2021届山东省新高考高考模拟冲关押题卷(四)数学【解析版】
2021届高三新高考模拟数学试题(解析版)

2021届高三新高考模拟英语试题第一部分阅读(共两节, 满分50分)第一节(共15小题;每小题2. 5分, 满分37. 5分)阅读下列短文, 从每题所给的A、B、C、D四个选项中选出最佳选项。
ABest Cookbooks for KidsBest Overall: Cooking Class: 57 Fun Recipes Kids Will Love to Make (and Eat!)◎Buy on Amazon◎Buy on WalmartWith the help of this best-selling cookbook, your kids will become masters in the kitchen! Cooking Class: 57 Fun Recipes Kids Will Love to Make (and Eat ! )is ideal for children aged 6 to 12, as it includes detailed explanations of basic cooking techniques, plus more than 50 kid-friendly recipes. This award-winning cookbook is a comprehensive guide for cooking novices, explaining skills and recipes in kid-friendly language.Best for Basic Learner: Better Homes and Gardens New Junior Cookbook◎Buy on Amazon◎Buy on WalmartIf you want to teach your kids cooking terms, tools and techniques, you need the Better Homes and Gardens New Junior Cookbook.This 128-page cookbook has more than 65 kid-friendlyrecipes, and it’s perfect for introducing kids aged 5 to 12 to the wonderful world of cooking. It includes a detailed section on cooking terms, kitchen safety, tools (including pictures), and healthy cooking. It also addresses how to measure ingredients and how to read recipes.Best Classic: Betty Crocker’s Cookbook for Boys and Girls◎Buy on Amazon◎Buy on Target◎Buy on WalmartThe first edition of this classic kids’ cookbook was published more than 60 years ago, and the Betty Crocker’s Cookbook for Boys and Girls is still a favorite for kids and adults alike. The recipes are ideal for children aged 8 to 12. This cookbook is an authentic reproduction of the original 1957 edition, which many baby boomers learned from themselves! Many older buyers write that they had the same cookbook growing up and love sharing the classic recipes with the next generation.Best Vegetarian: The Help Yourself Cookbook for Kids◎Buy on Amazon◎Buy on WalmartThis vegan cookbook is best for children aged 6 to 12, and its aim is to teach kids about healthy eating by involving them in the cooking process. The book features 60 plant-based recipes for you to make with your family, including meals, snacks, drinks and desserts.1. Which cookbook can be purchased on Target?A. Cooking Class: 57 Fun Recipes Kids Will Love to Make (and Eat!).B. Better Homes and Gardens New Junior Cookbook.C. Betty Crocker’s Cookbook for Boys and Girls.D. The Help Yourself Cookbook for Kids.2. What can we know about Better Homes and Gardens New Junior Cookbook?A. It is an award-winning cookbook.B. It teaches the kids about kitchen safety.C. It includes 60 plant-based recipes.D. It was published more than 60 years ago.3. What is the similarity between Cooking Class: 57 Fun Recipes Kids Will Love to Make (and Eat!) and The Help Yourself Cookbook for Kids?A. They are both designed for kids aged 6-12.B. They have recipes based on plants.C. They have recipes for whatever you want.D. They explain how to measure ingredients.『语篇解读』本文主要介绍了四本适合孩子们的食谱。
押第1题 集合(新高考)(解析版)--2023年新高考数学临考题号押题

押新高考卷1题集合考点3年考题考情分析集合2022年新高考Ⅰ卷第1题2022年新高考Ⅱ卷第1题2021年新高考Ⅰ卷第1题2021年新高考Ⅱ卷第2题2020年新高考Ⅰ卷第1题2020年新高考Ⅱ卷第1题高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的新高考试题,均考查集合间的交集、并集和补集的基本运算.可以预测2023年新高考命题方向将继续围绕集合间的基本关系展开命题.1.集合有n 个元素,子集有n 2个,真子集有12-n 个,非空真子集个数为22n -个.2.{}B x A x x B A ∈∈=且 ,{}B x A x x B A ∈∈=或 3.{}Ax U x x A C U ∉∈=且1.(2022·新高考Ⅰ卷高考真题)若集合{4},{31}M x x N x x =<=≥∣∣,则M N ⋂=()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D【分析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.5.(2020·新高考Ⅰ卷高考真题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =()A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C【分析】根据集合并集概念求解.【详解】[1,3](2,4)[1,4)A B ==U U 故选:C【点睛】本题考查集合并集,考查基本分析求解能力,属基础题.6.(2020·新高考Ⅱ卷高考真题)设集合A={2,3,5,7},B ={1,2,3,5,8},则A B ⋂=()A .{1,3,5,7}B .{2,3}C .{2,3,5}D .{1,2,3,5,7,8}【答案】C【分析】根据集合交集的运算可直接得到结果.【详解】因为A {2,3,5,7},B ={1,2,3,5,8},所以{}2,3,5A B = 故选:C【点睛】本题考查的是集合交集的运算,较简单.。
2021届山东省新高考高考模拟冲关押题卷(三)数学(解析版)

2021届山东省新高考高考模拟冲关押题卷(三)数学(解析版)第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪14≤2x ≤4,B =⎩⎨⎧⎭⎬⎫y |y =lg x ,x >110,则A ∩B =( ) A .[-2,2] B .(1,+∞)C .(-1,2]D .(-∞,-1]∪(2,+∞)2.设i 是虚数单位,若复数a +5i 2+i(a ∈R )是纯虚数,则a 的值为( ) A .-3 B .3C .1D .-13.“a <2”是“∀x >0,a ≤x +1x ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.函数f (x )=ln (x 2-4x +4)(x -2)3的图象可能是( )5.已知函数f (x )=3x +2cos x ,若a =f (32),b =f (2),c =f (log 2 7),则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a 6.已知等边△ABC 内接于圆τ:x 2+y 2=1,且P 是圆τ上一点,则P A →·(PB →+PC →)的最大值是( )A. 2 B .1C. 3 D .27.已知函数f (x )=sin 2 x +sin 2⎝⎛⎭⎫x +π3,则f (x )的最小值为( ) A.12 B.14C.34D.228.已知点P 在椭圆τ:x 2a 2+y 2b2=1(a >b >0)上,点P 在第一象限,点P 关于原点O 的对称点为A ,点P 关于x 轴的对称点为Q ,设PD →=34PQ →,直线AD 与椭圆τ的另一个交点为B ,若P A ⊥PB ,则椭圆τ的离心率e =( )A.12B.22C.32D.33二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.某位教师2018年的家庭总收入为80 000元,各种用途占比统计如图1折线图所示;2019年收入的各种用途占比统计如图2条形图所示,已知2019年的就医费用比2018年增加了4 750元,则下列关于该教师家庭收支的说法正确的是( )A .该教师2018年的家庭就医支出显著减少B .该教师2019年的家庭就医总支出为12 750元C .该教师2019年的家庭旅行支出占比显著增加D .该教师2019年的家庭总收入为85 000元10.已知⎝⎛⎭⎫ax 2+1x n (a >0)的展开式中第5项与第7项的二项式系数相等,且展开式的各项系数之和为1 024,则下列说法正确的是( )A .展开式中奇数项的二项式系数和为256B .展开式中第6项的系数最大C .展开式中存在常数项D .展开式中含x 15项的系数为4511.在棱长为1的正方体ABCD - A 1B 1C 1D 1中,点M 在棱CC 1上,则下列结论正确的是( )A .直线BM 与平面ADD 1A 1平行B .平面BMD 1截正方体所得的截面为三角形C .异面直线AD 1与A 1C 1所成的角为π3D .|MB |+|MD 1|的最小值为 512.已知双曲线x 2a 2-y 25=1(a >0)的左、右焦点分别为F 1,F 2,O 为坐标原点,P 是双曲线上一点,且满足|F 1F 2|=2|OP |,tan ∠PF 2F 1=2,则下列结论正确的是( )A .点P 在双曲线的右支上B .点⎝⎛⎭⎫-32,3在双曲线的渐近线上 C .双曲线的离心率为 5D .双曲线上任一点到两渐近线距离之和的最小值等于4第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13.已知向量a =(2,m ),b =(1,-2),且a ⊥b ,则实数m 的值是________.14.若sin(α+β)=13,tan α=3tan β,则sin(α-β)=________. 15.已知函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≤a ,8-x ,x >a (a >0),若函数g (x )=f (x )-3|x |有三个零点,则实数a 的取值范围是________.16.正方体ABCD - A 1B 1C 1D 1的棱长为2,M ,N ,E ,F 分别是A 1B 1,AD ,B 1C 1,C 1D 1的中点,则过EF 且与MN 平行的平面截正方体所得截面的面积为________,CE 和该截面所成角的正弦值为________.(本题第一空2分,第二空3分.)四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,从以下三个条件中选取一个解答该题.①2b -c a =cos C cos A;②4cos(B +C )+2cos 2A =-3; ③a 3cos A =b sin (A +C ). (1)求角A 的大小;(2)若a =14,b +c =42,求△ABC 的面积.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)已知{a n }是各项都为正数的数列,其前n 项和为S n ,S n 为a n 与1a n的等差中项. (1)求证:数列{S 2n }为等差数列;(2)设b n =(-1)na n,求{b n }的前100项和T 100.19.(12分)如图,在四棱锥P - ABCD 中,底面ABCD 是边长为2的菱形,∠DAB =60°,∠ADP =90°,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.(1)在棱AB 上是否存在一点E ,使得AF ∥平面PCE ,并说明理由;(2)当二面角D - FC - B 的余弦值为24时,求直线PB 与平面ABCD 所成的角.20.(12分)已知抛物线τ:y 2=2px (p >0)的焦点为F ,P 是抛物线τ上一点,且在第一象限,满足FP →=(2,23).(1)求抛物线τ的方程;(2)已知经过点A (3,-2)的直线交抛物线τ于M ,N 两点,经过定点B (3,-6)和M 的直线与抛物线τ交于另一点L ,问直线NL 是否恒过定点,如果过定点,求出该定点,否则说明理由.21.(12分)山东省2020年高考实施新的高考改革方案,考生的高考总成绩由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分.其中,统一高考科目为语文、数学、外语,自主选择的3门普通高中学业水平等级考试科目是从物理、化学、生物、历史、政治、地理6科中选择3门作为选考科目,语、数、外三科各占150分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.根据高考综合改革方案,将每门等级考试科目中考生的原始成绩从高到低分为A 、B +、B 、C +、C 、D +、D 、E 共8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.等级考试科目成绩计入考生总成绩时,将A 至E 等级内的考生原始成绩,依照等比例转换法则,分别转换到91-100、81-90、71-80、61-70、51-60、41-50、31-40、21-30八个分数区间,得到考生的等级成绩.举例说明:某同学化学学科原始分为65分,该学科C +等级的原始分分布区间为58~69,则该同学化学学科的原始成绩属C +等级.而C +等级的转换分区间为61~70,那么该同学化学学科的转换分为:设该同学化学学科的转换等级分为x ,69-6565-58=70-x x -61,求得x ≈66.73, 四舍五入后该同学化学学科赋分成绩为67.(1)某校高一年级共2 000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布ξ~N (60,122).①若小明同学在这次考试中物理原始分为84分,等级为B +,其所在原始分分布区间为82~93,求小明转换后的物理成绩;②求物理原始分在区间(72,84)的人数.(2)按高考改革方案,若从全省考生中随机抽取4人,记X 表示这4人中等级成绩在区间[61,80]的人数,求X 的分布列和数学期望.附:若随机变量ξ~N (μ,σ2),则P (μ-σ<ξ<μ+σ)=0.682,P (μ-2σ<ξ<μ+2σ)=0.954,P (μ-3σ<ξ<μ+3σ)=0.997.22.(12分)已知函数f (x )=(x -1)2+ax -a ln x(1)若a ≥-2讨论f (x )的单调性;(2)若a >0,且对于函数f (x )的图象上两点P 1(x 1,f (x 1)),P 2(x 2,f (x 2))(x 1<x 2),存在x 0∈(x 1,x 2),使得函数f (x )的图象在x =x 0处的切线l ∥P 1P 2.求证:x 0<x 1+x 22.三1.答案:C解析:∵集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪ 14≤2x ≤4 ={x |-2≤x ≤2},B =⎩⎨⎧⎭⎬⎫y |y =lg x ,x >110={x |x >-1}, ∴A ∩B ={x |-1<x ≤2}=(-1,2].故选C.2.答案:D解析:∵a +5i 2+i =a +5i (2-i )(2+i )(2-i )=a +1+2i 为纯虚数, ∴a +1=0,即a =-1.故选D.3.答案:A解析:∀x >0,a ≤x +1x, 由y =x +1x≥2,(x >0), 故a ≤2,所以a <2是a ≤2的充分不必要条件.故选A.4.答案:A解析:由f (x )=ln (x -2)2(x -2)3可知函数的图象关于点(2,0)对称,故排除B ,C ,当x <0时,ln(x -2)2>0,(x -2)3<0,函数的图象在x 轴下方,故排除D ,故选A.5.答案:D解析:∵f ′(x )=3-2sin x >0在R 上恒成立,∴f (x )在R 上为增函数,又由2=log 24<log 27<3<32,则b <c <a .故选D.6.答案:D解析:建立如图所示平面直角坐标系,则A (1,0),B ⎝⎛⎭⎫-12,32,C ⎝⎛⎭⎫-12,-32, 设P (cos θ,sin θ),则P A →·(PB →+PC →)=(1-cos θ,-sin θ)·(-1-2cos θ,-2sin θ)=(1-cos θ)(-1-2cos θ)+2sin 2 θ=2cos 2 θ-cos θ-1+2sin 2 θ=1-cos θ≤2,当且仅当θ=π,即P (-1,0)时,取等号.故选D.7.