用卷积法证明中心极限定理
中心极限定理和蒂莫夫拉普拉斯中心极限定理

中心极限定理是概率论中的一个重要定理,它描述了当从一个总体中随机抽取大量样本时,样本均值的分布会趋向于一个正态分布。
而蒂莫夫拉普拉斯中心极限定理是中心极限定理的一个特殊情况,它对二项分布和泊松分布进行了精确的描述和推导。
本文将详细介绍中心极限定理和蒂莫夫拉普拉斯中心极限定理的基本概念、证明过程和实际应用。
一、中心极限定理的基本概念中心极限定理是概率论中的一个重要定理,它指出对于任意具有有限方差的总体,当从总体中抽取大量的样本进行均值的抽样分布,这些样本均值将会近似服从正态分布。
在具体说明之前,我们先来解释一下什么是总体、样本和样本均值。
总体是指我们研究的对象的整体,例如全国人口的身高数据或者某种产品的质量数据等;而样本则是从总体中抽取出的一部分数据;而样本均值就是这些样本数据的平均值。
在中心极限定理中,我们关心的是当从总体中抽取大量的样本时,这些样本均值的分布情况。
中心极限定理的核心内容可以总结为:当样本量足够大时,不论总体的分布形态是什么样子,抽样均值的分布都近似服从正态分布。
二、中心极限定理的证明过程中心极限定理有多种不同的证明方法,其中最著名的是林德伯格-列维中心极限定理和莫亚-李维中心极限定理。
林德伯格-列维中心极限定理是以两数相加得到一数为基本原理,从而证明了中心极限定理的一般形式;而莫亚-李维中心极限定理则是以特征函数的相乘得到一函数为基本原理,从而得出了中心极限定理的另一种形式。
无论哪种证明方法,它们的核心思想都是利用数学推导和统计学的方法,通过对样本均值进行适当的转换和处理,最终将证明样本均值的分布近似服从正态分布。
这些证明方法都需要一定的数学基础和技巧,对概率论和数理统计有一定的了解才能够深入理解其证明过程。
三、中心极限定理的实际应用中心极限定理在实际应用中有着广泛的用途。
例如在工程、经济、医学、环境科学等领域中,我们经常需要对一定的数据进行抽样统计,然后利用样本均值来推断总体的特征值,比如总体的均值、方差等。
中心极限定理

中心极限定理第一篇:中心极限定理中心极限定理中心极限定理(Central Limit Theorems)什么是中心极限定理大数定律揭示了大量随机变量的平均结果,但没有涉及到随机变量的分布的问题。
而中心极限定理说明的是在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。
中心极限定理是概率论中最著名的结果之一。
它提出,大量的独立随机变量之和具有近似于正态的分布。
因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。
中心极限定理的表现形式中心极限定理也有若干个表现形式,这里仅介绍其中四个常用定理:(一)辛钦中心极限定理设随机变量相互独立,服从同一分布且有有限的数学期望a和方差σ2,则随机变量,在n无限增大时,服从参数为a和的正态分布即n→∞时,将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。
(二)德莫佛——拉普拉斯中心极限定理设μn是n次独立试验中事件A发生的次数,事件A在每次试验中发生的概率为P,则当n无限大时,频率设μn / n趋于服从参数为的正态分布。
即:该定理是辛钦中心极限定理的特例。
在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。
(三)李亚普洛夫中心极限定理设差:是一个相互独立的随机变量序列,它们具有有限的数学期望和方。
记,如果能选择这一个正数δ>0,使当n→∞时,则对任意的x有:该定理的含义是:如果一个量是由大量相互独立的随机因素影响所造成的,而每一个别因素在总影响中所起的作用不很大,则这个量服从或近似服从正态分布。
中心极限定理的内容

中心极限定理的内容一、引言中心极限定理是概率论中的一个重要定理,它描述了大量独立随机变量之和的分布情况。
该定理在统计学、自然科学、社会科学等领域都有广泛应用。
本文将对中心极限定理进行全面详细的介绍。
二、定义1. 独立随机变量:若随机变量X1,X2,...,Xn相互独立,则称它们是独立随机变量。
2. 标准正态分布:若随机变量Z服从期望为0,方差为1的正态分布,则称Z服从标准正态分布。
3. 中心极限定理:设X1,X2,...,Xn是独立同分布的随机变量,且具有期望E(Xi)=μ和方差Var(Xi)=σ^2(σ>0),则当n充分大时,其样本均值(Xi的平均数)服从正态分布N(μ,σ^2/n)近似成立。
