金尚年版理论力学第二版答案5章

合集下载

高等教育出版社_金尚年_马永利编著的理论力学课后习题答案

高等教育出版社_金尚年_马永利编著的理论力学课后习题答案

高等教育出版社,金尚年,马永利编著的理论力学课后习题答案第一章1.2afG — sin0);殳上运动的质点的微写出约束在铅直平面内的光滑摆线afl - COS0)分方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关.解:设s为质点沿摆线运动时的路程,取0=0时,s=0H ( x = a(0-sine) * ly = —a(l — COS0)ds - J (dx)2 + (dy)2 二J((i9 — COS0 亠de)2+(sirL9 de)2 = 2asin|2a sin舟dO = 4 a (L co 马ee As=2acos^59 + 2asin?9 = acos| 9^ + 2a sin? 9x轴的夹角,取逆时针为正,tan (p即切线斜率设(P为质点所在摆线位置处切线方向与dy cos 0 -1 tan <p =—=———〒dx sin 01聶siin<p = -cosI受力分析得:ms = —mg sin (p = mg cos-0 •・B・r a贝U2a sin二6 + a cos二6' = geos-,此即为质点的运动微分方程。

S = =(S = 4a)-(S 二4a) + —(s = 4a) =4a—周期性变化的函数,周期T=2TT产P e 该质点在平衡位置附近作振动时,振动周期与振幅无关,为2讥启.1.3证明:设一质量为m的小球做任一角度日0的单摆运动运动微分方程为m(2 + 2「日)=F gmrO = mg sin £给式两边同时乘以d9 r日d£=gsind8对上式两边关于6积分得护jgcog + c利用初始条件日=日0时日=0故c = -gcos£0由可解得0 =-{2& • J c 0 s-c 0 8o上式可化为-岸•J cos。

-cosgd日=dt两边同时积分可得 评J ; J co £o 页迅咼.1卑匸萼严进-步化简可得t 辟 J 站n r由于上面算的过程只占整个周期的1/4故由 s in 2/sin ¥=s z 两边分别对6 3微分可得cos % =s 碍C 。

高等教育出版社_金尚年_马永利编著的理论力学课后习题答案

高等教育出版社_金尚年_马永利编著的理论力学课后习题答案

高等教育出版社,金尚年,马永利编著的理论力学课后习题答案第一章1.2f X = a(θ — sinθ) (y = —a(l — cos θ)分方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关解:设S 为质点沿摆线运动时的路程,取=0时,S=OH (X = a(θ — Sille) ,Iy = —a(l — cos θ) /- ds = J(dx)2+(dy)2=J((Ie - cos θ - dθ)2+(sinθdθ)2= 2asin- dθS=I ]= 4 a (1—门〕一)写出约束在铅直平面内的光滑摆线上运动的质点的微S = 2acosθ-θ + 2asiιι-θ = a cos - θ2+ 2a Sin-θ2 2 2 2 2设:为质点所在摆线位置处切线方向与 X 轴的夹角,取逆时针为正,L 二弔即切线斜率dy COS θ -1tan φ = — = ——dx sιnθ受力分析得:InS = —mg sin φ = mg cos yΩ .. Ω . - Ω 则1 ' : . 一,此即为质点的运动微分方程。