答案:A解析:f (x )=sin 2 x +sin 2⎝⎛⎭⎫x +π3 =sin 2 x +⎝⎛⎭⎫12sin x +32cos x 2=54sin 2 x +34cos 2 x +32sin x cos x =34+1-cos 2x 4+34sin 2x =1+12sin ⎝⎛⎭⎫2x -π6≥1-12=12.故选A. 8.答案:C解析:设P (x 1,y 1),则A (-x 1,-y 1),Q (x 1,-y 1),D ⎝⎛⎭⎫x 1,-y 12, 设B (x 2,y 2),由⎩⎨⎧ x 21a 2+y 21b 2=1x 22a 2+y 22b 2=1,两式相减,得(x 1+x 2)(x 1-x 2)a 2=-(y 1+y 2)(y 1-y 2)b 2⇒k AB =y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2, k AD =k AB ⇒y 14x 1=y 1+y 2x 1+x 2, 又k P A =y 1x 1=4(y 1+y 2)x 1+x 2, 则由P A ⊥PB ⇒k P A ·k PB =-1,可得-4·b 2a2=-1⇒a 2=4b 2=4(a 2-c 2) ⇒3a 2=4c 2⇒e =32.故选C. 9.答案:ABD解析:设该教师家庭2019年收入为x 元,则15%·x =80 000×10%+4 750,解得x =85 000.可得:该教师2018年的家庭就医支出显著减少,该教师2019年的家庭就医总支出为8 000+4 750=12 750元,该教师2019年的家庭旅行支出占比没有变化,该教师2019年的家庭总收入为85 000元.故选ABD.10.答案:BCD解析:因为⎝⎛⎭⎫ax 2+1x n (a >0)的展开式中第5项与第7项的二项式系数相等, ∴C 4n =C 6n ⇒n =10,∵展开式的各项系数之和为1 024,∴(a +1)10=1 024,∵a >0,∴a =1.原二项式为:⎝⎛⎭⎫x 2+1x 10, 其展开式的通项公式为:T r +1=C r 10·(x 2)10-r ·⎝⎛⎭⎫1x r =C r 10520-2x r ; 展开式中奇数项的二项式系数和为:12×1 024=512,故A 错; 因为本题中二项式系数和项的系数一样,且展开式有11项,故展开式中第6项的系数最大,B 对; 令20-52r =0⇒r =8,即展开式中存在常数项,C 对; 令20-52r =15⇒r =2,C 210=45,D 对; 故选BCD.11.答案:ACD解析:如图所示:易知平面BCC 1B 1∥平面ADD 1A 1,BM ⊂平面BCC 1B 1,故直线BM 与平面ADD 1A 1平行,A 正确;平面BMD 1截正方体所得的截面为BMD 1N 为四边形,故B 错误;连接BC 1,A 1B ,易知AD 1∥BC 1,故异面直线AD 1与A 1C 1所成的角为∠A 1C 1B ,A 1B =A 1C 1=BC 1,故∠A 1C 1B =π3,故C 正确; 延长DC 到B ′使CB ′=1,易知BM =B ′M ,故|MB |+|MD 1|≥D 1B ′=5,当M 为CC 1中点时等号成立,故D 正确.故选ACD.12.答案:ABC解析:连接PF 1,由题意知|F 1F 2|=2|OP |=2c ,则PF 1⊥PF 2,因为tan ∠PF 2F 1=2,所以|PF 1||PF 2|=2,因此|PF 1|>|PF 2|, 故点P 在双曲线的右支上,A 项正确;由于|PF 1|-|PF 2|=2a ,所以|PF 1|=4a ,|PF 2|=2a ,所以(4a )2+(2a )2=(2c )2,整理得c 2=5a 2,则e =5,C 正确;又e =c a = 1+b 2a 2=5,所以b a=2, 所以双曲线的渐近线方程为y =±2x , 易知点⎝⎛⎭⎫-32,3在双曲线的渐近线上,故B 项正确; 由于b 2=5,所以a 2=54, 所以双曲线的方程为4x 25-y 25=1, 设M (x 0,y 0)为双曲线上任意一点,则点M 到渐近线y =2x 的距离d 1=|2x 0-y 0|5, 点M 到渐近线y =-2x 的距离d 2=|2x 0+y 0|5, 因此d 1d 2=|4x 20-y 20|5, 又4x 205-y 205=1,于是d 1d 2=1, 因此由基本不等式得d 1+d 2≥2d 1d 2=2,当且仅当d 1=d 2时取等号,故双曲线上任一点到两渐近线距离之和的最小值等于2,故D 项错误.故选ABC.13.答案:1解析:∵a ⊥b ,∴a ·b =2-2m =0,∴m =1.14.答案:16 解析:根据sin(α+β)=13可得sin αcos β+cos αsin β=13①,根据tan α=3tan β可得sin αcos β=3cos αsin β ②,由①②得sin αcos β=14,cos αsin β=112, 所以sin(α-β)=sin αcos β-cos α·sin β=16. 15.答案:(0,2)∪[5,+∞)解析:g (x )=f (x )-3|x |有三个零点⇔y =f (x )与y =3|x |的图象有三个交点.因为a >0,所以当x ≤0时,x 2-2x =-3x ,得x =-1或x =0,所以y =f (x )与y =3|x |的图象有两个交点,则当x >0时,y =f (x )与y =3|x |的图象有1个交点.当x >0时,令3x =8-x ,得x =2,所以0<a <2符合题意;令3x =x 2-2x ,得x =5,所以a ≥5符合题意.综上,实数a 的取值范围是(0,2)∪[5,+∞).16.答案:22 1010解析:如图,分别取CD ,BC 的中点H ,G ,连接HE ,HG ,GE ,HF ,ME ,NH .易证ME 綉NH ,所以四边形MEHN 是平行四边形,所以MN ∥HE ,又MN ⊄平面EFHG ,HE ⊂平面EFHG ,所以MN ∥平面EFHG ,所以过EF 且与MN 平行的平面为平面EFHG ,平面EFHG 截正方体所得截面为矩形EFHG ,EF =2,FH =2,所以所得截面的面积为2×2=2 2.连接AC ,交HG 于I ,则CI ⊥HG ,又平面EFHG ⊥平面ABCD ,平面EFHG ∩平面ABCD =HG ,所以CI ⊥平面EFHG ,连接EI ,则CI ⊥EI ,∠CEI 为直线CE 和截面所成的角.在Rt △CIE 中, CE =1+22=5,CI =14AC =224=22. 所以sin ∠CEI =CI CE =1010. 17.解析:若选①,(1)根据正弦定理知,2b -c a =2sin B -sin C sin A =cos C cos A, 即2sin B ·cos A =cos C ·sin A +sin C ·cos A ,即2sin B ·cos A =sin(A +C ),因为A +C =π-B ,所以2sin B ·cos A =sin B ,又sin B ≠0,解得cos A =12. 又A ∈(0,π),所以A =π3. (2)因为a 2=b 2+c 2-2bc cos A =(b +c )2-2bc -2bc cos A ,a =14,b +c =42,A =π3, 所以(14)2=(42)2-2bc -2bc ×12,得bc =6,所以S △ABC =12bc ·sin A =12×6×sin π3=332. 若选②,(1)由题意可得4cos(B +C )+2(2cos 2 A -1)=-3,又cos(B +C )=-cos A ,所以-4cos A +2(2cos 2A -1)=-3,所以4cos 2A -4cos A +1=0, 解得cos A =12,又A ∈(0,π),所以A =π3. (2)因为a 2=b 2+c 2-2bc cos A=(b +c )2-2bc -2bc cos A ,a =14,b +c =42,A =π3, 所以(14)2=(42)2-2bc -2bc ×12,得bc =6, 所以S △ABC =12bc ·sin A =12×6×sin π3=332. 若选③,(1)由正弦定理及a 3cos A =b sin (A +C ), 得sin A 3cos A =sin B sin (A +C ), 又sin(A +C )=sin(π-B )=sin B , 所以sin A 3cos A =sin B sin B,得tan A = 3. 又A ∈(0,π),所以A =π3. (2)因为a 2=b 2+c 2-2bc cos A=(b +c )2-2bc -2bc cos A ,a =14,b +c =42,A =π3, 所以(14)2=(42)2-2bc -2bc ×12,得bc =6, 所以S △ABC =12bc ·sin A =12×6×sin π3=332. 18.解析:(1)证明:由题意知2S n =a n +1a n, 即2S n a n -a 2n =1, ①当n =1时,由①式可得S 1=1,又n ≥2时,有a n =S n -S n -1,代入①式得2S n (S n -S n -1)-(S n -S n -1)2=1,整理得S 2n -S 2n -1=1,(n ≥2).∴{S 2n }是首项为1,公差为1的等差数列.(2)由(1)可得S 2n =1+n -1=n ,∵{a n }是各项都为正数,∴S n =n ,∴a n =S n -S n -1=n -n -1(n ≥2),又a 1=S 21=1,也适合上式∴a n =n -n -1.b n =(-1)n a n =(-1)nn -n -1=(-1)n (n +n -1), T 100=-1+(2+1)-(3+2)+…-(100-1+100-2)+(100+100-1)=100=10. ∴{b n }的前100项和T 100=10.19.解析:(1)在棱AB 上存在点E ,使得AF ∥平面PCE ,点E 为棱AB 的中点. 理由如下:取PC 的中点Q ,连接EQ 、FQ ,由题意,FQ ∥DC 且FQ =12CD ,AE ∥CD 且AE =12CD ,故AE ∥FQ 且AE =FQ . 所以,四边形AEQF 为平行四边形.所以,AF ∥EQ ,又EQ ⊂平面PCE ,AF ⊄平面PCE ,所以AF ∥平面PCE .(2)由题意知△ABD 为正三角形,所以ED ⊥AB ,亦即ED ⊥CD ,又∠ADP =90°,所以PD ⊥AD ,且平面ADP ⊥平面ABCD ,平面ADP ∩平面ABCD =AD ,所以PD ⊥平面ABCD ,故以D 为坐标原点建立如图空间直角坐标系,设FD =a (a >0),则由题意知 D (0,0,0),F (0,0,a ),C (0,2,0),B (3,1,0),FC →=(0,2,-a ),CB →=(3,-1,0),设平面FBC 的一个法向量为m =(x ,y ,z ),则由⎩⎪⎨⎪⎧ m ·FC →=0m ·CB →=0得⎩⎨⎧2y -az =03x -y =0, 令x =1,则y =3,z =23a, 所以取m =⎝⎛⎭⎫1,3,23a , 显然可取平面DFC 的一个法向量n =(1,0,0),由题意:24=|cos 〈m ,n 〉|=11+3+12a2, 所以a = 3.由于PD ⊥平面ABCD ,所以PB 在平面ABCD 内的射影为BD , 所以∠PBD 为直线PB 与平面ABCD 所成的角,易知在Rt △PBD 中,tan ∠PBD =PD BD=a =3, 从而∠PBD =60°,所以直线PB 与平面ABCD 所成的角为60°.20.解析:(1)y 2=2px (p >0)的焦点为F ⎝⎛⎭⎫p 2,0,而FP →=(2,23),所以点P ⎝⎛⎭⎫p 2+2,23, 又点P 在抛物线y 2=2px 上,所以(23)2=2p ⎝⎛⎭⎫p 2+2,即p 2+4p -12=0,(p +6)(p -2)=0,而p >0,故p =2,则抛物线的方程为y 2=4x .(2)由题意知,直线AM ,BM ,NL 的斜率均存在.设M (x 0,y 0),N (x 1,y 1),L (x 2,y 2),则y 20=4x 0,y 21=4x 1,y 22=4x 2,直线MN 的斜率为k MN =y 1-y 0x 1-x 0=y 1-y 0y 21-y 204=4y 1+y 0. 则l MN :y -y 0=4y 1+y 0⎝⎛⎭⎫x -y 204, 即y =4x +y 0y 1y 0+y 1①; 同理l ML :y =4x +y 0y 2y 0+y 2②; 将A (3,-2),B (3,-6)分别代入①,②两式,得⎩⎪⎨⎪⎧ -2=12+y 0y 1y 0+y 1-6=12+y 0y 2y 0+y 2,消去y 0得y 1y 2=12,易知直线l NL :y =4x +y 1y 2y 1+y 2=4x +12y 1+y 2=4(x +3)y 1+y 2, 因此直线NL 恒过定点(-3,0).21.解析:(1)①设小明转换后的物理等级分为x ,93-8484-82=90-x x -81, 求得x ≈82.64,小明转换后的物理成绩为83分;②因为物理考试原始分基本服从正态分布N (60,122),所以P (72<ξ<84)=P (60<ξ<84)-P (60<ξ<72)=12P (36<ξ<84)-12P (48<ξ<72) =12(0.954-0.682)=0.136. 所以物理原始分在区间(72,84)的人数为2 000×0.136=272(人); (2)由题意得,随机抽取1人,其等级成绩在区间[61,80]内的概率为25, 随机抽取4人,则X ~B ⎝⎛⎭⎫4,25, P (X =0)=⎝⎛⎭⎫354=81625,P (X =1)=C 14·25·⎝⎛⎭⎫353=216625, P (X =2)=C 24·⎝⎛⎭⎫252·⎝⎛⎭⎫352=216625,P (X =3)=C 34·⎝⎛⎭⎫253·⎝⎛⎭⎫351=96625, P (X =4)=⎝⎛⎭⎫254=16625.X 的分布列为数学期望E (X )=4×25=85. 22.解析:(1)易得,函数f (x )的定义域为(0,+∞),f ′(x )=2(x -1)+a -a x =(x -1)(2x +a )x, 令f ′(x )=0,得x =1或x =-a 2. ①当a ≥0时,0<x <1时,f ′(x )<0,函数f (x )单调递减;x >1时,f ′(x )>0,函数f (x )单调递增.此时,f (x )的减区间为(0,1),增区间为(1,+∞).②当-2<a <0时,-a 2<x <1时, f ′(x )<0,函数f (x )单调递减;0<x <-a 2或x >1时,f ′(x )>0,函数f (x )单调递增. 此时,f (x )的减区间为⎝⎛⎭⎫-a 2,1,增区间为⎝⎛⎭⎫0,-a 2,(1,+∞). ③当a =-2时,x >0时,f ′(x )=2(x -1)2x>0,函数f (x )单调递增; 此时,f (x )的减区间为(0,+∞).综上,当a ≥0时,f (x )的减区间为(0,1),增区间为(1,+∞); 当-2<a <0时,f (x )的减区间为⎝⎛⎭⎫-a 2,1, 增区间为⎝⎛⎭⎫0,-a 2,(1,+∞); 当a =-2时,f (x )增区间为(0,+∞).(2)证明:由题意及导数的几何意义,得f ′(x 0)=kP 1P 2=f (x 2)-f (x 1)x 2-x 1=[(x 2-1)2+ax 2-a ln x 2]-[(x 1-1)2+ax 1-a ln x 1]x 2-x 1 =(x 1+x 2-2)+a -a ln x 2x 1x 2-x 1. 由(1)中f ′(x )得f ′⎝⎛⎭⎫x 1+x 22=(x 1+x 2-2)+a -2a x 1+x 2. 易知,导函数f ′(x )=2(x -1)+a -a x(a >0)在(0,+∞)上为增函数, 所以,要证x 0<x 1+x 22, 只要证f ′(x 0)<f ′⎝⎛⎭⎫x 1+x 22,即-a ln x 2x 1x 2-x 1<-2a x 1+x 2, 即证ln x 2x 1>2(x 2-x 1)x 1+x 2. 因为x 2>x 1>0,不妨令t =x 2x 1,则g (t )=ln t -2(t -1)t +1(t >1). 所以g ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0(t >1), 所以g (t )在t ∈(1,+∞)上为增函数,所以g (t )>g (1)=0,即ln t -2(t -1)t +1>0, 所以ln t >2(t -1)t +1,即ln t t -1>2t +1, 即ln x 2x 1>2(x 2-x 1)x 1+x 2.故有x 0<x 1+x 22(得证).。
2021年山东省新高考质量测评联盟高考数学联考试卷(2021.04)(解析版)

2021年山东省新高考质量测评联盟高考数学联考试卷(4月份)一、选择题(共8小题).1.已知集合A={x||x﹣2|≤1},B={y|y=x2﹣2},则(∁R A)∩B=()A.[﹣2,+∞)B.[﹣2,1]∪[3,+∞)C.[﹣2,1)∪(3,+∞)D.[﹣2,1]∪(3,+∞)2.若复数z=1+i+i2+i3+…+i2021,则z=()A.0B.i C.1+i D.1﹣i3.如图,两个互相啮合的齿轮.大轮有64齿,小轮有24齿.当大轮转动一周时,小轮转动的角度为()A.B.C.D.4.已知m,n是两条不同的直线,α,β为两个不同的平面,有下列四个命题,其中正确的命题是()A.若α∥β,m⊥α,n⊥β,则m⊥n B.若m⊥α,m⊥n,则n∥αC.若m⊥α,n∥β,m⊥n,则α⊥βD.若m⊥α,n∥β,α∥β,则m⊥n5.函数f(x)=的大致图象是()A.B.C.D.6.抛物线y=2x2的焦点为F,过F作斜率为1的直线交抛物线于A、B两点,则|AB|=()A.4B.1C.D.7.五声音阶,古代文献酒常称为“五声”、“五音”等,是按五度的相生顺序,从宫音开始到羽音,依次为:宫、商、角、徵(zhi)、羽.如按音高顺序排列,即为:12356宫商角徵羽.中国传统乐学理论对“音阶”这个现代概念,常分别从“音”、“律”、“声”等不同角度揭示其内涵,如果把这五个音阶全用上,排成一个五个音阶的音序,且要求宫、羽两音阶在角音阶的两侧,可排成不同音序的种数为()A.20B.28C.32D.408.已知数列{a n},{b n}对任意的m,n∈N+,有a m+n=a m+a n,a1=2,b n=[log2a n]([x]表示不超过x的最大整数),S n为数列{b n}的前n项和,则S100=()A.472B.480C.580D.769二、多项选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对得3分,有选错的得0分.9.若a>b>0,且ab=1,则()A.a>b+1B.C.()a>()b D.log2(a+b)>110.如图.统计图记录了从2016年到2020年我国发明专利授权数和基础研究经费支出的情况,下列叙述正确的是()A.这五年基础研究经费支出与年份线性相关B.这五年发明专利授权数的年增长率保持不变C.这五年基础研究经费支出的增长率比发明专专利授权数的增长率高D.这五年的发明专利授权数与基础研究经费支出成负相关11.已知f(x)=,则下列说法正确的是()A.关于x的方程f(x)=()n(n∈N*)有2n+2个不相等的实数根B.y=f(x)与g(x)=3x的图象上存在2对关于直线y=x的对称点C.∀x∈[1,8],有xf(x)≤3恒成立D.当x∈[2n﹣1,2n],n∈N*,函数f(x)的图象与x轴围成的图形面积S=112.已知双曲线方程为=1,A为双曲线右支上任意一点,F1,F2为左、右焦点,△AF1F2的内切圆圆心为I,⊙I与x轴切于点N,线段AI的延长线与x轴交于点M(x0,0).则以下结论正确的有()A.|F1N|﹣|F2N|为定值B.I的横坐标为定值C.x0的范围是(0,3)D.⊙I半径的最大值为4三、填空题:本大题共4个小题,每小题5分,共20分13.