三、证明中心极限定理有多种证明方法,其中比较常用的是利用特征函数进行证明。
以下是一种比较简单易懂的证明方法:假设X1,X2,...,Xn是独立同分布的随机变量,其期望为μ,方差为σ^2。
设S_n=X1+X2+...+Xn,则其期望为E(S_n)=nμ,方差为Var(S_n)=nσ^2。
我们定义随机变量Y_n=(S_n-nμ)/(σ√n),则有:E(Y_n)=E[(S_n-nμ)/(σ√n)]=0Var(Y_n)=Var[(S_n-nμ)/(σ√n)]=1因此,Y_n服从标准正态分布。
即:P(Y_n≤x)=(1/√(2π))*∫(-∞)^x exp(-t^2/2)dt将Y_n表示成X1,X2,...,Xn的函数:Y_n=(X1+X2+...+Xn-nμ)/(σ√n)则有:P(Y_n≤x)=P[(X1+X2+...+Xn-nμ)/(σ√n)≤x]=P[(Xi-μ)/σ≤(x√n)] (i=1,2,...,n)由于Xi是独立同分布的随机变量,因此它们的特征函数相同。
设它们的特征函数为φ(t),则有:φ(t)=E(exp(itXi))考虑到独立性,我们可以得到:φ(t)^n=E[exp(it(X1+X2+...+Xn))]=E[exp(itX1)]*E[exp(itX2)]*...*E[exp(itXn)]=[φ(t)]^n因此,有:φ(t)=[φ(t)]^n即:φ(t)=exp(inLog[φ(t)])当n充分大时,由于对数函数的泰勒展开式中高阶项的系数比较小,因此可以将其截断为一阶项,得到:Log[φ(t)]=in(1+itμ-σ^2t^2/2)+o(1)其中o(1)表示高阶项。
中心极限定理的证明

林德伯格中心极限定理的证明
中心极限定理:概率论中关于独立的随机变量序列()1,2,,
1,,i i n n ξ=- 的部分和
1
n
i
i ξ
=∑的分布渐近于正态分布的一类定理,是概率论中最重要的一类定理,
有广泛的实际应用背景,常见的是关于独立同分布随机变量之和的中心极限定理,即林德伯格—列维定理。
林德伯格—列维定理: 设()1,2,,
1,,i i n n ξ=- 为独立同分布的随机变
机变量n η依分布收敛于服从标准正态分布的随机变量X ,即
()lim 0 ,1.L
n n X N η→∞
−−→ 随机变量
引理(—特征函数的定义及性质)
随机变量X 的特征函数()()iXt
X t E e
ϕ=;
独立随机变量和的特征函数等于每个随机变量特征函数的乘积。
证明:用特征函数来证明。
令=i i λξμ-,于是有:i λ独立同分布,且2
()0,() i i E D λλσ==。
设=i i
λξμ-的特征函数为()t ϕ(()t ϕ正态随机变量的概率密度函数),则n η的特征函数为
开。
正好是服从标准正态分布()0,1N 的随机变量X 的特征函数,即n η的特征函数收敛于标准正态分布随机变量的特征函数,所以由特征函数理论可得知,n η的分布函数()n F η弱收敛于(依分布收敛于)标准正态分布随机变量X 的分布函数()x Φ,即
n
ηL
−−→随机变量() 0,1. X N
证毕。
中心极限定理课件

期值来检验总体的假设。
在金融数学中的应用
1 2
资产收益率分估投资组合的风险。
风险评估
中心极限定理可以用来评估投资组合的风险,通 过计算资产收益率的方差和相关性。
3
资本资产定价模型(CAPM)
中心极限定理是资本资产定价模型的基础,用于 评估资产的预期收益率和风险。
详细描述
当独立同分布的随机变量数量趋于无 穷时,这些随机变量的平均值的分布 趋近于正态分布,不论这些随机变量 的分布本身是什么。
弱收敛和依概率收敛
总结词
这是中心极限定理的两种收敛方式,弱收敛强调的是分布函数之间的收敛,而依概率收敛则关注事件发生的概率 。
详细描述
弱收敛是指当独立同分布的随机变量数量趋于无穷时,这些随机变量的平均值的分布函数趋近于正态分布函数。 依概率收敛则是指当独立同分布的随机变量数量趋于无穷时,这些随机变量的平均值以概率1趋近于某个常数。
05 中心极限定理的扩展和展 望
中心极限定理的推广和改进
推广到多元分布
将中心极限定理从一元分布推广到多元分布,研究多维随机变量 的分布性质。
考虑非独立随机变量
研究非独立随机变量的中心极限定理,探索它们之间的依赖关系对 极限分布的影响。
考虑不同收敛速度
研究不同收敛速度下的中心极限定理,以更准确地描述随机变量的 分布特性。
资产配置。
人口统计学