2 2 t52S =鲁(S — 4a)Λ (S - 4a) + ~(β — 4a) = 01.3证明:设一质量为m 的小球做任一角度Λ的单摆运动运动微分方程为m(L ∙2L )=F ,mr J - mg Sin给 式两边同时乘以LdV-gsind^ 对上式两边关于T 积分得1L 2=gcos*c2利用初始条件V - J 0时V - 0故c = -g COS 71由 可解得 日=-* JC o S - c o So上式可化为-\:丰∙Jcos 日-CoS 日0 日=Zdt・s - 4a —周期性变化的函数,周期T = 2π该质点在平衡位置附近作振动时,振动周期与振幅无关,为进一步化简可得sin 2? —sin 22°由于上面算的过程只占整个周期的1/4故由 Sin /sin - = Sin2 2两边分别对二「微分可得COSEdV - Sin -cos ::d ::2 2COSAJIYin 学sin^Sin -cos tP故dr -2 ------- 2 d ‘ I I-Si n 2 电 Si n2 CP \ 2 由于Or VvO 故对应的0 <2—CoSe ∕J 1 —s in 2电 S in 2 申2 2d 「Sin cos : 2故T =4l 2-- d其中 K 2=sin 2玉Y g J 1—K 2sin 2 半2通过进一步计算可得T 仔1 [1 (1* (jκ-(1 3 5 (2n」)*「•]Vg 22江42^4><6汇…Tne 二 Sin 2 2 两边同时积分可得701故T =2.2^0 ■Sin Si n —2 21.5M 为地球的质量;可知,地球表面的重力加速度 g , X 为取地心到无限远的广义坐标,【I :二 Ill- 「,②联立①,②可得:岂 仃;,M 为地球的质量;③解:如图,在半径是R 的时候,由万有引力公式, 对表面的一点的万有引力为PMm* 一 ,①R a当半径增加,R2=R+jl ,此时总质量不变,仍为M,此时表面的重力加速度1可求:由④得:对⑥式进行通分、整理后得:AGM ΔR 3+2ΔRR8 =R 7 CR+ΔR)2A2ΔR R 2AR⑧则当半径改变J N 时,表面的重力加速度的变化为:A2ΔRR2AR =S —。

理论力学 第二版 (金尚年 马永利 著) 高等教育出版社 课后答案 1-4章答案

理论力学 第二版 (金尚年 马永利 著) 高等教育出版社 课后答案 1-4章答案

G F

w.
θ
cos − − cos
kh
运动方程为 ̇ 2 Fr 0 ̈ − r mr ̈ 2r ̇ F ̇ mr 由径向方程 ̇ ̈ r 2 r 方程的解为 r Ae t Be −t 带入初始条件
da
x
R2 z2 r2

2.9 体系的动能为

̇ sin cos 0 ̈ sin 2 2mr 2 ̇ mr 2


∂L ∂
ww
w.
kh
da
w.
co
m
5
d ∂L − ∂L ̇ dt ∂ ∂ 2 ̈ ̇ 0 ̇ mr 2mrr 2.11 体系的动能为 T 势能为 V mgz mg R 2p 该体系只有一个自由度,取R为广义坐标,拉各朗日函数为 ̇2 2 ̇ 2 R22 R L m R R − mg R 2 2p p2 相应的拉各朗日方程为 d ∂L − ∂L ̇ dt ∂R ∂R ̇2 mg ̈ 1 R 2 2m R mR R − mR 2 2 2p p p2 ̇ 0,R ̈ 0则 对于平衡点R g R 2p 2 m R ̇ 2 R2 ̇2 z ̇ 2 2 ̇2 2 m R ̇ 2 R22 R R 2 p2


答 案

Chap3
7
ww
w.
kh
da
w.
co
m
3.1 tanh

L r2
dr
a r2
2mE
L r2

L r2
dr
2ma−L 2 r2
E

金尚年版理论力学第二版答案

金尚年版理论力学第二版答案
R
v E v E = 0 er R
v v 和均匀磁场 B = B 0 k
v &v v v & & v = R e r + R ϕ eϕ + z e z
qE && & & mR − mRϕ 2 − 0 − qB0 Rϕ = 0 R 化简得: d qB & (mR2ϕ + 0 R2 ) = 0 2 dt d & dt (mz) = 0
4R 2 & 2 m &2 mg 2 2 &2 ( R + R θ + 2 R )− R L = T −V = 2 a a 代入完整保守体系的拉格朗日方程,并化简得
4 R 2 && 8 R & 2 2 gR 1 + R + 2 R − R θ& 2 + = 0 2 a a a && && R θ + 2θ R = 0
M R o'
m 2 & & T = ( r + r 2ϕ 2 ) 2
由几何关系:

V =0
θ ωt
o
x
r = cos θ , ϕ = θ + ω t 2R m L = T −V = ( − 2 R sin θ ⋅ θ& ) 2 + (θ& + ω ) 2 ⋅ ( 2 R cos θ ) 2 2 = 2 mR 2 ⋅ (θ& 2 + 2ω θ& cos 2 θ + ω 2 cos 2 θ )
α
2.7 用拉格朗日方程写出习题1.21的运动微分方程 解:建立柱坐标系,取R,ϕ 为广义坐标

高等教育出版社,金尚年,马永利编著的理论力学课后习题答案

高等教育出版社,金尚年,马永利编著的理论力学课后习题答案

高等教育出版社,金尚年,马永利编著的理论力学课后习题答案 4.10解:如图所示,圆c 或圆c'为刚体的本体极迹,圆o'为刚体的空间极迹。

令w'为c 或c' 绕o'转动的角速度,由题意可知:12212'0121'112')(ρρρρρρρρρρρ±==±==±w w v w w w w 则:得:4.15解:根据机械能守恒定理可知:)sin (sin sin 2sin 2212θααθ-==+gl v mg lmg l mv 杆水平方向的速度为:)sin (sin sin sin θαθθ-==gl v v x当杆与墙分离:0=x v即:0)sin (sin cos )sin (sin cos sin 21=-+--=θαθθαθθgl gl gl v dt d x得:θαsin 23sin = 即:)sin 32arcsin(αθ=4.19如图,该体系中只有一个自由度,取任意位置时棒中点与O 连线与竖直线的夹角θ为广义坐标。

其中设棒的质量为m ,圆周的半径为r ,则棒长为r 3。

另取O 点为重力势能零点。

则对棒θθcos 21212r mg I L o += ,()2221331⎪⎭⎫⎝⎛+=r m r m I o 为棒对O 点的转动惯量。

代入0=∂∂-∂∂θθL L dt d ,得0sin 214522=+θθmgr mr 用θθ=sin 代替,得方程为052=+θθrgrg52=ω,而对于单摆,lg =ω 所以对比得25r l =即等值单摆摆长为25r l =4.20解:如图:设球的半径为R ,设经过时间t 后,会达到如图所示状态,所有参量如图所示。

对其运用牛顿力学方法,有mgRI FR mgma a m F μαμ====''=252mR I =tatv t a v v αω=='=-110同时有对于纯滚动,有 ugtRgt v m m gtv v 25110=='-=ωμμ解上述方程,得代入会得所以有4.23求均匀圆锥体底面圆周上一点的惯量椭球方程。

理论力学(金尚年-XXX编著)课后习题答案详解

理论力学(金尚年-XXX编著)课后习题答案详解

理论力学(金尚年-XXX编著)课后习题答案详解高等教育出版社的《理论力学课后题答案》一书中,第一章包含了以下三个问题的解答:1.2 题目要求写出在铅直平面内的光滑摆线,并分方程。

解答中使用了微积分和力学原理,得出了运动微分方程。

最后证明了质点在平衡位置附近作振动时,振动周期与振幅无关。

1.3 题目要求证明单摆运动的振动周期与摆长无关。

解答中使用了微积分和力学原理,得出了运动微分方程。

最后通过进一步计算,得出了单摆运动的振动周期公式。

1.5 题目要求使用拉格朗日方程计算质点的运动。

解答中使用了拉格朗日方程,并通过进一步计算得出了质点的运动轨迹。

如图,在半径为R时,地球表面的重力加速度可以由万有引力公式求得:g=\frac{GM}{R^2}$$其中M为地球的质量。

根据广义相对论,地球表面的重力加速度还可以表示为:g=\frac{GM}{R^2}\left(1-\frac{2GM}{c^2R}\right)$$其中c为光速。