已知f(x)=sin x+2f'()cos x,则f()=.14.平面内非零向量,,,有||=3,||=4,•=0.且|﹣﹣|=2,则||的最大值为.15.若对于任意实数m,函数f(x)=ωx+cosωx.在区间(m,m+1]上至少存在两个不相等的实数x1,x2满足f(x1)f(x2)=4,则ω的最小正整数值为.16.在三棱锥V﹣ABC中.△ABC是边长为6的正三角形.VA=VB=VC=2,其内有n个小球,球O1与三梭锥V﹣ABC的四个面都相切,则球O1的半径为,球O2与三棱锥V﹣ABC的三个面和球O1都相切,以此类推,……,球O n与三棱锥V﹣ABC的三个面和球O n﹣1(n≥2,n∈N*)都相切,则球O n 的表面积等于.四、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.已知△ABC内角A,B,C的对边为a,b,c,b=c=4且满足______.①a sin B=b cos(A+),②sin C﹣sin B=sin(A﹣B),③,在这三个条件中任选一个,补充在上面的题干中,然后解答问题.(1)求角A;(2)点P为△ABC内一点,当∠BPC=时,求△BPC面积的最大值.18.随着我国市场经济体制的逐步完善,顾客购买心理不断成熟,影响顾客购买的因素越来越多,创建﹣一个规范有序的市场环境,提高消费者满意度,有助于当地经济的发展.2020年,淄博市市场监督管理部门共受理消费者投诉、举报43548件,为消费者挽回经济损失9300.19万元,连续两年进人全国城市消费者满意度测评前100名淄博市某调查机构对2020年的每个月的满意度进行了实际调查,随机选取了几个月的满意度数据如图:月份x234567101125.23342393658.87278满意度y(%)参考数据:x i=6,==48,=72,=2598.48,=414.(1)从这8个月的数据中任意选3个月的数据,以表示3个月中满意度不小于35%的个数,求ξ的分布列和数学期望;(2)根据散点图发现6月份数据偏差较大,如果去掉该月的数据,试用剩下的数据求出满意度y(%)关于月份x的线性回归方程(精确到0.01)附:线性回归方程y =中,==,.19.已知数列{a n},{b n},a n>0.b n=a n+2n﹣1,数列{b n}的前n项和为T n,4T n=a n2+(2n+2)a n+4n﹣1+2n(n∈N*).(1)求a1的值和{b n}的通项公式;(2)令c n=2n+1﹣a n ,求.20.已知四边形ABCD,∠BAC=∠ADC=90°,DC=DA =AB,将△ADC沿AC翻折至△PAC.(1)若PA=PB,求证PA⊥BC;(2)若二面角P﹣AC﹣B为,求直线BC与平面PAB所成角的正弦值.21.在平面直角坐标系xOy中,动点M到直线x=3的距离是到点(2,0)的距离的倍.(1)求动点M的轨迹E的方程;(2)点P为直线x=3上一动点,过P点作曲线E的切线,切点为Q,线段PQ的中点为N,问是否存在定点T,满足|PQ|=2|NT|?若存在求出定点T的坐标;若不存在,请说明理由.22.已知函数f(x)=+ax+a2lnx(a∈R)f'(x)是f(x)的导函数.(1)若a>0,曲线y=f(x)在(1,f(1))处的切线为y=x+b,求a,b的值;(2)设g(x)=xf'(x)﹣e x,若g(x)≤0,求实数a的取值范围.参考答案一、选择题(共8小题).1.已知集合A={x||x﹣2|≤1},B={y|y=x2﹣2},则(∁R A)∩B=()A.[﹣2,+∞)B.[﹣2,1]∪[3,+∞)C.[﹣2,1)∪(3,+∞)D.[﹣2,1]∪(3,+∞)解:∵|x﹣2|≤1,∴1≤x≤3,∴A={x|1≤x≤3},∴∁R A={x|x<1或x>3},∵y=x2﹣2≥﹣2,∴B={y|y≥﹣2},∴(∁R A)∩B=[﹣2,1)∪(3,+∞),故选:C.2.若复数z=1+i+i2+i3+…+i2021,则z=()A.0B.i C.1+i D.1﹣i解:z=1+i+i2+i3+…+i2021=.故选:C.3.如图,两个互相啮合的齿轮.大轮有64齿,小轮有24齿.当大轮转动一周时,小轮转动的角度为()A.B.C.D.解:因为大轮有64齿,小轮有24齿,当大轮转动一周时,小轮转动的角度为2π×=,故选:D.4.已知m,n是两条不同的直线,α,β为两个不同的平面,有下列四个命题,其中正确的命题是()A.若α∥β,m⊥α,n⊥β,则m⊥n B.若m⊥α,m⊥n,则n∥αC.若m⊥α,n∥β,m⊥n,则α⊥βD.若m⊥α,n∥β,α∥β,则m⊥n解:若α∥β,m⊥α,则m⊥β,又n⊥β,则m∥n,故A错误;若m⊥α,m⊥n,则n∥α或n⊂α,故B正确;若m⊥α,m⊥n,则n∥α或n⊂α,又n∥β,可得α∥β或α与β相交,相交也不一定垂直,故C错误;若m⊥α,α∥β,则m⊥β,又n∥β,∴m⊥n,故D正确.故选:D.5.函数f(x)=的大致图象是()A.B.C.D.解:令f(x)=0,解得,故函数f(x)的零点为,故选项B,D错误;因为,当x<0时,f'(x)<0,故f(x)在(﹣∞,0)上单调递减,故选项C错误,选项A正确.故选:A.6.抛物线y=2x2的焦点为F,过F作斜率为1的直线交抛物线于A、B两点,则|AB|=()A.4B.1C.D.解:抛物线y=2x2的焦点F(0,),准线方程为y=﹣,∴直线AB的方程为y=x﹣,代入y=2x2可得2x2﹣x+=0∴x A+x B=,y A=x A﹣,y B=x B﹣,所以y A+y B=x A+x B﹣﹣=﹣=,由抛物线的定义可知,|AB|=|AF|+|BF|=y A+y B+p==.故选:D.7.五声音阶,古代文献酒常称为“五声”、“五音”等,是按五度的相生顺序,从宫音开始到羽音,依次为:宫、商、角、徵(zhi)、羽.如按音高顺序排列,即为:12356宫商角徵羽.中国传统乐学理论对“音阶”这个现代概念,常分别从“音”、“律”、“声”等不同角度揭示其内涵,如果把这五个音阶全用上,排成一个五个音阶的音序,且要求宫、羽两音阶在角音阶的两侧,可排成不同音序的种数为()A.20B.28C.32D.40解:根据题意,分3步进行分析:①排好宫、羽、角三种音阶,要求宫、羽两音阶在角音阶的两侧,有2种情况,②排好后,有4个空位,将商安排到4个空位中,有4种情况,③排好后,有5个空位,将徵安排到5个空位中,有5种情况,则有2×4×5=40种不同的顺序,故选:D.8.已知数列{a n},{b n}对任意的m,n∈N+,有a m+n=a m+a n,a1=2,b n=[log2a n]([x]表示不超过x的最大整数),S n为数列{b n}的前n项和,则S100=()A.472B.480C.580D.769解:数列{a n},{b n}对任意的m,n∈N+,有a m+n=a m+a n,a1=2,令m=1,则a n+1=a n+a1=a n+2,故a n+1﹣a n=2(常数),所以数列{a n}为等差数列,故a n=2+2(n﹣1)=2n,由于b n=[log2a n]([x]表示不超过x的最大整数),所以b1=1,b2=b3=2,b4=b5=…=b7=3,b8=b9=…=b15=4,b16=b17=…=b31=5,b32=b33=…=b63=6,b64=b65=…=b100=7,故S100=1+2×2+3×4+4×8+16×5+32×6+37×7=580.故选:C.二、多项选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对得3分,有选错的得0分.9.若a>b>0,且ab=1,则()A.a>b+1B.C.()a>()b D.log2(a+b)>1解:由于a>b>0,且ab=1,则a>1>b>0,对于A:,故确定不了与0的关系,故A错误;对于B:a2+1>b2+1,故,故B正确;对于C:由于f(x)=为减函数,故f(b)>f(a),所以,故C错误;对于D:log2(a+b),故D正确;故选:BD.10.如图.统计图记录了从2016年到2020年我国发明专利授权数和基础研究经费支出的情况,下列叙述正确的是()A.这五年基础研究经费支出与年份线性相关B.这五年发明专利授权数的年增长率保持不变C.这五年基础研究经费支出的增长率比发明专专利授权数的增长率高D.这五年的发明专利授权数与基础研究经费支出成负相关解:由条形图可知,五年基础研究经费随年份的增长而增长,呈线性相关,故选项A正确;由折线图可知,从2018~2019,2019~2020的折线的斜率反生变化,故年增长率发生变化,故选项B错误;由条形图对应的斜率以及折线图对应的斜率可知,基础研究经费支出的增长率大于发明专专利授权数的增长率,故选项C正确;由统计图可知,发明专利授权数与基础研究经费支出呈正相关,故选项D错误.故选:AC.11.已知f(x)=,则下列说法正确的是()A.关于x的方程f(x)=()n(n∈N*)有2n+2个不相等的实数根B.y=f(x)与g(x)=3x的图象上存在2对关于直线y=x的对称点C.∀x∈[1,8],有xf(x)≤3恒成立D.当x∈[2n﹣1,2n],n∈N*,函数f(x)的图象与x轴围成的图形面积S=1解:当1时,f(x)=2﹣(6﹣4x)=4x﹣4,当时,f(x)=2﹣(4x﹣6)=8﹣4x,当2<x<3时,,f()=x﹣2,当3≤x≤4时,,f()=4﹣x,由此可知,当2n﹣1≤x≤3•2n﹣1时,f(x)=24﹣2n(x﹣2n﹣1);当3•2n﹣1<x<2n时,f(x)=24﹣2n(2n﹣x).对于A:f(x)与有2n+1个交点,A错误;对于B:作出g(x)关于直线y=x对称的图像,即g(x)的反函数h(x)=log3x,由图像可知,f(x)与h(x)有3个交点,即f(x)与g(x)有3对对称点,B错误;对于C:当1≤x≤8时,,C正确;对于D:当2n﹣1≤x≤2n时,函数f(x)与x轴围成的图形为三角形,底为2n﹣2n﹣1,高为,则S==1,D正确.故选:CD.12.已知双曲线方程为=1,A为双曲线右支上任意一点,F1,F2为左、右焦点,△AF1F2的内切圆圆心为I,⊙I与x轴切于点N,线段AI的延长线与x轴交于点M(x0,0).则以下结论正确的有()A.|F1N|﹣|F2N|为定值B.I的横坐标为定值C.x0的范围是(0,3)D.⊙I半径的最大值为4解:双曲线方程为=1的a=3,b=4,c=5,⊙I与x轴切于点N,与AF1切于点P,与AF2切于点T,因为I的横坐标与N的横坐标相等,设I(x N,r),由切线长相等,可得|PF1|=|NF1|,|PA|=|TA|,|TF2|=|NF2|,由双曲线的定义可得|AF1|﹣|AF2|=2a,即有|NF1|﹣|NF2|=2a,又|NF1|+|NF2|=2c,解得|NF2|=c﹣a,可得|ON|=a,则A,B都正确;由内角平分线的性质定理可得==,即有|AF2|=3(﹣1)>c﹣a=2,解得0<x<X0<3,故C正确;可设A(m,n),m,n>0,△AF1F2的内切圆的半径为r,则﹣=1,①又S=•2c•n=r(2c+|AF1|+|AF2|),即为5n=r(5+3+|AF2|)=r(8+em﹣a)=r(5+m),化为n=r(1+m),若r=4,则n=4(1+m),②联立①②,可得方程组无解.故D错误.故选:ABC.三、填空题:本大题共4个小题,每小题5分,共20分13.已知f(x)=sin x+2f'()cos x,则f()=.解:已知f(x)=sin x+2f'()cos x,函数f(x)的定义域为R,f′(x)=cos x﹣2f'()sin x,所以f′()=cos﹣2f'()sin,解得f′()=,所以f()=sin+2f'()cos=,故答案为:.14.平面内非零向量,,,有||=3,||=4,•=0.且|﹣﹣|=2,则||的最大值为7.解:∵平面内非零向量,,,有||=3,||=4,•=0.故可建立如图所示的坐标系,则A(3,0),B(0,4),设C(x,y),因为|﹣﹣|=2,∴(x﹣3)2+(y﹣4)2=4,即表示以D(3,4)为圆心,2为半径的圆上的点,因为OD==5,故||的最大值为:5+2=7,故答案为:7.15.若对于任意实数m,函数f(x)=ωx+cosωx.在区间(m,m+1]上至少存在两个不相等的实数x1,x2满足f(x1)f(x2)=4,则ω的最小正整数值为10.解:f(x)=ωx+cos x=2sin(ωx+),因为f(x1)f(x2)=4,则f(x1),f(x2)同时为函数的最小或同时为函数的最大值,因为f(x)在区间(m,m+1]上至少存在两个不相等的实数x1,x2满足f(x1)f(x2)=4,所以|x1﹣x2|≥T==,故m+1﹣m×,所以ω≥3π,则ω的最小正整整数为10.故答案为:10.16.在三棱锥V﹣ABC中.△ABC是边长为6的正三角形.VA=VB=VC=2,其内有n个小球,球O1与三梭锥V﹣ABC的四个面都相切,则球O1的半径为,球O2与三棱锥V﹣ABC的三个面和球O1都相切,以此类推,……,球O n与三棱锥V﹣ABC 的三个面和球O n﹣1(n≥2,n∈N*)都相切,则球O n的表面积等于.解:如图,取O为三角形ABC的中心,M为AB的中点,连接OM,VM,则BM=,OM=,VM=,∴VO=,由对称性可知,球心O1在VO上,且O1O=r1(r1为球O1的半径),作O1H⊥VM,则O1H=r1,VO1=4﹣r1,由Rt△VOM∽Rt△VHO1,可得,即,解得,则球O1的半径为;作球O1与底面ABC平行的切面A1B1C1,则球O2即为三棱锥V﹣A1B1C1的内切球,三棱锥V﹣A1B1C1的高,由V﹣A1B1C1与V﹣ABC相似,且长度相似比为,得,可得,则{r n}构成以为首项,以为公比的等比数列,∴,可得球O n的表面积为.故答案为:;.四、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.已知△ABC内角A,B,C的对边为a,b,c,b=c=4且满足______.①a sin B=b cos(A+),②sin C﹣sin B=sin(A﹣B),③,在这三个条件中任选一个,补充在上面的题干中,然后解答问题.(1)求角A;(2)点P为△ABC内一点,当∠BPC=时,求△BPC面积的最大值.解:选①a sin B=b cos(A+),由正弦定理得sin A sin B=sin B cos(A+),因为sin B≠0,所以sin A=cos(A+)=,即tan A=,因为A∈(0,π),所以A=;选②sin C﹣sin B=sin(A﹣B),所以sin(A+B)﹣sin B=sin(A﹣B),所以sin A cos B+sin B cos A﹣sin B=sin A cos B﹣sin B cos A,即2sin B cos A=sin B,因为sin B≠0,所以cos A=,因为A∈(0,π),所以A=;选③,由正弦定理得,整理得,2sin C cos A=sin B cos A+sin A cos B=sin(A+B)=sin C,因为sin C≠0,所以cos A=,因为A∈(0,π),所以A =;(2)由余弦定理a2=b2+c2﹣2bc cos A=16+16﹣2×=32﹣16,△BPC中,由余弦定理得a2=BP2+PC2﹣2BP•PC•cos=BP2+PC2+BP•PC≥3BP•PC,当且仅当BP=CP时取等号,所以BP•PC,S△BPC ==,△BPC 面积的最大值.18.随着我国市场经济体制的逐步完善,顾客购买心理不断成熟,影响顾客购买的因素越来越多,创建﹣一个规范有序的市场环境,提高消费者满意度,有助于当地经济的发展.2020年,淄博市市场监督管理部门共受理消费者投诉、举报43548件,为消费者挽回经济损失9300.19万元,连续两年进人全国城市消费者满意度测评前100名淄博市某调查机构对2020年的每个月的满意度进行了实际调查,随机选取了几个月的满意度数据如图:月份x234567101125.23342393658.87278满意度y(%)参考数据:x i=6,==48,=72,=2598.48,=414.(1)从这8个月的数据中任意选3个月的数据,以表示3个月中满意度不小于35%的个数,求ξ的分布列和数学期望;(2)根据散点图发现6月份数据偏差较大,如果去掉该月的数据,试用剩下的数据求出满意度y(%)关于月份x的线性回归方程(精确到0.01)附:线性回归方程y =中,==,.解:(1)由题意可知,满意度小于35%的有2个月,不小于35%的由6个月,所以ξ的可能取值为1,2,3,故P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,所以ξ的分布列为:ξ123P故ξ的数学期望为E(ξ)=1×+2×+3×=;(2)去掉6月份的数据后可得新数据表如下;月份x234571011满意度y(%)25.233423958.87278则,,,,所以==,所以=49.714﹣5.75×6=15.21,故剩下的数据所求出的线性回归方程为y=5.75x+15.21;19.已知数列{a n},{b n},a n>0.b n=a n+2n﹣1,数列{b n}的前n项和为T n,4T n=a n2+(2n+2)a n+4n﹣1+2n(n∈N*).(1)求a1的值和{b n}的通项公式;(2)令c n=2n+1﹣a n,求.解:(1)数列{a n},{b n},a n>0.b n=a n+2n﹣1,数列{b n}的前n项和为T n,4T n=a n2+(2n+2)a n+4n﹣1+2n①.当n=1时,整理得,解得a1=1.当n≥2时,4T n﹣1=a n﹣12+(2n﹣1+2)a n﹣1+4n﹣2+2n﹣1②,①﹣②得:2(b n+b n﹣1)=(b n+b n﹣1)(b n﹣b n﹣1),由于a n>0.b n=a n+2n﹣1,所以b n+b n﹣1>0,整理得b n﹣b n﹣1=2(常数),由于b1=1+1=2,故b n=2+2(n﹣1)=2n,所以.(2)由(1)得:c n=2n+1﹣a n=2n﹣1+1,所以=,故=.20.已知四边形ABCD,∠BAC=∠ADC=90°,DC=DA=AB,将△ADC沿AC翻折至△PAC.(1)若PA=PB,求证PA⊥BC;(2)若二面角P﹣AC﹣B为,求直线BC与平面PAB所成角的正弦值.【解答】(1)证明:因为DC=DA=AB,PA=PB,所以PB=PA=DA=AB,在△PAB中,有,所以PA⊥PB,又∠ADC=90°,即∠APC=90°,所以PA⊥PC,因为PB∩PC=P,PB,PC⊂平面PBC,所以PA⊥平面PBC,又BC⊂平面PBC,所以PA⊥BC;(2)解:取AC的中点E,BC的中点F,连结EF,PE,则EF∥AB,因为∠BAC=90°,所以AB⊥AC,所以EF⊥AC,因为DC=DA,即PC=PA,所以PE⊥AC,所以∠PEF为二面角P﹣AC﹣B的平面角,∠PEF=,设DC=DA=AB=,则,PE=,以点E为原点,建立空间直角坐标系如图所示,则,所以,设平面PBC的一个法向量为,则,即,令x=1,则y=0,,故,所以=,故直线BC与平面PAB所成角的正弦值为.21.在平面直角坐标系xOy中,动点M到直线x=3的距离是到点(2,0)的距离的倍.(1)求动点M的轨迹E的方程;(2)点P为直线x=3上一动点,过P点作曲线E的切线,切点为Q,线段PQ的中点为N,问是否存在定点T,满足|PQ|=2|NT|?若存在求出定点T的坐标;若不存在,请说明理由.解:(1)设M(x,y),因为动点M到直线x=3的距离是到点(2,0)的距离的倍,所以,化简整理可得,,故动点M的轨迹E的方程为;(2)由题意可知,直线PQ的斜率一定存在,设其方程为y=kx+m,则点P(3,3k+m),联立直线PQ与椭圆E可得,则(1+3k2)x2+6kmx+3m2﹣6=0,所以,求解可得,所以,椭圆右焦点F2(2,0),所以,,所以,所以QF2⊥PF2,因为N是PQ的中点,所以|QP|=2|NF2|,所以存在定点T(2,0),满足|PQ|=2|NT|.22.已知函数f(x)=+ax+a2lnx(a∈R)f'(x)是f(x)的导函数.(1)若a>0,曲线y=f(x)在(1,f(1))处的切线为y=x+b,求a,b的值;(2)设g(x)=xf'(x)﹣e x,若g(x)≤0,求实数a的取值范围.解:(1)f(x)的定义域为(0,+∞),f′(x)=x+a+,所以f′(1)=+a+=,解得a=2或a=﹣4(舍),所以f(1)=,所以切点坐标为(1,),代入切线方程得b=﹣,所以a=2,b=﹣.(2)g(x)=x2+ax+﹣e x,x∈(0,+∞),所以g′(x)=x+a﹣e x,设h(x)=x+a﹣e x,x∈(0,+∞),所以h′(x)=1﹣e x<0,所以g′(x)在(0,+∞)上是减函数,且g′(x)<g′(0)=a﹣1,①当a﹣1≤0时,即a≤1时,g′(x)<g′(0)<0,所以g(x)在(0,+∞)上是减函数,所以g(x)<g(0)=﹣1≤0,解得﹣≤a≤,所以﹣≤a≤1.②当a﹣1>0时,即a>1时,g′(0)=a﹣1>0,g′(ln2a)=ln2a﹣a,设m(a)=ln2a﹣a,所以m′(a)=﹣1=<0,所以m(a)在(1,+∞)上是减函数,所以g′(ln2a)=ln2a﹣a<m(1)=ln2﹣1<0,所以存在唯一x0∈(0,ln2a)满足g′(x0)=0,即x0+a﹣=0,所以当x∈(0,x0)时,g′(x)>0,g(x)单调递增,当x∈(x0,ln2a)时,g′(x)<0,g(x)单调递减,所以g(x)max=g(x0)=x02+ax0+﹣=(x0+a)2﹣=﹣≤0,解得0<≤2,所以0<x0≤ln2,因为a=﹣x0且0<x0≤ln2,设φ(x)=e x﹣x,x∈(0,ln2],所以φ′(x)=e x﹣1>0,所以φ(x)在(0,ln2]上是增函数,因为φ(0)=0,φ(ln2)=2﹣ln2,所以1<a≤2﹣ln2,综上所述,实数a的取值范围是[﹣,2﹣ln2].。