中心极限定理用于研究人口增长、 人口普查数据的分布等,帮助科学 家了解人口变化的规律。
生物学和医学
中心极限定理用于研究生物变异、 遗传基因频率的变化以及医学中的 临床试验和流行病学调查等。
02 中心极限定理的数学表述
独立同分布的中心极限定理
总结词
概率论与数理统计 6.2 中心极限定理

则X~B(n,0.005), 近似地,X ~ N(0.005n,0.005 0.995n)
PX 5 1 PX 5
1
P
X 0.005n
5 0.005n
0.005 0.995n 0.005 0.995n
1
5 0.005n 0.005 0.995n
0.005n 5
0.005
近似地,X ~ N(10000 0.005,10000 0.0050.995)
即 X ~ N(50,49.75), 设死亡人数超过k人的概率小于0.003,
PX k 1 PX k
1
P
X
50
49.75
k 50 49.75
1
k 50 49.75
0.003
k 50 49.75
( x)
2
n
Xi n
定理表明,n足够大时,r.v. i1
近似服从N (0,1),
n
注意到E n X i n, D n X i n 2 ,
i1
i1
n
从而 X i近似服从 N (n , n 2 ). i 1
中心极限定理是概率论中最重要的一类极限定理,此定 理告诉我们,在一定条件下,相互独立的随机变量之和在个 数很多时近似服从正态分布,揭示了为什么正态分布是最
P( i1 n/3
3n) 2( 3n ) 1
(2)当n 36, 1时, 所求概率为
6
P(
1 36
36 i 1
Xi
a
1) 2(1.732) 1 0.92 6
(3)要求n, 使得
P(
1 n
n i 1
Xi
a
) 2(
3n ) 1 0.95
(完整版)8-第五章大数定律和中心极限定理解析

(完整版)8-第五章⼤数定律和中⼼极限定理解析第五章⼤数定律和中⼼极限定理⼤数定律和中⼼极限定理是概率论中两类极限定理的统称,前者是从理论上证明随机现象的“频率稳定性”,并进⼀步推⼴到“算术平均值法则”;⽽后者证明了独⽴随机变量标准化和的极限分布是正态分布或近似正态分布问题,这两类极限定理揭⽰了随机现象的重要统计规律,在理论和应⽤上都有很重要的意义。
§5.1 ⼤数定律设ΛΛ,,,,21n X X X 是互相独⽴的⼀列随机变量,每个随机变量取值于⼆元集合{0,1},并有相同的概率分布函数()()0,1,1j j P X q P X p p q ====+=易计算它们的数学期望和⽅差为 (),()j j E X p D X pq ==如果取这些j X 的部分和 n n X X X S +++=Λ21并考虑它们的平均值∑==n j j n n Xn S 1/)(/,易知它的数学期望和⽅差为;nnS S pq E p D n n n == ? ?利⽤定理4.2.13给出的切⽐雪夫不等式可知:对任何⼀个正数t 有2n S pq P p t n t n-≥≤ ? 令∞→n ,有2lim lim 0n n n S pq P p t n t n→∞→∞??-≥≤= 即lim 0n n S P p t n →∞??-≥=(5.1.1) 可见当n 很⼤时,部分和的平均值/n S n 与p 相距超过任何⼀个数0>t 的概率都很⼩,⽽当∞→n 时, 这个概率趋于0。
(5.1.1)式的结果称为弱⼤数定律,也称伯努利⼤数定律, 因为这个定律是伯努利在1713年⾸先证明的,是从理论上证明随机现象的频率具有稳定性的第⼀个定律。
注意式(5.1.1)等价于lim 1n n S P p t n →∞??-≤=(5.1.2) 把它完整地叙述如以下定理:定理5.1.1(伯努利⼤数定律)设ΛΛ,,,,21n X X X 是互相独⽴的取值于⼆元集合{0,1}的⼀列随机变量,并有相同的概率分布函数()()0,1,1j j P X q P X p p q ====+=⼜设 n n X X X S +++=Λ21则 lim 0n n S P p t n →∞??-≥=或等价地lim 1n n S P p t n →∞??-≤=。
中心极限定理(27页PPT)

§5.2 中心极限定理
一. 中心极限定理的定义与意义
定义5.2.1 设随机变量X, X1, X2, …的分布函 数分别为F( x ),F1( x ), F2( x ), …, 若极限式
lim
n
Fn
(
x)
F
(
x
)
在F( x )的每一个连续点上都成立,称随机变 量序列{Xk}, k = 1,2,…依分布收敛于X .