当半径增加到R+ΔR时,总质量仍为M,根据XXX展开,可以得到:frac{1}{(R+\Delta R)^2}=\frac{1}{R^2}-\frac{2\DeltaR}{R^3}+\mathcal{O}(\Delta R^2)$$代入上式可得:g'=\frac{GM}{R^2}\left(1-\frac{2GM}{c^2R}\right)\left(1+\frac{2\Delta R}{R}\right)$$ 化简后得:g'=g-\frac{2g\Delta R}{R}$$因此,当半径改变时,表面的重力加速度的变化为:Delta g=-\frac{2g\Delta R}{R}$$2.在平面极坐标系下,设质点的加速度的切向分量和法向分量都是常数,即$a_t=k_1$,$a_n=k_2$(其中$k_1$和$k_2$为常数)。

根据牛顿第二定律,可以得到质点的运动方程:r\ddot{\theta}+2\dot{r}\dot{\theta}=k_2$$ddot{r}-r\dot{\theta}^2=k_1$$其中$r$为极径,$\theta$为极角。

理论力学第五章习题答案

理论力学第五章习题答案

& = ak sin kt y

积分得 s = 4a (1 − cos
kt ) 2
5.3
根据下列点在极坐标系中的轨迹方程
试写出点的直角坐标轨迹方程
式中 p
e 均为正的常数
1
ρ=
p 1 + e cos ϕ p 1 − e cos ϕ p 1 − cos ϕ
e <1
2
ρ=
e >1
3 解
ρ=
直角坐标与极坐标有以下关系:
与 前 题 相 比 仅
e 差 一 符 号
→ (1 − e 2 ) x 2 + y 2 − 2 pex − p 2 = 0
3
ρ=பைடு நூலகம்
p 1 − cos ϕ
与 前 题 相 比
只 要 令 前 题 中 e =1 即 可
→ y 2 − 2 px − p 2 = 0
5.4 加速度 解
试以直角坐标及其导数表示 x = a ( kt − sin kt ) 切向加速度 法向加速度以及轨迹的曲率半径
sin γ = Rω / v
则由式 (**) 得 ρ = v / Rω = R / sin γ
2
2
2
5.8
如图所示
飞机 P 在任一时刻的经度为 ψ (t )
纬度为 λ (t )
高度为 h(t )
其在
地心坐标系中的球坐标运动方程为
r = R + h(t )
其中 R 是地球半径
θ = π / 2 − λ (t )
5.1 解
试写出点的柱坐标与球坐标之间的关系式 质点柱坐标系为 ρ
ϕ
z 球坐标为 r θ
ϕ
两者的 ϕ 坐标是相同的