山东省临沂市2021届新高考数学一月模拟试卷含解析

山东省临沂市2021届新高考数学一月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知点P 在椭圆τ:2222x y a b +=1(a>b>0)上,点P 在第一象限,点P 关于原点O 的对称点为A ,点P关于x 轴的对称点为Q ,设34PD PQ =u u u r u u u r,直线AD 与椭圆τ的另一个交点为B ,若PA ⊥PB ,则椭圆τ的离心率e=( ) A .12B.2C.2D.3【答案】C 【解析】 【分析】设()11,P x y ,则()11,A x y --,()11,Q x y -,11,2y D x ⎛⎫- ⎪⎝⎭,设()22,B x y ,根据PA PB ⊥化简得到2234a c =,得到答案.【详解】设()11,P x y ,则()11,A x y --,()11,Q x y -,34PD PQ =u u u r u u u r ,则11,2y D x ⎛⎫- ⎪⎝⎭,设()22,B x y , 则22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得到:()()()()1212121222x x x x y y y y a b +-+-=-,2121221212PBy y x x b k x x a y y -+==-⋅-+,AD AB k k =,即1121124y y y x x x +=+,()1211124PA y y y k x x x +==+, PA PB ⊥,故1PA PBk k ⋅=-,即2241b a -=-,故2234a c =,故2e =.故选:C . 【点睛】本题考查了椭圆的离心率,意在考查学生的计算能力和转化能力.2.椭圆22192x y +=的焦点为12,F F ,点P 在椭圆上,若2||2PF =,则12F PF ∠的大小为( )A .150︒B .135︒C .120︒D .90︒【答案】C 【解析】【分析】根据椭圆的定义可得14PF =,12F F =. 【详解】由题意,12F F =126PF PF +=,又22PF =,则14PF =, 由余弦定理可得22212121212164281cos 22242PF PF F F F PF PF PF +-+-∠===-⋅⨯⨯.故12120F PF ︒∠=.故选:C. 【点睛】本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题.3.设复数z 满足21z i z -=+,z 在复平面内对应的点为(,)x y ,则( ) A .2430x y --= B .2430x y +-= C .4230x y +-= D .2430x y -+=【答案】B 【解析】 【分析】设z x yi =+,根据复数的几何意义得到x 、y 的关系式,即可得解; 【详解】 解:设z x yi =+∵|2||1|z i z -=+,∴2222(2)(1)x y x y +-=++,解得2430x y +-=. 故选:B 【点睛】本题考查复数的几何意义的应用,属于基础题.4.已知数列1a ,21a a ,32a a ,…,1n n a a -是首项为8,公比为12得等比数列,则3a 等于( )A .64B .32C .2D .4【答案】A 【解析】 【分析】根据题意依次计算得到答案. 【详解】根据题意知:18a =,214a a =,故232a =,322a a =,364a =. 故选:A . 【点睛】本题考查了数列值的计算,意在考查学生的计算能力. 5.设函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 在[0,2]π上有且仅有5个零点,则ω的取值范围为( ) A .1229,510⎡⎫⎪⎢⎣⎭B .1229,510⎛⎤⎥⎝⎦ C .1229,510⎛⎫⎪⎝⎭D .1229,510⎡⎤⎢⎥⎣⎦【答案】A 【解析】 【分析】由02x π≤≤求出5x ωπ+范围,结合正弦函数的图象零点特征,建立ω不等量关系,即可求解. 【详解】当[0,2]x πÎ时,,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦, ∵()f x 在[]0,2π上有且仅有5个零点, ∴5265ππωππ≤+<,∴1229510ω≤<. 故选:A. 【点睛】本题考查正弦型函数的性质,整体代换是解题的关键,属于基础题.6.如图,在三棱锥S ABC -中,SA ⊥平面ABC ,AB BC ⊥,现从该三棱锥的4个表面中任选2个,则选取的2个表面互相垂直的概率为( )A .12B .14C .13D .23【答案】A 【解析】 【分析】根据线面垂直得面面垂直,已知SA ⊥平面ABC ,由AB BC ⊥,可得BC ⊥平面SAB ,这样可确定垂直平面的对数,再求出四个面中任选2个的方法数,从而可计算概率.【详解】由已知SA ⊥平面ABC ,AB BC ⊥,可得SB BC ⊥,从该三棱锥的4个面中任选2个面共有246C =种不同的选法,而选取的2个表面互相垂直的有3种情况,故所求事件的概率为12. 故选:A . 【点睛】本题考查古典概型概率,解题关键是求出基本事件的个数. 7.函数()1cos f x x x x ⎛⎫=-⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为( ) A . B . C .D .【答案】D 【解析】因为11()()cos ()cos ()f x x x x x f x x x-=-+=--=-,故函数是奇函数,所以排除A ,B ;取x π=,则11()()cos ()0f ππππππ=-=--<,故选D.考点:1.函数的基本性质;2.函数的图象.8.已知直线22y x a =-是曲线ln y x a =-的切线,则a =( ) A .2-或1 B .1-或2 C .1-或12D .12-或1 【答案】D 【解析】 【分析】求得直线22y x a =-的斜率,利用曲线ln y x a =-的导数,求得切点坐标,代入直线方程,求得a 的值.【详解】直线22y x a =-的斜率为1, 对于ln y x a =-,令11y x '==,解得1x =,故切点为()1,a -,代入直线方程得212a a -=-,解得12a =-或1. 故选:D 【点睛】本小题主要考查根据切线方程求参数,属于基础题.9.已知点(3,0),(0,3)A B -,若点P 在曲线21y x =--上运动,则PAB △面积的最小值为( ) A .6 B .3C .93222- D .93222+ 【答案】B 【解析】 【分析】求得直线AB 的方程,画出曲线表示的下半圆,结合图象可得P 位于(1,0)-,结合点到直线的距离公式和两点的距离公式,以及三角形的面积公式,可得所求最小值. 【详解】解:曲线21y x =--表示以原点O 为圆心,1为半径的下半圆(包括两个端点),如图, 直线AB 的方程为30x y -+=,可得||32AB =,由圆与直线的位置关系知P 在(1,0)-时,P 到直线AB 距离最短,即为22=, 则PAB △的面积的最小值为132232⨯⨯=. 故选:B.【点睛】本题考查三角形面积最值,解题关键是掌握直线与圆的位置关系,确定半圆上的点到直线距离的最小值,这由数形结合思想易得.10.已知函数()[]f x x x =-,其中[]x 表示不超过x 的最大正整数,则下列结论正确的是( ) A .()f x 的值域是[]0,1 B .()f x 是奇函数 C .()f x 是周期函数 D .()f x 是增函数【答案】C 【解析】 【分析】根据[]x 表示不超过x 的最大正整数,可构建函数图象,即可分别判断值域、奇偶性、周期性、单调性,进而下结论. 【详解】由[]x 表示不超过x 的最大正整数,其函数图象为选项A ,函数()[)0,1f x ∈,故错误; 选项B ,函数()f x 为非奇非偶函数,故错误;选项C ,函数()f x 是以1为周期的周期函数,故正确;选项D ,函数()f x 在区间[)[)[)0,1,1,2,2,3L L 上是增函数,但在整个定义域范围上不具备单调性,故错误. 故选:C 【点睛】本题考查对题干[]x 的理解,属于函数新定义问题,可作出图象分析性质,属于较难题. 11.已知()22log 217y xx =-+的值域为[),m +∞,当正数a ,b 满足2132m a b a b+=++时,则74a b +的最小值为( ) A .94B .5C .524+ D .9【答案】A 【解析】 【分析】利用()22log 217y xx =-+的值域为[),m +∞,求出m,再变形,利用1的代换,即可求出74a b +的最小值.【详解】解:∵()()2222log 217log 116y x x x ⎡⎤=-+=-+⎣⎦的值域为[),m +∞, ∴4m =, ∴414622a b a b+=++,∴()()141746224622a b a b a b a b a b ⎛⎫+=++++⎡⎤ ⎪⎣⎦++⎝⎭()()4216219554426244a b a b a b a b +⎡⎤+=++≥⨯+=⎢⎥++⎣⎦, 当且仅当()4262262a b a b a b a b++=++时取等号, ∴74a b +的最小值为94. 故选:A. 【点睛】本题主要考查了对数复合函数的值域运用,同时也考查了基本不等式中“1的运用”,属于中档题. 12.已知函数()ln x f x x=,()xg x xe -=.若存在()10,x ∈+∞,2x R ∈使得()()()120f x g x k k ==<成立,则221kx e x ⎛⎫ ⎪⎝⎭的最大值为( )A .2eB .eC .24e D .21e 【答案】C 【解析】 【分析】由题意可知,()()xg x f e=,由()()()120f x g x k k ==<可得出101x<<,20x <,利用导数可得出函数()y f x =在区间()0,1上单调递增,函数()y g x =在区间(),0-∞上单调递增,进而可得出21xx e =,由此可得出()22221x x x g x k x e ===,可得出2221k k x e k e x ⎛⎫= ⎪⎝⎭,构造函数()2k h k k e =,利用导数求出函数()y h k =在(),0k ∈-∞上的最大值即可得解.【详解】()ln x f x x =Q ,()()ln xx x x x e g x f e e e===,由于()111ln 0x f x k x ==<,则11ln 001x x <⇒<<,同理可知,20x <, 函数()y f x =的定义域为()0,∞+,()21ln 0xf x x-'=>对()0,1x ∀∈恒成立,所以,函数()y f x =在区间()0,1上单调递增,同理可知,函数()y g x =在区间(),0-∞上单调递增,()()()212x f x g x f e∴==,则21x x e =,()22221x x x g x k x e ∴===,则2221k k x e k e x ⎛⎫= ⎪⎝⎭, 构造函数()2kh k k e =,其中k 0<,则()()()222kkh k k k e k k e '=+=+.当2k <-时,()0h k '>,此时函数()y h k =单调递增;当20k -<<时,()0h k '<,此时函数()y h k =单调递减.所以,()()2max 42h k h e=-=. 故选:C. 【点睛】本题考查代数式最值的计算,涉及指对同构思想的应用,考查化归与转化思想的应用,有一定的难度. 二、填空题:本题共4小题,每小题5分,共20分。
2021届全国名校学术联盟新高考模拟试卷(四)数学(文)试题

2021届全国名校学术联盟新高考模拟试卷(四)文科数学试卷★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题1.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,则实数a 的取值范围是( )A. (,2]-∞-B. [2,)+∞C. (,2]-∞D. [2,)-+∞【答案】B 【解析】由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[)2,+∞ 本题选择B 选项. 2.已知2a ib i i+=+ ,,a b ∈R ,其中i 为虚数单位,则+a b =( ) A. -1 B. 1C. 2D. 3【答案】B 【解析】 【分析】利用复数除法运算法则化简原式可得2ai b i -=+,再利用复数相等列方程求出,a b 的值,从而可得结果.【详解】因为22222a i ai i ai b i i i+--==-=+- ,,a b ∈R , 所以2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩,则+1a b =,故选B. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3. 下列说法错误的是( )A. 命题“若0a =,则0ab =”的否命题是:“若0a ≠,则0ab ≠”B. 如果命题“”与命题“或”都是真命题,那么命题一定是真命题.C. 若命题:2,10x R x x ∃∈-+<,则2:,10p x R x x ⌝∀∈-+≥;D. “1sin 2θ=”是“30θ=︒”的充分不必要条件; 【答案】D 【解析】试题分析:根据命题的否命题的形式为条件和结论同时否定,所以A 是正确的,根据复合命题的真值表,可以确定B 项是正确的,根据特称命题的否定形式,可知C 是正确的,因为“1sin 2θ=”是“30θ=︒”的必要不充分条件,可知D 是错误的,故选D . 考点:逻辑.4.设n S 为等差数列{}n a 的前n 项和,834S a =,72a =-,则9a =( ) A. -6 B. -4C. -2D. 2【答案】A 【解析】【详解】由已知得()11187842,{26 2.a d a d a d ⨯+=++=-解得110,{2.a d ==-91810826a a d ∴=+=-⨯=-.考点:等差数列的通项公式和前n 项和公式.5.已知ππ43πsin()cos(),0,322ααα++-=--<<则2πcos()3α+等于( )A.5B.35C.45D.35【答案】C 【解析】 【分析】首先根据等式化简,得到4sin 65πα⎛⎫+=- ⎪⎝⎭,再利用诱导公式化简2cos 3πα⎛⎫+ ⎪⎝⎭求值. 【详解】解析:∵ππ43sin cos 32αα⎛⎫⎛⎫++-=- ⎪ ⎪⎝⎭⎝⎭133343sin cos sin sin cos 22ααααα++=+=-433sin 6πα⎛⎫=+=-⎪⎝⎭ ∴π4sin 65()α+=-.又2ππππcos cos sin 32()())6(6ααα+=++=-+, ∴2π4co (s 35)α+=. 故选:C【点睛】本题考查三角恒等变换,化简求值,重点考查转化与变形,计算能力,属于基础题型.6.一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:2m ).( )A. 426+B. 46C. 422+D. 42+【解析】由三视图可以看出,此几何体是一个侧面与底面垂直且底面与垂直于底面的侧面全等的三棱锥,由图中数据知此两面皆为等腰三角形,高为2,底面边长为2,故它们的面积皆为12222⨯⨯=,由顶点在底面的投,将垂足与顶点连接起来即得此两侧面的斜高,由勾股定理可以算出,此斜高为,侧面的面积皆为12⨯=,故此三棱锥的全面积为224++=+故选A7.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A. 0B. 3-C.32D. 3【答案】B 【解析】可行域为一个三角形ABC 及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.8.设m ,n 为两条不同的直线,α,β为两个不同的平面,下列命题中,正确的是( ) A. 若m ,n 与α所成的角相等,则//m n B. 若αβ⊥,//m α,则m β⊥ C. 若m α⊥,//m β,则αβ⊥ D. 若//m α,//n β,则//m n 【答案】C 【解析】【详解】若m ,n 与α所成的角相等,则//m n 或m ,n 相交或m ,n 异面;A 错.若αβ⊥,//m α,则m β⊥或//m β,B 错. 若m α⊥,//m β,则αβ⊥正确. D .若//m α,βn//,则//m n ,m ,n 相交或m ,n 异面,D 错 考点:直线与平面,平面与平面的位置关系 9.函数()1ln f x x x ⎛⎫=-⎪⎝⎭的图象大致是( ) A. B.C. D.【答案】B 【解析】 【分析】通过函数在2x =处函数有意义,在2x =-处函数无意义,可排除A 、D ;通过判断当1x >时,函数的单调性可排除C ,即可得结果. 【详解】当2x =时,110x x-=>,函数有意义,可排除A ; 当2x =-时,1302x x -=-<,函数无意义,可排除D ; 又∵当1x >时,函数1y x x=-单调递增,结合对数函数的单调性可得函数()1ln f x x x ⎛⎫=- ⎪⎝⎭单调递增,可排除C ; 故选B.【点睛】本题主要考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合与分类讨论的思维能力,属于中档题.10.在ABC ∆中,060,10,A BC D ∠==是边AB 上的一点,2,CD CBD =∆的面积为1,则BD 的长为( )A.32B. 4C. 2D. 1【答案】C 【解析】1sin 1sin 2BCD BCD ∠=∴∠=2242BD BD ∴=-=∴=,选C 11.