中心极限定理
二. 中心极限定理
定理5.2.1(林德伯格—列维定理、独立
同分布中心极限定理)
设{ Xk }, k =1,2…为相互独立, 具有相同分
布的随机变量序列, 且E( Xk ) = m, D( Xk ) = s2,
则{ Xk }满足中心极限定理,即 有
n
lim
P
k
1
X
k
nm
x
Φ( x)
100
X Xi
i 1
电子科技大学
中心极限定理
并且随机变量 X1, X2, ···, X100 独立同分布,
具有分布律:
P{ X i
k}
1 (2)k1, 33
k 1,2,
因 1
E( X i ) 1 3, 3
2
D( X i )
3
(
1 3
)2
6
i = 1, 2, ···, 100;
根据林德伯格—列维定理, 所求概率
电子科技大学
中心极限定理
100
P{280 Xi 300}
i 1
(0) (0.8165)
0.5 1 (0.8165) 0.293
电子科技大学
中心极限定理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
那么对于任何t有:
用换元法: , ;那么
可见求出 便可以得到 。
如果大量这样的随机分布卷积是不是真的逼近高斯分布呢?
事实上在“信号与系统”这门课中通过Matlab对信号进行卷积的实验可以直观地告诉我们答案是肯定的。我们将门函数信号看作某个随机变量的分布,当这样两个门函数卷积时,得出一个三角波函数(如下图),这个我们也可以通过计算得出,而三个门函数相卷积时,一个不太容易预见的情况出现了,图中竟然出现一个钟形函数。经过实验,当足够多的相同门函数卷积时,最终的曲线会无限逼近高斯函数曲线。
"我给你一个数学函数f,时间域无限的输入信号在f域有限的。时间域波形混乱的输入信号在f域是整齐的容易看清楚的。这样你就可以计算了"
"同时,时间域的卷积在f域是简单的相乘关系,我可以证明给你看看"
"计算完有限的程序以后,取f(-1)反变换回时间域,你就得到了一个输出波形,剩下的就是你的数学计算了!"
经理拿来了一个小的电子设备,接到示波器上面,对张三说: "看,这个小设备产生的波形根本没法用一个简单的函数来说明,而且,它连续不断的发出信号!不过幸好,这个连续信号是每隔一段时间就重复一次的。张三,你来测试以下,连到我们的设备上,会产生什么输出波形!"
张三摆摆手:"输入信号是无限时长的,难道我要测试无限长的时间才能得到一个稳定的,重复的波形输出吗?"
上帝接着说:"给产品一个脉冲信号,能量是1焦耳(注1),输出的波形图画出来!"
张三照办了,"然后呢?"