理论力学课后答案第五章

理论力学课后答案第五章

第五章思考题5、1虚功原理中的“虚功”二字作何解释?用虚功原理理解平衡问题,有何优点与缺点? 5、2 为什么在拉格朗日方程中,a θ不包含约束反作用力?又广义坐标与广义力的含义如何?我们根据什么关系由一个量的量纲定出另一个量的量纲?5、3广义动量a p 与广义速度a q &就是不就是只相差一个乘数m ?为什么a p 比a q &更富有意义?5、4既然aq T &∂∂就是广义动量,那么根据动量定理,⎪⎪⎭⎫ ⎝⎛∂∂αq T dt d &就是否应等于广义力a θ?为什么在拉格朗日方程()14.3.5式中多出了a q T ∂∂项?您能说出它的物理意义与所代表的物理量不?5、5为什么在拉格朗日方程只适用于完整系?如为不完整系,能否由式()13.3.5得出式()14.3.5?5、6平衡位置附近的小振动的性质,由什么来决定?为什么22s 个常数只有2s 个就是独立的?5、7什么叫简正坐标?怎样去找?它的数目与力学体系的自由度之间有何关系又每一简正坐标将作怎样的运动?5、8多自由度力学体系如果还有阻尼力,那么它们在平衡位置附近的运动与无阻尼时有何不同?能否列出它们的微分方程?5、9 dL 与L d 有何区别?a q L ∂∂与aq L ∂∂有何区别? 5、10哈密顿正则方程能适用于不完整系不?为什么?能适用于非保守系不?为什么? 5、11哈密顿函数在什么情况下就是整数?在什么情况下就是总能量?试祥加讨论,有无就是总能量而不为常数的情况?5、12何谓泊松括号与泊松定理?泊松定理在实际上的功用如何?5、13哈密顿原理就是用什么方法运动规律的?为什么变分符号δ可置于积分号内也可移到积分号外?又全变分符号∆能否这样?5、14正则变换的目的及功用何在?又正则变换的关键何在?5、15哈密顿-雅可比理论的目的何在?试简述次理论解题时所应用的步骤、5、16正则方程()15.5.5与()10.10.5及()11.10.5之间关系如何?我们能否用一正则变换由前者得出后者?5、17在研究机械运动的力学中,刘维定理能否发挥作用?何故?5、18分析力学学完后,请把本章中的方程与原理与牛顿运动定律相比较,并加以评价、第五章思考题解答5、1 答:作、用于质点上的力在任意虚位移中做的功即为虚功,而虚位移就是假想的、符合约束的、无限小的、即时位置变更,故虚功也就是假想的、符合约束的、无限小的、且与过程无关的功,它与真实的功完全就是两回事、从∑⋅=ii i r F W ρρδδ可知:虚功与选用的坐标系无关,这正就是虚功与过程无关的反映;虚功对各虚位移中的功就是线性迭加,虚功对应于虚位移的一次变分、在虚功的计算中应注意:在任意虚过程中假定隔离保持不变,这就是虚位移无限小性的结果、虚功原理给出受约束质点系的平衡条件,比静力学给出的刚体平衡条件有更普遍的意义;再者,考虑到非惯性系中惯性力的虚功,利用虚功原理还可解决动力学问题,这就是刚体力学的平衡条件无法比拟的;另外,利用虚功原理解理想约束下的质点系的平衡问题时,由于约束反力自动消去,可简便地球的平衡条件;最后又有广义坐标与广义力的引入得到广义虚位移原理,使之在非纯力学体系也能应用,增加了其普适性及使用过程中的灵活性、由于虚功方程中不含约束反力、故不能求出约束反力,这就是虚功原理的缺点、但利用虚功原理并不就是不能求出约束反力,一般如下两种方法:当刚体受到的主动力为已知时,解除某约束或某一方向的约束代之以约束反力;再者,利用拉格朗日方程未定乘数法,景观比较麻烦,但能同时求出平衡条件与约束反力、5.2 答 因拉格朗日方程就是从虚功原理推出的,而徐公原理只适用于具有理想约束的力学体系虚功方程中不含约束反力,故拉格朗日方程也只适用于具有理想约束下的力学体系,αθ不含约束力;再者拉格朗日方程就是从力学体系动能改变的观点讨论体系的运动,而约束反作用力不能改变体系的动能,故αθ不含约束反作用力,最后,几何约束下的力学体系其广义坐标数等于体系的自由度数,而几何约束限制力学体系的自由运动,使其自由度减小,这表明约束反作用力不对应有独立的广义坐标,故αθ不含约束反作用力、这里讨论的就是完整系的拉格朗日方程,对受有几何约束的力学体系既非完整系,则必须借助拉格朗日未定乘数法对拉格朗日方程进行修正、广义坐标市确定质点或质点系完整的独立坐标,它不一定就是长度,可以就是角度或其她物理量,如面积、体积、电极化强度、磁化强度等、显然广义坐标不一定就是长度的量纲、在完整约束下,广义坐标数等于力学体系的自由度数;广义力明威力实际上不一定有力的量纲可以就是力也可以就是力矩或其她物理量,如压强、场强等等,广义力还可以理解为;若让广义力对应的广义坐标作单位值的改变,且其余广义坐标不变,则广义力的数值等于外力的功由W q r F s i ni i δδθδααα==⋅∑∑==11ρρ知,ααδθq 有功的量纲,据此关系已知其中一个量的量纲则可得到另一个量的量纲、若αq 就是长度,则αθ一定就是力,若αθ就是力矩,则αq 一定就是角度,若αq 就是体积,则αθ一定就是压强等、5.3 答 αp 与αq &不一定只相差一个常数m ,这要由问题的性质、坐标系的选取形式及广义坐标的选用而定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档