定义在R 上的函数()y f x =满足()555,0222f x f x x f x ⎛⎫⎛⎫⎛⎫+=-->⎪ '⎪ ⎪⎝⎭⎝⎭⎝⎭,任意的12x x <都有()()12f x f x >是125x x +<的 ( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C 【解析】【详解】因为()5,02x f x '>>; ()5,02x f x '<<,且()f x 关于52x =对称,所以12x x <时, ()()12f x f x > ()212212125555,555222f x x x x x x x x <>=-⇒⇒-<∴<-⇒+<反之也成立: 12x x <时, ()()()1212121225555,,55222x x x x x x f x f x f x +<⇒<⇒>-<-=<>,所以选C.点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒ q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒ q 与非q ⇒非p , q ⇒ p 与非p ⇒非q , p ⇔ q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆ B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.12.已知函数212()321x x f x x x ⎧-<⎪=⎨≥⎪-⎩,,,若方程()f x a =有三个不同的实数根,则实数a 的取值范围是( )A. (1,3)B. (0,3)C. (0,2)D. (0,1)【答案】D 【解析】【分析】转化条件得函数()f x 的图象与函数y a =的图象有三个不同交点,画出图象即可得解. 【详解】由题意作出函数()f x 的图象,如图:方程()f x a =有三个不同的实数根即为函数()f x 的图象与函数y a =的图象有三个不同交点,由图可知:01a <<.故选:D.【点睛】本题考查了函数的零点个数问题,考查了数形结合的思想,属于基础题.二、填空题13.已知sin α2cos α=,则cos2α的值是______. 【答案】35【解析】 【分析】由已知得到tan 2α=,巧用“1”及弦化切得到所求的结果.【详解】由已知得tan 2α=,22222222cos sin 1tan 143cos 2cos sin sin cos tan 1415ααααααααα---=-====-+++. 故答案为35-【点睛】1.利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.2.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.3.注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.14.若11234(1)n n S n -=-+-+⋅⋅⋅+-⋅,则173350S S S ++=__________. 【答案】1 【解析】 【分析】首先分当21n k =-和2n k =时,求数列的前n 项和,再代入n 值计算结果.【详解】解析:依题意,当21n k =-时, ()11112n n S k k +=+-⋅==, 当2n k =时, 2n nS k =-=-,综上所述1,2,2n n n S n n +⎧⎪⎪=⎨⎪-⎪⎩为奇数为偶数,∴1733501S S S ++=. 故答案为:1【点睛】本题考查求数列的前n 项和,重点考查分组,并项求和,属于基础题型. 15.已知,(0,),1x y x y ∈+∞+=,则11x y+的最小值为____________. 【答案】4 【解析】 【分析】由(),0,x y ∈+∞,且x +y =1,进行1的代换11x y +=(11x y+)(x +y ),展开利用基本不等式可求. 【详解】∵x ,y >0.且x +y =1,则11x y +=(11x y +)(x +y )=2y xx y++≥4, 当且仅当y x x y =且x +y =1即x =y 12=时取等号,此时所求最小值4. 故答案为4. 【点睛】本题主要考查了利用基本不等式求解最值,解题的关键是熟练掌握基本公式并能灵活应用.16.给出下列命题: ①函数()4cos(2)3f x x π=+的一个对称中心为5(,0)12π-; ②若,αβ为第一象限角,且αβ>,则tan tan αβ>; ③若a b a b +=-,则存在实数λ,使得b a λ= ;④在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,若040,20,25a b B ===,则ABC ∆必有两解; ⑤函数sin 2y x = 的图象向左平移4π个单位长度,得到sin(2)4y x π=+的图象.其中正确命题的序号是__________.(把你认为正确的序号都填上) 【答案】①③④ 【解析】试题分析:因为52()1232πππ⨯-+=-,且cos()02π-=,所以5(,0)12π-是函数()4cos 23f x x π⎛⎫=+ ⎪⎝⎭的一个对称中心,所以①是正确的,因为1363ππ>,但是13tan tan 63ππ<,所以②是错误的,当a b a b +=-,所以有两个向量是反向的,即是共线向量,所以一定存在实数λ,使得b a λ=,故③是正确的,因为40sin 252040<<,所以ABC ∆必有两解,所以④是正确的,函数sin 2y x =的图象向左平移8π个单位长度,得到sin 24y x π⎛⎫=+ ⎪⎝⎭的图象,所以⑤是正确的,故答案为①③④.考点:三角函数的性质的综合应用,三角形解的个数,向量的关系.【易错点睛】该题属于选择题性质的填空题,考查的知识点比较多,属于较难题目,在解题的过程中,需要对每个命题所涉及的知识点掌握的比较熟练,容易出错的地方是需要把握三角形解的个数的判定方法,以及图像变换中涉及到左右平移时移动的量那是自变量本身的变化量,以及三角函数在各象限内是不具备单调性的.三、解答题17.△ABC 的角A 、B 、C 的对边分别为a 、b 、c ,m =(2b -c ,a),n =(cosA ,-cosC),且m ⊥n . (Ⅰ)求角A 的大小; (Ⅱ)当y =2sin 2B +sin(2B +6π)取最大值时,求角B 的大小. 【答案】(Ⅰ) A =3π.(Ⅱ) B =3π时,y 取最大值2. 【解析】【详解】m ⊥·0n mn ∴=.考查数量积的坐标表示, ,求y =2sin 2B +sin(2B +6π)取最大值时,将函数解析式化为y=1+sin(2B -6π). 然后作用的角用整体法-6π<2B -6π<76π,在范围内求最值. 解: (Ⅰ)由m ⊥n ,得m ·n =0,从而(2b -c)cosA -acosC =0,由正弦定理得2sinBcosA -sinCcosA -sinAcosC =0 ∴2sinBcosA -sin(A +C)=0,2sinBcosA -sinB =0, ∵A 、B ∈(0,π),∴s inB≠0,cosA =12,故A =3π(Ⅱ)y =2sin 2B +2sin(2B +6π)=(1-cos2B)+sin2Bcos 6π+cos2Bsin 6π=1-12cos2B =1+sin(2B -6π).由(Ⅰ)得,0<B <23π,-6π<2B -6π<76π,∴当2B -6π=2π,即B =3π时,y 取最大值218.若n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,24S =. (1)求数列{}n a 的通项公式; (2)设13,n n n n b T a a +=是数列{}n b 的前n 项和,求使得20n m T <对所有n N +∈都成立的最小正整数m . 【答案】(1) 21n a n =- (2) m 的最小值为30. 【解析】试题分析:第一问根据条件中数列为等差数列,设出等差数列的首项和公差,根据题中的条件,建立关于等差数列的首项和公差的等量关系式,从而求得结果,利用等差数列的通项公式求得数列的通项公式,第二问利用第一问的结果,先写出()()3311212122121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,利用裂项相消法求得数列{}n b 的前n 项和,根据条件,得出相应的不等式,转化为最值来处理,从而求得结果.试题解析:(1)因为{}n a 为等差数列,设{}n a 的首项为1a ,公差为d ()0d ≠,所以 112141,2,46S a S a d S a d ==+=+.又因124,,S S S 成等比数列,所以()()2111462a a d a d ⋅+=+.所以212a d d =.因为公差d 不等于0,所以12d a =.又因为24S =,所以1a 1,d 2,所以21n a n =-.(2)因为()()3311212122121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,所以311111123352121n T n n ⎛⎫=-+-++- ⎪-+⎝⎭31312212n T n ⎛⎫=-< ⎪+⎝⎭.要使20n m T <对所有n N *∈都成立,则有3202m ≥,即30m ≥.因为m N *∈,所以m 的最小值为30. 考点:等差数列,裂项相消法求和,恒成立问题.19.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,2AB BC ==,7AD CD ==,3PA =,120ABC ∠=,G 为线段PC 上的点.(1)证明:BD ⊥平面PAC ;(2)若G 是PC 的中点,求DG 与平面APC 所成的角的正切值.【答案】(1)见解析;(243 【解析】试题分析:(1)推导出PA ⊥BD ,BD ⊥AC ,由此能证明BD ⊥平面PAC .(2)由PA ⊥平面ABCD ,得GO ⊥面ABCD ,∠DGO 为DG 与平面PAC 所成的角,由此能求出DG 与平面APC 所成的角的正切值.试题解析:(1)证明:∵在四棱锥P ABCD -中,PA ⊥平面ABCD ,∴PA BD ⊥.∵2AB BC ==,7AD CD ==.设AC 与BD 的交点为O ,则BD 是AC 的中垂线,故O 为AC 的中点,且BD AC ⊥.而PA AC A ⋂=,∴BD ⊥面PAC ;(2)若G 是PC 的中点,O 为AC 的中点,则GO 平行且等于12PA , 故由PA ⊥面ABCD ,可得GO ⊥面ABCD ,∴GO OD ⊥,故OD ⊥平面PAC ,故DGO ∠为DG 与平面PAC 所成的角.由题意可得132GO PA ==,ABC ∆中,由余弦定理可得,2222cos AC AB BC AB BC ABC =+-⋅⋅∠ 44222cos12012=+-⨯⨯⨯︒=,∴AC =OC =∵直角三角形COD 中,2OD ==,∴直角三角形GOD 中,tan OD DGO OG ∠==. 点睛:本题考查线面垂直的证明,考查线面角的正切值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.已知函数()cos f x x x =223sin cos 2x x --+.(1)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域;(2)若ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c 且满足b a =,sin(2)sin A C A +22cos()A C =++,求()f B 的值.【答案】(1)[]1,2-;(2)1.【解析】试题分析:(1)先根据二倍角公式以及配角公式将函数化为基本三角函数形式,再根据正弦函数性质求值域,(2)先根据两角和正弦公式展开化简()sin 2sin A C A + ()22cos A C =++得sin 2sin C A =,由正弦定理得2c a =,再根据余弦定理得3B π=,代人()()f x f B 得值.试题解析:(1)()cos f x x x = 223sin cos 2x x --+ 22sin 1x x =-+cos2x x =+ 2sin 26x π⎛⎫=+ ⎪⎝⎭ 0,2x π⎡⎤∈⎢⎥⎣⎦,∴72,666x πππ⎡⎤+∈⎢⎥⎣⎦,1sin 2,162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,∴()[]1,2f x ∈-. (2)∵由题意可得()sin A A C ⎡⎤++⎣⎦ ()2sin 2sin cos A A A C =++有,()()sin cos cos sin A A C A A C +++ ()2sin 2sin cos A A A C =++,化简可得:sin 2sin C A =,∴由正弦定理可得:2c a =,∵b =,∴余弦定理可得:222cos 2a c b B ac+-=222431222a a a a a +-==⋅,∵0B π<<,∴3B π=,所以()1f B =. 21.已知函数()1ln (1)2f x x a x =--. (1)若2a =-,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若不等式()0f x <对任意(1,)x ∈+∞恒成立,求实数a 的取值范围.【答案】(1) 22y x =- (2) [2,)+∞【解析】试题分析:(1)2a =-时()ln 1f x x x =+-求导,得到在切点(1,0)处切线斜率,代入点斜式即可;(2) 求导2()2ax f x x'-=对a 分情况讨论,讨论函数的单调性,结合题目要求()0f x <对任意(1,)x ∈+∞恒成立名即可得到实数a 的取值范围; 试题解析:(1)2a =-时,()ln 1f x x x =+-,1()1,f x x =+'∴切点为(1,0),(1)2k f ='= 2a ∴=-时,曲线()y f x =在点(1,(1))f 处的切线方程为22y x =-(2)(i )1()ln (1)2f x x a x =--,2()2ax f x x'-=, 当0a ≤时,(1,)x ∈+∞,()0f x '>,∴()f x 在(1,)+∞上单调递增,()(1)0f x f >=,∴0a ≤不合题意.②当2a ≥即201,a <≤时,2()2()022a x ax a f x x x--==-<'在(1,)+∞上恒成立, ()f x ∴在(1,)+∞上单调递减,有()(1)0f x f <=,∴2a ≥满足题意.③若02a <<即21,a >时,由()0f x '>,可得21x a <<,由()0f x '<,可得2x a>, ∴()f x 在2(1,)a 上单调递增,在2(,)a +∞上单调递减,∴2()(1)0f f a>=, ∴02a <<不合题意. 综上所述,实数a 的取值范围是[2,).+∞考点:利用导数研究函数的性质22.在直角坐标系中,圆1C :221x y +=经过伸缩变换32x x y y''=⎧⎨=⎩,后得到曲线2C 以坐标原点为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线l 的极坐标方程为102cos sin θθρ+=()1求曲线2C 的直角坐标方程及直线l 的直角坐标方程;()2在2C 上求一点M ,使点M 到直线l 的距离最小,并求出最小距离.【答案】(1)22194x y += 2100x y +-=; (2【解析】【分析】(1)由'3'2x x y y =⎧⎨=⎩后得到曲线C 2,可得:1'31'2x x y y ⎧=⎪⎪⎨⎪=⎪⎩,代入圆C 1:x 2+y 2=1,化简可得曲线C 2的直角坐标方程,将直线l 的极坐标方程为cosθ+2sinθ=10ρ化为:ρcosθ+2ρsinθ=10,进而可得直线l 的直角坐标方程. (2)将直线x +2y ﹣10=0平移与C 2相切时,则第一象限内的切点M 满足条件,联立方程求出M 点的坐标,进而可得答案.【详解】(1)因为32x x y y ''=⎧⎨=⎩后得到曲线2C , 1'31'2x x y y ⎧=⎪⎪∴⎨⎪=⎪⎩,代入圆1C :221x y +=得:'2'2194x y +=, 故曲线2C 的直角坐标方程为22194x y +=; 直线l 的极坐标方程为102cos sin θθρ+=.即210cos sin ρθρθ+=,即2100x y +-=.()2将直线2100x y +-=平移与2C 相切时,则第一象限内的切点M 满足条件,设过M 的直线为20x y C ++=,则由2220194x y C x y ++=⎧⎪⎨+=⎪⎩得:222599360424x Cx C ++-=, 由229259()4360244C C ⎛⎫=-⨯⨯-= ⎪⎝⎭得:52C =±, 故95x =,或95x =-,(舍去), 则85y =,即M 点的坐标为98,55⎛⎫ ⎪⎝⎭, 则点M 到直线l 的距离d == 【点睛】本题考查的知识点是简单的极坐标方程,直线与圆锥曲线的关系,难度中档.。
2021届山东省新高考高考模拟冲关押题卷(四)数学(解析版)