上帝又说,"对于某个输入波形,你想象把它微分成无数个小的脉冲,输入给产品,叠加出来的结果就是你的输出波形。你可以想象这些小脉冲排着队进入你的产品,每个产生一个小的输出,你画出时序图的时候,输入信号的波形好像是反过来进入系统的。"
用卷积法证明中心极限定理
郝越B10050724(Q3-32)
naotilus9112@Dec, 26th,2011
中心极限定理是概率论中十分重要的一个定理,它揭示了大量独立同概率分布的随机变量之和(或平均值)逼近正太分布的规律,具有非常高的理论和实用价值。然而在高等教育出版社的《概率论与数理统计教程》这本教材中的227页举例解释了通过卷积公式导出中心极限定理的来历,然而书中指出“由于卷积计算相当复杂,无法写出当随机变量数趋于无限时其和或平均值的概率分布函数形式”,这给证明带来了困难。本文将信号与系统中的观点,通过Matlab实验给出直觉,并使用傅里叶变换的方法“化积为乘”求出卷积,以证明该定理。
讲一个故事:
张三刚刚应聘到了一个电子产品公司做测试人员,他没有学过"信号与系统"这门课程。一天,他拿到了一个产品,开发人员告诉他,产品有一个输入端,有一个输出端,有限的输入信号只会产生有限的输出。
然后,经理让张三测试当输入sin(t)(t<1秒)信号的时候(有信号发生器),该产品输出什么样的波形。张三照做了,花了一个波形图。
张三领悟了:"哦,输出的结果就积分出来啦!感谢上帝。这个方法叫什么名字呢?"
上帝说:"叫卷积!"
从此,张三的工作轻松多了。每次经理让他测试一些信号的输出结果,张三都只需要在A4纸上做微积分就是提交任务了!
----------------------------------------
张三愉快地工作着,直到有一天,平静的生活被打破。
有人认为门函数的傅里叶变换是Sa函数,并且Sa函数本身就形似高斯函数虚线,而高斯函数有一个奇怪的性质就是其在时域和频域中的形状是相同的,那么,是不是上述情况只是门函数的特例?事实上足够多的随机信号连续卷积,最终也会无线逼近高斯函数。
可以猜想,任何信号无限自卷积,就可以得到高斯函数信号。通过严格的数学证明也可以得到相同的结论。当计算连续卷积时,信号与系统中的理论告诉我们,运用傅里叶变换,在频域计算卷积将会相对容易。
经理怒了:"反正你给我搞定,否则炒鱿鱼!"
张三心想:"这次输入信号连公式都给出出来,一个很混乱的波形;时间又是无限长的,卷积也不行了,怎么办?"
及时地,上帝又出现了:"把混乱的时间域信号映射到另外一个数学域上面,计算完成以后再映射回来"
"宇宙的每一个原子都在旋转和震荡,你可以把时间信号看成若干个震荡叠加的效果,也就是若干个可以确定的,有固定频率特性的东西。(注2)"
"很好!"经理说。然后经理给了张三一叠A4纸: "这里有几千种信号,都用公式说明了,输入信号的持续时间也是确定的。你分别测试以下我们产品的输出波形是什么吧!"
这下张三懵了,他在心理想"上帝,帮帮我把,我怎么画出这些波形图呢?"
于是上帝出现了: "张三,你只要做一次测试,就能用数学的方法,画出所有输入波形对应的输出波形"。
中心极限定理(Central LimitTheorem)数学定义如下:
设 是独立同分布(identicallyindependentdistributed, IID)的随机变量序列,且 , 。记
则对任意实数y,有
卷积公式如下
在频域
为证明该定理,首先要说明随机变量和的概率密度分布和卷积的关系。在概率论中,我们知道两个随机变量和的分布是其各自概率分布的卷积。证明方法也很简单:
这里给出证明方法:
为了便于证明首先对问题进行归一简化,设 是n个独立随机变量,他们的概率密度同为P(x)。
则其均值为:
标准差为:
另外:
记
, 为其概率密度
则有
要证明中心极限定理即证明
当
对 傅里叶变换得变换对 ,则由
得
而
对 泰勒展开,得
由归一化条件则其均值为 和
最终得
当 ,所以
对上式求傅里叶反变换,得当 时
结论:在证明中可以发现,傅里叶变换将函数投影(或者说分解)到正交函数系上的功能为运算带来了极大的便利。因此在工程数学计算中,我们常常使用傅里叶变换或者拉普拉斯变换解决一些涉及到卷积、微分方程的计算问题。而卷积具有促使信号平滑化的特点,我们可以据此设计信号滤波器,达到降噪处理的目的。
附文:
在写完这篇文章之后,我发现我只是在讨论信号与系统中的数学方法,并没有什么深层次的东西。我在网上找了一篇文章,能够深层次的揭示信号与系统的设计哲学,不妨拿来分享一下。以下是全文和我的一些理解批注。