滑钢丝圆圈的半径为r ,其平面为竖直的。
圆圈上套一小环,其中为w 。
如钢丝圈以匀加速度a 沿竖直方向运动,求小环的相对速度r v 及圈对小环的反作用力R 。
1.34 火车质量为m ,其功率为常数k 。
如果车所受的阻力f 为常数,则时间与速度的关系为:()fv v m vf k f v k f mk t 002ln ----=如果f 和速度v 成正比,则()vf k v fv vk f mv t --=02ln2 式中0v 为初速度,试证明之。
1.35 质量为m 的物体为一锤所击。
设锤所加的压力,是均匀地增减的。
当在冲击时间τ的一半时,增至极大值P ,以后又均匀减小至零。
求物体在各时刻的速率以及压力所作的总功。
1.36 检验下列的力是否是保守力。
如是,则求出其势能。
()a233206y bx y abz F x -=,y bx abxz F y 43106-=,218abxyz F z = ()b()()()z F y F x F z y x k j i F ++=1.37 根据汤川核力理论,中子与质子之间的引力具有如下形式的势能:()krke r V ar ,-=<0试求()a 中子与质子间的引力表达式,并与平方反比定律相比较;()b 求质量为m 的粒子作半径为a 的圆运动的动量矩J 及能量E 。
1.38 已知作用在质点上的力为za y a x a F z a y a x a F z a y a x a F z y x 333231232221131211++=++=++= 式中系数()3,2,1,=j i a ij 都是常数。
问这些ij a 应满足什么条件,才有势能存在?如这些条件满足,试计算其势能。
1.39 一质点受一与距离23次方成反比的引力作用在一直线上运动。
试证此质点自无穷远到达a 时的速率和自a 静止出发到达4a 时的速率相同。
1.40 一质点受一与距离成反比的引力作用在一直线上运动,求其达到O 点所需的时间。
1.41 试导出下面有心力量值的公式:drdp m h F 222-=式中m 为质点的质点,r 为质点到力心的距离,==θ 2r h 常数,p 为力心到轨道切线的垂直距离。
1.42 试利用上题的结果,证明:()a 如质点走一圆周,同时力心位于此圆上,则力与距离五次方成反比。
()b 如一质点走一对数螺线,而其质点即力心,则力与距离立方成反比。
1.43 质点所受的有心力如果为⎪⎪⎭⎫ ⎝⎛+-=322r r m F νμ式中μ及ν都是常数,并且ν<2h ,则其轨道方程可写成θk e a r cos 1+=试证明之。
式中222222222,,μμνh Ak e h k a h h k ==-=(A 为积分常数)。
1.45 如a s 及p s为质点在远日点及近日点处的速率,试证明 p s﹕a s =()e +1﹕()e -1 1.46 质点在有心力作用下运动。
此力的量值为质点到力心距离r 的函数,而质点的速率则与距离成反比,即ra v =。
如果2a >2h ()θ 2r h =,求点的轨道方程。