2021届山东省新高考高考模拟冲关押题卷(四)数学(解析版)第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A ={x |(x +1)(x -2)≤0},B ={x |x <2},则A ∩B =( ) A .[0,2] B .[0,1] C .(0,2] D .[-1,0]2.若复数z =1+i1+a i(i 表示虚数单位)为纯虚数,则实数a 的值为( )A .1B .0C .-12 D .-13.设{a n }为公差不为0的等差数列,p ,q ,k ,l 为正整数,则“p +q >k +l ”是“a p +a q >αk +a l ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知a =213,b =log 2 13,c =log 1213,则( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a5.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、侯、公,共五级.现有每个级别的诸侯各一人,共五人,要把80个橘子分完且每人都要分到橘子,级别每高一级就多分m 个(m 为正整数),若按这种方法分橘子,“公”恰好分得30个橘子的概率是( )A.18B.17C.16D.156.17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36°的等腰三角形(另一种是顶角为108°的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金△ABC 中,BCAC =5-12.根据这些信息,可得sin 234°=( )A.1-254 B .-3+58C .-5+14D .-4+587.已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,直线l 为双曲线C 的一条渐近线,F 1关于直线l 的对称点F ′1在以F 2为圆心,以半焦距c 为半径的圆上,则双曲线C 的离心率为( )A. 2B. 3 C .2 D .38.已知△ABC 为等边三角形,动点P 在以BC 为直径的圆上,若AP →=λAB →+μAC →,则λ+2μ的最大值为( )A.12 B .1+33 C.52 D .2+32二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知a >b ≥2,则( )A .b 2<3b -aB .a 3+b 3>a 2b +ab 2C .ab >a +b D.12+2ab >1a +1b10.如图,已知矩形ABCD 中,AB =2AD ,E 为边AB 的中点,将△ADE 沿直线DE 翻折成△A 1DE ,若M 为线段A 1C 的中点,则△ADE 在翻折过程中,下列说法正确的是( )A .线段BM 的长是定值B .存在某个位置,使DE ⊥A 1C C .点M 的运动轨迹是一个圆D .存在某个位置,使MB ⊥平面A 1DE11.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线C :(x 2+y 2)3=16x 2y 2恰好是四叶玫瑰线.给出下列结论正确的是( )A .曲线C 经过5个整点(即横、纵坐标均为整数的点)B .曲线C 上任意一点到坐标原点O 的距离都不超过2 C .曲线C 围成区域的面积大于4πD .方程(x 2+y 2)3=16x 2y 2(xy >0)表示的曲线C 在第一象限和第三象限12.已知函数f (x )=sin(ωx +φ)(ω>0)满足f (x 0)=f (x 0+1)=-12,且f (x )在(x 0,x 0+1)上有最小值,无最大值.则( )A .f ⎝⎛⎭⎫x 0+12=-1 B .若x 0=0,则f (x )=sin ⎝⎛⎭⎫2πx -π6 C .f (x )的最小正周期为3D .f (x )在(0,2 019)上的零点个数最少为1 346个第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13.为做好社区新冠疫情防控工作,需将六名志愿者分配到甲、乙、丙、丁四个小区开展工作,其中甲小区至少分配两名志愿者,其它三个小区至少分配一名志愿者,则不同的分配方案共有________种.(用数字作答)14.已知函数f (x )=x +2cos x +λ,在区间⎣⎡⎦⎤0,π2上任取三个数x 1,x 2,x 3,均存在以f (x 1),f (x 2),f (x 3)为边长的三角形,则λ的取值范围是________.15.设抛物线y 2=2px (p >0)的焦点为F (1,0),准线为l ,过焦点的直线交抛物线于A ,B 两点,分别过A ,B 作l 的垂线,垂足为C ,D ,若|AF |=4|BF |,则p =________,三角形CDF 的面积为________.16.在三棱锥P - ABC 中,底面ABC 是以AC 为斜边的等腰直角三角形,且AB =2,P A =PC =5,PB 与底面ABC 所成的角的正弦值为13,则三棱锥P - ABC 的外接球的体积为________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)如图,在△ABC 中,C =π4,∠ABC 的平分线BD 交AC 于点D ,且tan ∠CBD =12.(1)求sin A ;18.(12分)在①a2n+1-a2n=3(a n>0),②a2n-a n a n-1-3a n-1-9=0,③S n=n2-2n+2这三个条件中任选一个,补充在下面问题中.已知:数列{a n}的前n项和为S n,且a1=1,________.(1)求数列{a n}的通项公式;(2)对大于1的自然数n,是否存在大于2的自然数m,使得a1,a n,a m成等比数列.若存在,求m的最小值;若不存在,说明理由.19.(12分)如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC=2BC,E为AB的中点,沿DE将△ADE折起,使得点A到点P位置,且PE⊥EB,M为PB的中点,N是BC上的动点(与点B,C 不重合).(1)证明:平面EMN⊥平面PBC;(2)是否存在点N,使得二面角B -EN -M的余弦值为66,若存在,确定N点位置;若不存在,说明理由.20.(12分)沙漠蝗虫灾害年年有,今年灾害特别大.为防范罕见暴发的蝗群迁飞入境,我国决定建立起多道防线,从源头上控制沙漠蝗群.经研究,每只蝗虫的平均产卵数y和平均温度x有关,现收集了以往某地的7组数据,得到下面的散点图及一些统计量的值.平均温度x i ℃ 21 23 25 27 29 32 35 平均产卵数y i 个711 21 24 66115325∑i =17x i =192,∑i =17y i =569,∑i =17x i y i =18 542,∑i =17x 2i=5 414,∑i =17z i =25.2848,∑i =17x i z i =733.7079.⎝ ⎛⎭⎪⎪⎫其中z i =ln y i ,z =17∑i =17z i(2)根据以往统计,该地每年平均温度达到28℃以上时蝗虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到28℃以上的概率为p (0<p <1).①记该地今后5年中,恰好需要3次人工防治的概率为f (p ),求f (p )的最大值,并求出相应的概率p . ②当f (p )取最大值时,记该地今后5年中,需要人工防治的次数为X ,求X 的数学期望和方差.附:线性回归方程系数公式b ^=∑i =1n(x i -x )·(y i -y )∑i =1n (x i -x )2,a ^=y -b ^x .21.(12分)已知圆O :x 2+y 2=4,定点A (1,0),P 为平面内一动点,以线段AP 为直径的圆内切于圆O ,设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点Q (2,3)的直线l 与C 交于E ,F 两点,已知点D (2,0),直线x =x 0分别与直线DE ,DF 交于S ,T 两点.线段ST 的中点M 是否在定直线上,若存在,求出该直线方程;若不是,说明理由.22.(12分)已知函数f(x)=e x-ax-cos x,其中a∈R.(1)求证:当a≤-1时,f(x)无极值点;四1.答案:A解析:求得A=[-1,2],B=[0,4),所以A∩B=[0,2],故选A. 2.答案:D解析:设z=b i,b∈R且b≠0,则1+i1+a i=b i,得到1+i=-ab+b i,∴1=-ab,且1=b,解得a=-1,故选D.3.答案:D解析:设等差数列的公差为d,a p+a q>a k+a l⇒a1+(p-1)d+a1+(q-1)d >a1+(k-1)d+a1+(l-1)d⇒d [(p +q )-(k +l )]>0 ⇒⎩⎪⎨⎪⎧ d >0p +q >k +l 或⎩⎪⎨⎪⎧d <0p +q <k +l , 显然由p +q >k +l 不一定能推出a p +a q >a k +a l , 由a p +a q >a k +a l 也不一定能推出p +q >k +l ,因此p +q >k +l 是a p +a q >a k +a l 的既不充分也不必要条件, 故选D. 4.答案:C解析:a =1-32=1312⎛⎫⎪⎝⎭∈(0,1);b =log 2 13<0;c =121log 3=log 23>1,∴c >a >b ,故选C. 5.答案:B解析:设首项为a 1,因为和为80,所以5a 1+12×5×4×m =80,故m =8-12a 1.因为m ,a 1∈N *,所以⎩⎪⎨⎪⎧ a 1=2,m =7,或⎩⎪⎨⎪⎧ a 1=4,m =6,或⎩⎪⎨⎪⎧ a 1=6,m =5,或⎩⎪⎨⎪⎧ a 1=8,m =4,或⎩⎪⎨⎪⎧ a 1=10,m =3,或⎩⎪⎨⎪⎧ a 1=12,m =2,或⎩⎪⎨⎪⎧a 1=14,m =1.因此“公”恰好分得30个橘子的概率是17.故选B. 6.答案:C解析:由题可知∠ACB =72°,且cos 72°=12BC AC =5-14,cos 144°=2cos 2 72°-1=-5+14,则sin 234°=sin(144°+90°)=cos 144°=-5+14.故选C. 7.答案:C解析:方法一:直线l 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线,则不妨设直线l 为y =bax ,∵F 1,F 2是双曲线C 的左、右焦点, ∴F 1(-c,0),F 2(c,0),∵F 1关于直线l 的对称点为F ′1,则F ′1为(x ,y ),解得x =b 2-a 2c ,y =-2abc ,∴F ′1⎝⎛⎭⎫b 2-a 2c,-2ab c ,∵F ′1在以F 2为圆心,以半焦距c 为半径的圆上, ∴⎝⎛⎭⎫b 2-a 2c -c 2+⎝⎛⎭⎫-2ab c-02=c 2, 整理可得4a 2=c 2,即2a =c ,∴e =ca=2,故选C.方法二:由题意知|F ′1O |=|OF 1|=|OF 2|=|F ′1F 2|,所以三角形F ′1F 1F 2是直角三角形,且∠F ′1F 1F 2=30°, 又由焦点到渐近线的距离为b ,得|F ′1F 1|=2b , 所以2b =3c ,所以e =2. 故选C.8.答案:C解析:设△ABC 的边长为2,不妨设线段BC 的中点O 为坐标原点,BC 所在直线为x 轴建立平面直角坐标系xOy ,则点A (0,3)、B (-1,0)、C (1,0),以线段BC 为直径的圆的方程为x 2+y 2=1, 设点P (cos θ,sin θ),则=(-1,-3),=(1,-3),=(cos θ,sin θ-3), 由于=λ+μ,则-λ+μ=cos θ,-3λ-3μ=sin θ-3,解得λ=12-36sin θ-12cos θ,μ=12-36sin θ+12cos θ, 所以λ+2μ=⎝⎛⎭⎫12-36sin θ-12cos θ+2⎝⎛⎭⎫12-36sin θ+12cos θ=32-32sin θ+12cos θ =32-sin ⎝⎛⎭⎫θ-π6, 因此,λ+2μ的最大值为52.故选C.9.答案:BC解析:对于A ,因为a >b ≥2,所以b 2-(3b -a )=(a -b )+b (b -2)>0, 故A 错误;对于B ,可通过作差证明,B 正确;对于C ,ab -(a +b )=ab -2a +ab -2b2=a (b -2)+b (a -2)2>0,故C 正确;对于D ,若12+2ab >1a +1b成立,当a =10,b =2时,左边=右边=35,故D 错误. 所以,选BC. 10.答案:AC解析:对A ,取CD 中点F ,连接MF ,BF ,则MF ∥DA 1,BF ∥DE ,由∠A 1DE =∠MFB ,MF =12A 1D 为定值,FB =DE 为定值,由余弦定理可得所以FB 为定值,A 正确;若B 正确,即DE ⊥A 1C ,由∠AED =∠BEC =45°, 可得DE ⊥CE ,则DE ⊥平面A 1EC ,所以DE ⊥A 1E ,而这与DA 1⊥A 1E 矛盾,故B 错误;因为B 是定点,所以M 在以B 为圆心,MB 为半径的圆上,故C 正确; 取CD 中点F ,连接MF ,BF , 则MF ∥DA 1,BF ∥DE ,由面面平行的判定定理得平面MBF ∥平面A 1DE , 即有MB ∥平面A 1DE ,可得D 错误. 故选AC.11.答案:BD解析:(x 2+y 2)3=16x 2y 2≤16⎝⎛⎭⎫x 2+y 222,解得x 2+y 2≤4(当且仅当x 2=y 2=2时取等号),则B 正确; 将x 2+y 2=4和(x 2+y 2)3=16x 2y 2联立, 解得x 2=y 2=2,即圆x 2+y 2=4与曲线C 相切于点(2,2),(-2,2),(-2,-2),(2,-2), 则A 和C 都错误;由xy >0,得D 正确.综上,选BD. 12.答案:AC解析:(x 0,x 0+1)区间中点为x 0+12,根据正弦曲线的对称性知f ⎝⎛⎭⎫x 0+12=-1, 故选项A 正确;若x 0=0,则f (x 0)=f (x 0+1)=-12,即sin φ=-12,不妨取φ=-π6,此时f (x )=sin ⎝⎛⎭⎫2πx -π6,满足条件, 但f ⎝⎛⎭⎫13=1为(0,1)上的最大值,不满足条件, 故选项B 错误;不妨令ωx 0+φ=2k π-5π6,ω(x 0+1)+φ=2k π-π6,k ∈Z ,两式相减得ω=2π3,即函数的周期T =2πω=3,故C 正确;区间(0,2 019)的长度恰好为673个周期, 当f (0)=0时,即φ=k π(k ∈Z )时,f (x )在开区间(0,2 019)上零点个数至少为673×2-1=1 345, 故D 错误.故正确的是AC. 13.答案:660解析:若甲小区2人,乙、丙、丁其中一小区2人,共有C 26C 24A 33种,若甲小区3人,乙、丙、丁每小区1人,共有C 36A 33种,则不同的分配方案共有C 26C 24A 33+C 36A 33=660种.14.答案:⎝⎛⎭⎫3-5π6,+∞ 解析:求导得f ′(x )=1-2sin x ,令f ′(x )=0,得x =π6,易得f (x )max =f ⎝⎛⎭⎫π6=π6+3+λ,f (x )min =f ⎝⎛⎭⎫π2=π2+λ,又由题意知f ⎝⎛⎭⎫π2=π2+λ>0,且f ⎝⎛⎭⎫π2+f ⎝⎛⎭⎫π2>f ⎝⎛⎭⎫π6,由此解得λ的取值范围为λ>3-5π6.15.答案:2 5解析:抛物线y 2=2px (p >0)的焦点为F (1,0), 所以p =2,准线为x =-1,设过焦点的直线方程为x =my +1, 设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =my +1y 2=4x ,得y 2-4my -4=0,∴y 1y 2=-4 ①又|AF |=4|BF |,y 1=-4y 2 ②由①②解得y 1=-4,y 2=1或y 1=4,y 2=-1, 所以|CD |=|y 1-y 2|=5,所以三角形CDF 的面积为12×2×5=5.16.答案:9π2或8989π6解析:如图,取AC 中点O ′,因为P A =PC =5,AB =BC , 所以AC ⊥PO ′,AC ⊥O ′B ,所以AC ⊥平面PO ′B ,所以平面PO ′B ⊥平面ABC , 易知∠O ′BP 即为PB 与底面ABC 所成的角或补角. O ′B =2,O ′P =3,所以在△O ′PB 中,因为sin ∠O ′BP =13,当cos ∠O ′BP =223时,求得PB =3,此时∠PCB =∠P AB =90°.故PB 为三棱锥P ABC 外接球直径,V =9π2;当cos ∠O ′BP =-223时,求得PB =13,延长BO ′交外接球于Q ,则BQ 为圆O ′的直径, 则△QBP 的外接圆直径为球的直径,球的直径为2R =PQsin ∠QBP =89,可求得V =8989π6.综上外接球的体积为9π2或8989π6.17.解析:(1)设∠CBD =θ,因为tan θ=12,又θ∈⎝⎛⎭⎫0,π2,故sin θ=55,cos θ=255, 则sin ∠ABC =sin 2θ=2sin θcos θ=2×55×255=45,cos ∠ABC =cos 2θ=2cos 2θ-1=2×45-1=35, 故sin A =sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π4+2θ =sin ⎝⎛⎭⎫π4+2θ=22(sin 2θ+cos 2θ) =22×⎝⎛⎭⎫45+35=7210. (2)由正弦定理BC sin A =AC sin ∠ABC, 即BC 7210=AC 45,所以BC =728AC ,所以||||=282,所以AC =42,又由AB sin C =AC sin ∠ABC ,得AB 22=AC 45,所以AB =5. 18.解析:方案一:选条件①.(1)由a 2n +1-a 2n =3,得{a 2n }是公差为3的等差数列, 由a 1=1,得a 21=1,则a 2n =3n -2,又a n >0,所以a n =3n -2.(2)根据a 1,a n ,a m 成等比数列,得到a 2n =a 1a m ,即3n -2=3m -2,则有m =3n 2-4n +2,因为n ∈N *且n ≥2,所以m =3n 2-4n +2∈N *,当n =2时,m min =6;方案二:选条件②.(1)因为a 2n -a n a n -1-3a n -1-9=0⇔(a n +3)(a n -a n -1-3)=0,因为a 1=1,所以a n -a n -1-3=0,则{a n }是等差数列,则a n =3n -2.(2)要使得a 1,a n ,a m 成等比数列,只需要a 2n =a 1a m ,即(3n -2)2=3m -2,则有m =3n 2-4n +2,因为n ∈N *且n ≥2,所以m =3n 2-4n +2∈N *,当n =2时,m min =6;方案三:选条件③.(1)由S n =n 2-2n +2,得a n =⎩⎪⎨⎪⎧1 n =12n -3 n ≥2. (2)要使得a 1,a n ,a m 成等比数列,只需要a 2n =a 1a m ,即(2n -3)2=2m -3,则有m =2n 2-6n +6,因为n ∈N *且n ≥2,所以m =2n 2-6n +6∈N *,当n =2时,m min =2.19.解析:(1)证明:因为PE ⊥EB ,PE ⊥ED ,EB ∩ED =E ,所以PE ⊥平面EBCD ,又PE ⊂平面PEB ,所以平面PEB ⊥平面EBCD ,而BC ⊂平面EBCD ,BC ⊥EB ,所以平面PBC ⊥平面PEB ,由PE =EB ,PM =MB 知,EM ⊥PB ,于是EM ⊥平面PBC .又EM ⊂平面EMN ,所以平面EMN ⊥平面PBC .(2)假设存在点N 满足题意,取E 为原点,直线EB ,ED ,EP 分别为x ,y ,z 轴,建立空间直角坐标系E xyz ,不妨设PE =EB =2,显然平面BEN 的一个法向量为n 1=(0,0,1),设BN =m (0<m <2),则=(1,0,1),=(2,m,0).设平面EMN 的一个法向量为n 2=(x ,y ,z ),即⎩⎪⎨⎪⎧ (1,0,1)·(x ,y ,z )=0(2,m ,0)·(x ,y ,z )=0,即⎩⎪⎨⎪⎧x +z =02x +my =0, 故可取n 2=(m ,-2,-m ),所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=(0,0,1)·(m ,-2,-m )2m 2+4=-m 2m 2+4, 依题意⎪⎪⎪⎪⎪⎪-m 2m 2+4=66, 解得m =1∈(0,2),此时N 为BC 的中点.综上知,存在点N ,使得二面角B EN M 的余弦值为66, 此时N 为BC 的中点.20.解析:(1)根据散点图可以判断,y =c e dx 更适宜作为平均产卵数y 关于平均温度x 的回归方程类型;对y =c e dx 两边取自然对数,得ln y =ln c +dx ;令z =ln y ,a =ln c ,b =d ,得z =a +bx ; 因为=∑i =17(x i -x )(z i -z )∑i =17 (x i -x )2==40.1820147.7143≈0.272, =z -x =3.612-0.272×27.429≈-3.849;所以z 关于x 的回归方程为=0.272x -3.849;所以y 关于x 的回归方程为=e 0.272x -3.849.因为0<p <1,令f ′(p )>0,得3-5p >0, 解得0<p <35; 所以f (p )在⎝⎛⎭⎫0,35上单调递增, 在⎝⎛⎭⎫35,1上单调递减,所以f (p )有唯一的极大值为f ⎝⎛⎭⎫35,也是最大值;所以当p =35时,f (p )max =f ⎝⎛⎭⎫35=216625; ②由①知,当f (p )取最大值时,p =35,所以X ~B ⎝⎛⎭⎫5,35, 所以X 的数学期望为E (X )=5×35=3, 方差为D (X )=5×35×25=65. 21.解析:(1)设以AP 为直径的圆的圆心为B ,切点为N , 则|OB |=2-|BA |,∴|OB |+|BA |=2.取A 关于y 轴的对称点A ′,连接A ′P ,故|A ′P |+|AP |=2(|BO |+|BA |)=4>2.所以点P 的轨迹是以A ′,A 为焦点,长轴长为4的椭圆.其中,a =2,c =1,曲线C 方程为x 24+y 23=1. (2)设直线l 的方程为x =ty +(2-3t ),设E (x 1,y 1),F (x 2,y 2),M (x 0,y 0),直线DE 的方程为y =y 1x 1-2(x -2), 故y S =y 1x 1-2(x 0-2), 同理y T =y 2x 2-2(x 0-2); 所以2y 0=y S +y T =y 1x 1-2(x 0-2)+y 2x 2-2(x 0-2), 即2y 0x 0-2=y 1x 1-2+y 2x 2-2=y 1t (y 1-3)+y 2t (y 2-3)=2y 1y 2-3(y 1+y 2)t [y 1y 2-3(y 1+y 2)+3]③ 联立⎩⎨⎧x =ty +(2-3t )3x 2+4y 2-12=0, 化简得(3t 2+4)y 2+(12t -63t 2)y +9t 2-123t =0,所以y 1+y 2=63t 2-12t 3t 2+4,y 1y 2=9t 2-123t 3t 2+4代入③得,2y 0x 0-2=2×⎝ ⎛⎭⎪⎫9t 2-123t 3t 2+4-3×63t 2-12t 3t 2+4t ⎣⎢⎡⎦⎥⎤9t 2-123t 3t 2+4-3×63t 2-12t 3t 2+4+3 =-123t 12t=-3⇒3x 0+2y 0-23=0, 所以点M 都在定直线3x +2y -23=0上.22.解析:(1)证明:对f (x )求导得f ′(x )=e x +sin x -a ,显然e x >0,sin x ≥-1,所以e x +sin x -a >0-1-a ≥0,即f ′(x )>0,所以f (x )在其定义域上是单调递增函数,故f (x )无极值点;(2)解法一:对g (x )求导得g ′(x )=e x +1x +1-a +sin x (x >-1),又注意到g ′(0)=2-a ,令g ′(0)=2-a =0,得a =2.此时g ′(x )=e x +1x +1-2+sin x , 令h (x )=g ′(x )=e x +1x +1-2+sin x , 则h ′(x )=e x -1(x +1)2+cos x , 显然,在x ∈⎝⎛⎭⎫0,π2上,e x >1>1(x +1)2,cos x >0, 此时h ′(x )=e x -1(x +1)2+cos x >0, 故h (x )在⎝⎛⎭⎫0,π2上是增函数, 所以h (x )>h (0)=0,即g ′(x )=e x +1x +1-2+sin x >0; 又当x ∈(-1,0)时,令s (x )=(x +1)2e x ,t (x )=(x +1)2cos x ,则s ′(x )=(x +1)(x +3)e x >0,s (x )是(-1,0)上的增函数,所以s (-1)<s (x )<s (0),即0<s (x )<1,故存在区间(x 1,0)⊂(-1,0),使s (x )>12,即e x >12(x +1)2; 又0<(x +1)2<1,cos 1<cos x <1,即0<t (x )<1,故存在区间(x 2,0)⊂(-1,0),使t (x )>12,即cos x >12(x +1)2, 现设(x 1,0)∩(x 2,0)=(x 0,0),则在区间(x 0,0)上,e x >12(x +1)2,cos x >12(x +1)2同时成立, 即h ′(x )=e x -1(x +1)2+cos x >0, 故h (x )在(x 0,0)上是增函数,h (x )<h (0)=0.从而存在区间(x 0,0),使得g ′(x )=e x +1x +1-2+sin x <0; 因此存在a =2,使得g (x )在x =0处取得极小值.解法二:x =0是f (x )的极小值点的必要条件是f ′(0)=2-a ,即a =2.此时,g ′(x )=e x +11+x-2+sin x , 显然当x ∈⎝⎛⎭⎫0,π2时, g ′(x )=e x +11+x-2+sin x ≥1+x +11+x-2+sin x >0; 当-14<x <0时, (1+x )⎝⎛⎭⎫1-x +32x 2=1+x 22(3x +1)>1⇒11+x<1-x +32x 2.令m (x )=⎝⎛⎭⎫1+x +x 22e -x ,m ′(x )=-x 22e -x ≤0, 故m (x )是减函数.因此,当x <0时,m (x )>m (0)=1,即e x <1+x +x 22. 令h (x )=sin x -12x ,h ′(x )=cos x -12. 当-1<x <0时,h ′(x )>cos 1-12>0, 故h (x )在(-1,0)上单调递增.因此,当-1<x <0时,h (x )<h (0)=0,即sin x <12x . 故当x ∈⎝⎛⎭⎫-14,0时, g ′(x )=e x +11+x-2+sin x ≤⎝⎛⎭⎫1+x +x 22+⎝⎛⎭⎫1-x +32x 2-2+x 2=2x 2+x 2<0; 因此,a =2时x =0是g (x )的极小值点.。
2021高考数学押题专练空间几何体(解析版)

押题16 空间几何体【押题方向】空间几何体是高考全国卷每年必考知识点,作为客观题考查的空间几何体试题主要涉及三视图、几何体的表面积与体积、截面等内容,难度有容易题也有难度较大的题,求解本类问题的关键是空间想象能力及运算能力,预测2021年依然会有2道立体几何客观题.依然会遵循前几年的命题风格.【模拟专练】1.(2021·山东德州市·高三一模)已知三棱锥P ABC -中,AP 、AB 、AC 三条棱两两垂直,且长度均为23,以顶点P 为球心,4为半径作一个球,则该球面被三棱锥四个表面截得的所有弧长之和为______.【答案】3π【详解】 由题可知:AP 、AB 、AC 三条棱两两垂直,且长度均为23如图:所以()222326PC PB BC ====()224232AM AF ==-=, 所以3tan tan 23APF APM ∠=∠==6APF APM π∠=∠= 所以12EPF CPM π∠=∠=,则4123EF MN ππ==⨯=44,2332NE MF ππππ=⨯==⨯= 所以球面被三棱锥四个表面截得的所有弧长之和为42333ππππ⨯++= 2.(2021·山东烟台市·高三一模)已知正三棱锥 P ABC -的底面边长为2,13面,PAB PBC 分别切于点,M N ,则MN 的长度为___________.【答案】56【详解】如图,设正三棱锥内切球的半径为R ,M 为内切球与侧面PAB 的切点,Q 为侧面上切点所在小圆的圆心,半径为r , ABC 为等边三角形,223CD BC BD ∴=-=, 2233CH CD ==,133DH CD ==, 22121051393PH PC CH =-=-=, POM PDH △△, OM PO DH PD ∴=, .3PH R PD -= 2213123PB PD ==-=1053323R -=,解得105R = 35sin sin 6PH OMQ PDH PD ∠=∠==,cos sin sin r MQ R OMQ R PMQ R PDH R ∴==∠=∠=∠= 由正三棱锥的定义知,内切圆与三个侧面相切,切点构成的三角形为等边三角形,故120QMN ∠=︒, 由余弦定理可得22222355252cos12033362136MN r r r r =+-︒==⨯⨯=, 所以56MN = 3.(2021·山东济宁市·高三一模)在长方体1111ABCD A BC D -中,3AB =,14A D A A ==,E ,F ,G 分别是棱AB ,BC ,1CC 的中点,P 是底面ABCD 内一动点,若直线1D P 与平面EFG 平行,当三角形1BB P 的面积最小时,三棱锥1A BB P -的外接球的体积是______. 【答案】125π6【详解】补全截面EFG 为截面1EFGHQR 如图,设BR AC ⊥,直线1D P 与平面EFG 不存在公共点,1//D P ∴平面1EFGHQR ,易知平面1//ACD 平面1EFGHQR ,P AC ∴∈,且当P 与R 重合时,BP BR =最短,此时1PBB 的面积最小,由等面积法得1122BR AC AB BC ⨯=⨯,即113422BR =⨯⨯,125BP ∴=, 1B B AP ⊥,BP AP ⊥,AP ∴⊥平面1B BP ,则1AP B P ⊥,又1AB B B ⊥,1AB ∴为三棱锥1A BB P -5=.∴三棱锥1A BB P -的外接球的半径为52,体积为35125π2643V π⎛⎫= ⎪⎝⎭=⨯. 故答案为:125π6.4.(2020·山东高三其他模拟)将一个斜边长为4的等腰直角三角形以其一直角边所在直线为旋转轴旋转一周,所得几何体的表面积为_________. 【答案】(882)π+ 【详解】因为等腰直角三角形的斜边长为4,所以直角边长为22,由题意可知所得几何体是圆锥,其底面圆的半径22r =,母线长4l, 则其表面积为()2882r rl πππ+=+.5.(2020·山东高三专题练习)已知正方体棱长为2,以正方体的一个顶点为球心,以22为半径作球面,则该球面被正方体表面所截得的所有的弧长和为______________.【答案】3π【详解】如图所示,球面被正方体表面所截得3段相等的弧长,与上底面截得的弧长,是以1D 为圆心,以2为半径的四分之一的圆周,所以11111224A C AB BC ππ===⨯⨯= , 则所有弧长和为3π【押题专练】1.如图,在矩形ABCD 中,22AB BC ==,22AB BC ==.将A ,C 分别沿BE ,DF 向上翻折至A ',C ',则A C ''取最小值时,二面角A EF C ''--的正切值是________.【答案】265【详解】 分别取BE ,DF 中点为M 、N ,连接A M ',MF ,C N ',NE .四边形ABCD 为矩形,22AB BC ==,1AE CF ==,∴翻折前,四边形ABFE 和四边形CDEF 都是正方形,则1EF =,CE DF ∴⊥,AF BE ⊥,即NE DF ⊥,CN DF ⊥,AM BE ⊥,MF BE ⊥,∴翻折后仍有A M BE '⊥,C N DF '⊥,NE DF ⊥,MF BE ⊥,又A M MF M '⋂=,且A M ',MF ⊂平面A MF ',BE ∴⊥平面A MF ';同理可得:DF ⊥平面C NE ',又//DE BF ,且1DE BF ==,∴四边形BFDE 是平行四边形,则//BE DF ,BE ∴、DF 都是平面A MF '与平面C NE '的公垂线,,BE DF ⊂平面BFDE ,∴平面A MF '⊥平面BFDE ,平面C NE '⊥平面BFDE .分别记1A ,1C 为点A ',C '在底面的投影,则点A '在底面的投影1A 落在直线MF 上,且沿MF 方向运动;点C '在底面的投影1C 落在直线NE 上,且沿NE 方向运动.当且仅当A C ''为平面A MF '与平面C NE '的公垂线段时长度最小,此时//A C ME '',故//A C ''平面MFNE ,则11A A C C ''=.又11//A A C C '',A '∴,1A ,1C ,C '共面,平面11A ACC ''⋂平面11MFNE AC =,11AC 也是平面A MF '与平面C NE '的公垂线,此时11Rt A A M Rt C C N ''≌,11MA NC ∴=,又11//AC ME ,11//MA EC ,∴四边形11MACE 为平行四边形, ∴11MA EC =,∴1C 为NE 的中点,1A 为MF 的中点,1124MA NC ∴==, 则11A A C C ''==1262164-=,6221616A F C E ''∴==+=, 将二面角A EF C ''--单独画出如图.过点A '作AP EF '⊥于点P ,过点C '作E C Q F '⊥于点Q ,又1A E AE '==,1C F CF '==,222122cos 222A F EF A E A FE A F EF ''+-'∴∠==='⋅⨯, 则1cos 4FP A F A FE ''=∠=,117216A P '∴=-=同理14EQ=,74C Q'=,则1141314FPFQ==-,过点P作//PG C Q'交FC'于点G,连接A G',则GP EF⊥,∴A PG'∠即为二面角A EF C''--的平面角,则13FG PGFC QC=='',∴712PG=,13FG=,又22A F A C'''==,1C F'=,则A FC''为等腰直角三角形,∴2cos2A FC''∠=,2211212102cos45229232A F FG A F FGA G''=+-⋅⋅︒=+-⨯⨯⨯='∴,在A PG'中,22277103051614436144cos72777224A P PG A GA PGA P PG+-''+-'∠===='⋅⨯⨯,26tan A PG'∴∠=.2.如图,二面角A BD C--的平面角的大小为120︒,120BDA∠=︒,150BDC=∠︒,2AD BD==,3CD=,则四面体ABCD的外接球表面积为________.【答案】116π【详解】在BDA中,120BDA∠=︒,2AD BD==,所以222+cos23ADAB AD BD DBD B A-⋅∠=⋅设BDA的外接圆的半径为1r,则124sinABrBDA==∠,所以12r=,在BDC中,150BDC=∠︒,2BD=,3CD=222+cos13CDBC CD BD DBD B C-⋅∠=⋅,设BDC 的外接圆的半径为2r ,则22213sin BC r BDC ==∠,所以113r =, 又作12,OG BD O G BD ⊥⊥,所以12O GO ∠为二面角A BD C --的平面角,即12120OGO ∠=,所以2211132O G r BD ⎛⎫=-= ⎪⎝⎭,22221232O G r BD ⎛⎫=-= ⎪⎝⎭,所以()()221223233+23cos12021O O -⨯==⨯,设四面体ABCD 的外接球的球心为O ,球半径为R ,则121227sin O O OG O MO ==∠, 所以2229R OG GD =+=,所以四面体ABCD 的外接球表面积为24429116R πππ=⨯=, 故答案为:116π.3.蹴鞠,又名“蹴球”“蹴圆”等,“蹴”有用脚蹴、踢的含义,鞠最早系外包皮革、内饰米糠的球,如图所示.因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动,类似今日的足球.现已知某“鞠”的表面上有四个点A ,B ,C ,D 满足10cm AB BC CD DA DB =====,15cm AC =,则该“鞠”的表面积为___________2cm .【答案】7003π 【详解】由已知得ABD △,CBD 均为等边三角形.如图所示,设球心为O ,BCD △的中心为O ',取BD 的中点F ,连接,,,,AF CF OO OB O B '',则AF BD ⊥,CF BD ⊥,得BD ⊥平面AFC , 且可求得53cm AF CF ==,而15cm AC =,所以120AFC ∠=︒.在平面AFC 中过点A 作CF 的垂线,与CF 的延长线交于点E , 由BD ⊥平面AFC ,得BD AE ⊥,故AE ⊥平面BCD ,过点O 作OG AE ⊥于点G ,则四边形O EGO '是矩形, 则)2103sin 60cm 3O B BC ︒'=⨯=,)153cm 23O F O B ''==, ()15sin 60cm 2AE AF =︒=,53sin 302EF AF =︒=. 设球的半径为R ,OO x '=,则由222OO O B OB ''+=,222OA AG GO =+, 得221003x R +=,2225353152x R ⎛⎫+-= ⎪⎝⎭⎝⎭, 解得5cm x =,2175cm 3R = 故三棱锥A BCD -外接球的表面积()227004cm 3S R ππ== 4.如图,正方体ABCD ﹣A 1B 1C 1D 1的顶点C 在平面α上,若A 1B 和A 1D 与平面α都成60°角,则A 1C 与平面α所成角的余弦值为______.【答案】13【详解】设直线l 过点A 1且垂直于α,则A 1B 与A 1D 都与直线l 夹角为30°, 连结BD ,由题意得△A 1BD 是等边三角形,取BD 中点E ,由题意得A 1E 可以承担直线l 的角色, 但同时与直线A 1B 、A 1D 夹角为相等的直线,最小也要30°, ∴此时直线l 是唯一的,由题意知A 1C 与直线l (直线A 1E )的余弦值恰为A 1C 与平面α所成角的正弦, 设正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,则A 1C 222222++=3CE 221222+2A 1E 22(22)(2)-6 ∴设A 1C 与平面α所成角为θ,则sin θ=22211112AC A E CE AC A E +-⨯⨯2236⨯⨯22, ∴A 1C 与平面α所成角的余弦值为:cos θ2221()3-=13. 故答案为:13.5.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,点M 是AD 的中点,动点P 在底面正方形ABCD 内(不包括边界),若B 1P //平面A 1BM ,则C 1P 长度的取值范围是____.【答案】30[2) 【详解】 取BC 中点N ,连结B 1D ,B 1N ,DN ,作CO ⊥DN ,连结C 1O ,因为平面B 1DN ∥平面A 1BM ,所以点P 在底面ABCD 内的轨迹是线段DN (动点P 在底面正方形ABCD 内,不包括边界,故不含点N 和点D ),在1C DN △中,2211152,1()2C D DN C N ===+=, 所以12215262()()222C DN S =-=, 过C 1O ⊥DN ,则当P 与O 重合时,C 1P 长度取最小值,所以C 1P 长度的最小值为1630415C O ==⨯, 当P 与D 重合时,C 1P 长度取最大值,∴C 1P 长度的最大值为C 1D =2, ∵P 与D 不重合,∴C 1P 长度的取值范围是30[,2)5. 故答案为:30[,2) .6.鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根完全一样的正四棱柱体分成三组,经90榫卯起来.若正四棱柱的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器(容器壁的厚度忽略不计),则该球形容器表面积的最小值为_____.【答案】41π【详解】由题意,该球形容器的半径的最小值为并在一起的两个长方体体对角线的一半, 即为14136412++=, ∴该球形容器体积的最小值为:4241()412ππ⨯=. 7.在三棱锥D ABC -中,ABC 是以A ∠为直角的等腰直角三角形,DBC △是边长为2的等边三角形,二面角A BC D --的余弦值为6-,则三棱锥D ABC -的外接球的表面积为______. 【答案】8π【详解】如图,设BC 的中点为E ,过点E 作平面ABC 的法线EO ,过BCD △的重心F 作平面DBC 的法线FO ,EO 与FO 交于点O ,则O 为三棱锥D ABC -的外接球的球心. 又133EF DE ==,6cos DEA ∠=,所以3cos FEO ∠=. 又3cos EF FEO OE ∠==1OE =, 28π.8.已知球O 10以球心O 为中心的正四面体Γ的各条棱均在球O 的外部,若球O 的球面被Γ的四个面截得的曲线的长度之和为8π,则正四面体Γ的体积为_________.【答案】182【详解】由题知,正四面体截球面所得曲线为四个半径相同的圆,每个圆的周长为2π,半径为1,故球心O 到正四210612⎛⎫-= ⎪⎝⎭a ,如图所示,则斜高332AE EF a ==,体高63=AF ,在Rt AEF 和R t AGO 中,13OG EF AO AE ==,即61 23 66a=-,∴6a=,∴23136261823V a a=⋅⋅=⋅=.9.已知菱形ABCD的边长为4,对角线4BD=,将ABD△沿着BD折叠,使得二面角A BD C--为120︒,则三棱锥A BCD-的外接球的表面积为___________.【答案】1123π【详解】如图所示:将ABD△沿BD折起后,取BD中点为E,连接AE,CE,则AE BD⊥,CE BD⊥,所以AEC∠即为二面角A BD C--的平面角,所以120AEC∠=︒;ABD△与BCD△是边长为4的等边三角形.分别记三角形ABD△与BCD△的重心为G、F,则12333EG EA==,12333EF EC==;即EF EG=;因为ABD△与BCD△都是边长为4的等边三角形,所以点G是ABD△的外心,点F是BCD△的外心;记该几何体ABCD的外接球球心为O,连接OF,OG,根据球的性质,可得OF ⊥平面BCD ,OG ⊥平面ABD , 所以OGE 与OFE △都是直角三角形,且OE 为公共边,所以Rt OGE △与Rt OFE 全等,因此1602OEG OEF AEC ∠=∠=∠=︒, 所以43OE =; 因为AE BD ⊥,CE BD ⊥,AECE E =,且AE ⊂平面AEC ,CE ⊂平面AEC , 所以BD ⊥平面AEC ;又OE ⊂平面AEC ,所以BD OE ⊥,连接OB ,则外接球半径22221OB OE BE =+=, 所以外接球表面积为1123π. 10.三棱锥A BCD -的一条棱长为a ,其余棱长均为1,当三棱锥A BCD -的体积最大时,它的外接球的表面积为___________.【答案】53π 【详解】解:由题意画出三棱锥的图形,其中1AB BC CD BD AC =====,AD a =.取BC ,AD 的中点分别为E ,F ,可知AE BC ⊥,DE BC ⊥,且AEDE E =,∴BC ⊥平面AED ,∴平面ABC ⊥平面BCD 时,三棱锥A BCD -的体积最大,此时2AD a ====. 设三棱锥外接球的球心为O ,半径为R ,由球体的对称性知,球心O 在线段EF 上,∴OA OC R ==,又4EF ===,设OF x OE x 4==-,,在三角形AOF 中:222221R ()x 2AD OF =+=+⎝⎭,在三角形OEC 中:2222211R ()x 242OE BC ⎛⎫⎛⎫=+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭∴222221442R x x ⎛⎫⎛⎫⎛⎫=+=-+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得x =.∴球的半径R 满足2225R 12=+=⎝⎭⎝⎭, ∴三棱锥外接球的表面积为25544123R πππ=⨯=.11.四面体ABCD 中,90ABC BCD ∠=∠=︒,2AB BC CD ===,AD =表面积为__________.【答案】12π【详解】由题意90ABC BCD ∠=∠=︒,2AB BC CD ===,AD =,则AC BD ==, 所以222AB BD AD +=,AB BD ⊥,同理AC CD ⊥,取AD 中点O ,则O 到,,,A B C D 四点的距离相等,O 即为ABCD 外接球的球心,所以球半径为2AD r ==,球表面积为2412ππ==S r . 故答案为:12π.12.如图所示,正方体1111ABCD A BC D -的棱长为2,,E F 为1,AA AB 的中点,M 点是正方形11ABB A 内的动点,若1//C M 平面1CD E ,则M 点的轨迹长度为______.2【详解】如图所示,11A B 的中点H ,1BB 的中点G ,连接11,,,,GH C H C G EG HF .可得四边形11EGC D 是平行四边形,∴11//C G D E ,又1C G ⊄平面1CD E ,1D E ⊂平面1CD E ,可得1//C G 平面1CDE .同理可得1//C H CF ,1//C H 平面1CD E ,又111C H CG C =,∴平面1//C GH 平面1CD E . ∵M 点是正方形11ABB A 内的动点,1//C M 平面1CD E ,∴点M 在线段GH 上. ∴M 点的轨迹长度为22112GH =+213.如图,在棱长为2的正方体ABCD A B C D ''''-中,点E 、F 、G 分别是棱A B ''、B C '、CD 的中点,则由点E 、F 、G 确定的平面截正方体所得的截面多边形的面积等于___________.33【详解】分别取AD 中点P ,1CC 中点M ,1AA 中点N ,可得出过E ,F ,G 三点的平面截正方体所得截而为正六边形EFMGPN , 则正六边形的边长2211122MG CG CM =++, 故截面多边形的面积等于233361S ==. 3314.球O 为正方体1111ABCD A BC D -的内切球,平面11AC B 截球O 的截面面积为π,则球的表面积为________.【答案】6π【详解】设内切球半径为R ,则正方体棱长为2R ,如图,平面11AC B 截球O 所得圆为正11AC B △的内切圆,而截面圆半径为1, 在正11AC B △中122A B R =,∴32216R =,62R = 故内切球的表面积为264(6ππ⋅⋅=. 故答案为:6π 15.某圆台下底半径为2,上底半径为1,母线长为2,则该圆台的表面积为________.【答案】11π【详解】由题意该圆台的表面积为2221(21)211S ππππ=⨯+⨯+⨯+⨯=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021届山东省新高考高考模拟冲关押题卷(四)数学【解析版】第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A ={x |(x +1)(x -2)≤0},B ={x |x <2},则A ∩B =( ) A .[0,2] B .[0,1] C .(0,2] D .[-1,0]2.若复数z =1+i1+a i(i 表示虚数单位)为纯虚数,则实数a 的值为( )A .1B .0C .-12 D .-13.设{a n }为公差不为0的等差数列,p ,q ,k ,l 为正整数,则“p +q >k +l ”是“a p +a q >αk +a l ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知a =213,b =log 2 13,c =log 1213,则( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a5.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、侯、公,共五级.现有每个级别的诸侯各一人,共五人,要把80个橘子分完且每人都要分到橘子,级别每高一级就多分m 个(m 为正整数),若按这种方法分橘子,“公”恰好分得30个橘子的概率是( )A.18B.17C.16D.156.17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36°的等腰三角形(另一种是顶角为108°的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金△ABC 中,BCAC =5-12.根据这些信息,可得sin 234°=( )A.1-254 B .-3+58C .-5+14D .-4+587.已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,直线l 为双曲线C 的一条渐近线,F 1关于直线l 的对称点F ′1在以F 2为圆心,以半焦距c 为半径的圆上,则双曲线C 的离心率为( )A. 2B. 3 C .2 D .38.已知△ABC 为等边三角形,动点P 在以BC 为直径的圆上,若AP →=λAB →+μAC →,则λ+2μ的最大值为( )A.12 B .1+33 C.52 D .2+32二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知a >b ≥2,则( )A .b 2<3b -aB .a 3+b 3>a 2b +ab 2C .ab >a +b D.12+2ab >1a +1b10.如图,已知矩形ABCD 中,AB =2AD ,E 为边AB 的中点,将△ADE 沿直线DE 翻折成△A 1DE ,若M 为线段A 1C 的中点,则△ADE 在翻折过程中,下列说法正确的是( )A .线段BM 的长是定值B .存在某个位置,使DE ⊥A 1C C .点M 的运动轨迹是一个圆D .存在某个位置,使MB ⊥平面A 1DE11.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线C :(x 2+y 2)3=16x 2y 2恰好是四叶玫瑰线.给出下列结论正确的是( )A .曲线C 经过5个整点(即横、纵坐标均为整数的点)B .曲线C 上任意一点到坐标原点O 的距离都不超过2 C .曲线C 围成区域的面积大于4πD .方程(x 2+y 2)3=16x 2y 2(xy >0)表示的曲线C 在第一象限和第三象限12.已知函数f (x )=sin(ωx +φ)(ω>0)满足f (x 0)=f (x 0+1)=-12,且f (x )在(x 0,x 0+1)上有最小值,无最大值.则( )A .f ⎝⎛⎭⎫x 0+12=-1 B .若x 0=0,则f (x )=sin ⎝⎛⎭⎫2πx -π6 C .f (x )的最小正周期为3D .f (x )在(0,2 019)上的零点个数最少为1 346个第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13.为做好社区新冠疫情防控工作,需将六名志愿者分配到甲、乙、丙、丁四个小区开展工作,其中甲小区至少分配两名志愿者,其它三个小区至少分配一名志愿者,则不同的分配方案共有________种.(用数字作答)14.已知函数f (x )=x +2cos x +λ,在区间⎣⎡⎦⎤0,π2上任取三个数x 1,x 2,x 3,均存在以f (x 1),f (x 2),f (x 3)为边长的三角形,则λ的取值范围是________.15.设抛物线y 2=2px (p >0)的焦点为F (1,0),准线为l ,过焦点的直线交抛物线于A ,B 两点,分别过A ,B 作l 的垂线,垂足为C ,D ,若|AF |=4|BF |,则p =________,三角形CDF 的面积为________.16.在三棱锥P - ABC 中,底面ABC 是以AC 为斜边的等腰直角三角形,且AB =2,P A =PC =5,PB 与底面ABC 所成的角的正弦值为13,则三棱锥P - ABC 的外接球的体积为________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)如图,在△ABC 中,C =π4,∠ABC 的平分线BD 交AC 于点D ,且tan ∠CBD =12.(1)求sin A ;(2)若CA →·CB →=28,求AB 的长.18.(12分)在①a2n+1-a2n=3(a n>0),②a2n-a n a n-1-3a n-1-9=0,③S n=n2-2n+2这三个条件中任选一个,补充在下面问题中.已知:数列{a n}的前n项和为S n,且a1=1,________.(1)求数列{a n}的通项公式;(2)对大于1的自然数n,是否存在大于2的自然数m,使得a1,a n,a m成等比数列.若存在,求m的最小值;若不存在,说明理由.19.(12分)如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC=2BC,E为AB的中点,沿DE将△ADE折起,使得点A到点P位置,且PE⊥EB,M为PB的中点,N是BC上的动点(与点B,C 不重合).(1)证明:平面EMN⊥平面PBC;(2)是否存在点N,使得二面角B -EN -M的余弦值为66,若存在,确定N点位置;若不存在,说明理由.20.(12分)沙漠蝗虫灾害年年有,今年灾害特别大.为防范罕见暴发的蝗群迁飞入境,我国决定建立起多道防线,从源头上控制沙漠蝗群.经研究,每只蝗虫的平均产卵数y和平均温度x有关,现收集了以往某地的7组数据,得到下面的散点图及一些统计量的值.平均温度x i ℃ 21 23 25 27 29 32 35 平均产卵数y i 个711 21 24 66115325∑i =17x i =192,∑i =17y i =569,∑i =17x i y i =18 542,∑i =17x 2i=5 414,∑i =17z i =25.2848,∑i =17x i z i =733.7079.⎝ ⎛⎭⎪⎪⎫其中z i =ln y i ,z =17∑i =17z i (1)根据散点图判断,y =a +bx 与y =c e dx (其中e =2.718…自然对数的底数)哪一个更适宜作为平均产卵数y 关于平均温度x 的回归方程类型?(给出判断即可,不必说明理由)并由判断结果及表中数据,求出y 关于x 的回归方程.(计算结果精确到小数点后第三位)(2)根据以往统计,该地每年平均温度达到28℃以上时蝗虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到28℃以上的概率为p (0<p <1).①记该地今后5年中,恰好需要3次人工防治的概率为f (p ),求f (p )的最大值,并求出相应的概率p . ②当f (p )取最大值时,记该地今后5年中,需要人工防治的次数为X ,求X 的数学期望和方差.附:线性回归方程系数公式b ^=∑i =1n(x i -x )·(y i -y )∑i =1n (x i -x )2,a ^=y -b ^x .21.(12分)已知圆O :x 2+y 2=4,定点A (1,0),P 为平面内一动点,以线段AP 为直径的圆内切于圆O ,设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点Q (2,3)的直线l 与C 交于E ,F 两点,已知点D (2,0),直线x =x 0分别与直线DE ,DF 交于S ,T 两点.线段ST 的中点M 是否在定直线上,若存在,求出该直线方程;若不是,说明理由.22.(12分)已知函数f(x)=e x-ax-cos x,其中a∈R.(1)求证:当a≤-1时,f(x)无极值点;(2)若函数g(x)=f(x)+ln(x+1),是否存在a,使得g(x)在x=0处取得极小值?并说明理由.答案1.答案:A解析:求得A=[-1,2],B=[0,4),所以A∩B=[0,2],故选A.2.答案:D解析:设z=b i,b∈R且b≠0,则1+i1+a i=b i,得到1+i=-ab+b i,∴1=-ab,且1=b,解得a=-1,故选D.3.答案:D解析:设等差数列的公差为d ,a p +a q >a k +a l ⇒a 1+(p -1)d +a 1+(q -1)d >a 1+(k -1)d +a 1+(l -1)d ⇒d [(p +q )-(k +l )]>0 ⇒⎩⎪⎨⎪⎧ d >0p +q >k +l 或⎩⎪⎨⎪⎧d <0p +q <k +l , 显然由p +q >k +l 不一定能推出a p +a q >a k +a l , 由a p +a q >a k +a l 也不一定能推出p +q >k +l ,因此p +q >k +l 是a p +a q >a k +a l 的既不充分也不必要条件, 故选D. 4.答案:C解析:a =1-32=1312⎛⎫⎪⎝⎭∈(0,1);b =log 2 13<0;c =121log 3=log 23>1,∴c >a >b ,故选C. 5.答案:B解析:设首项为a 1,因为和为80,所以5a 1+12×5×4×m =80,故m =8-12a 1.因为m ,a 1∈N *,所以⎩⎪⎨⎪⎧ a 1=2,m =7,或⎩⎪⎨⎪⎧ a 1=4,m =6,或⎩⎪⎨⎪⎧ a 1=6,m =5,或⎩⎪⎨⎪⎧ a 1=8,m =4,或⎩⎪⎨⎪⎧ a 1=10,m =3,或⎩⎪⎨⎪⎧ a 1=12,m =2,或⎩⎪⎨⎪⎧a 1=14,m =1. 因此“公”恰好分得30个橘子的概率是17.故选B. 6.答案:C解析:由题可知∠ACB =72°,且cos 72°=12BC AC =5-14,cos 144°=2cos 2 72°-1=-5+14,则sin 234°=sin(144°+90°)=cos 144°=-5+14.故选C. 7.答案:C解析:方法一:直线l 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线,则不妨设直线l 为y =bax ,∵F 1,F 2是双曲线C 的左、右焦点, ∴F 1(-c,0),F 2(c,0),∵F 1关于直线l 的对称点为F ′1,则F ′1为(x ,y ),∴y x +c=-a b ,y +02=b a ·x -c 2,解得x =b 2-a 2c ,y =-2abc ,∴F ′1⎝⎛⎭⎫b 2-a 2c,-2ab c ,∵F ′1在以F 2为圆心,以半焦距c 为半径的圆上, ∴⎝⎛⎭⎫b 2-a 2c -c 2+⎝⎛⎭⎫-2ab c-02=c 2, 整理可得4a 2=c 2,即2a =c ,∴e =ca=2,故选C.方法二:由题意知|F ′1O |=|OF 1|=|OF 2|=|F ′1F 2|,所以三角形F ′1F 1F 2是直角三角形,且∠F ′1F 1F 2=30°, 又由焦点到渐近线的距离为b ,得|F ′1F 1|=2b , 所以2b =3c ,所以e =2. 故选C. 8.答案:C解析:设△ABC 的边长为2,不妨设线段BC 的中点O 为坐标原点,BC 所在直线为x 轴建立平面直角坐标系xOy ,则点A (0,3)、B (-1,0)、C (1,0),以线段BC 为直径的圆的方程为x 2+y 2=1, 设点P (cos θ,sin θ),则=(-1,-3),=(1,-3),=(cos θ,sin θ-3), 由于=λ+μ,则-λ+μ=cos θ,-3λ-3μ=sin θ-3,解得λ=12-36sin θ-12cos θ,μ=12-36sin θ+12cos θ, 所以λ+2μ=⎝⎛⎭⎫12-36sin θ-12cos θ+2⎝⎛⎭⎫12-36sin θ+12cos θ=32-32sin θ+12cos θ =32-sin ⎝⎛⎭⎫θ-π6, 因此,λ+2μ的最大值为52.故选C.9.答案:BC解析:对于A ,因为a >b ≥2,所以b 2-(3b -a )=(a -b )+b (b -2)>0, 故A 错误;对于B ,可通过作差证明,B 正确;对于C ,ab -(a +b )=ab -2a +ab -2b2=a (b -2)+b (a -2)2>0,故C 正确;对于D ,若12+2ab >1a +1b成立,当a =10,b =2时,左边=右边=35,故D 错误. 所以,选BC. 10.答案:AC解析:对A ,取CD 中点F ,连接MF ,BF ,则MF ∥DA 1,BF ∥DE ,由∠A 1DE =∠MFB ,MF =12A 1D 为定值,FB =DE 为定值,由余弦定理可得MB 2=MF 2+FB 2-2MF ·FB cos ∠MFB , 所以FB 为定值,A 正确;若B 正确,即DE ⊥A 1C ,由∠AED =∠BEC =45°,可得DE ⊥CE ,则DE ⊥平面A 1EC ,所以DE ⊥A 1E ,而这与DA 1⊥A 1E 矛盾,故B 错误;因为B 是定点,所以M 在以B 为圆心,MB 为半径的圆上,故C 正确; 取CD 中点F ,连接MF ,BF , 则MF ∥DA 1,BF ∥DE ,由面面平行的判定定理得平面MBF ∥平面A 1DE , 即有MB ∥平面A 1DE ,可得D 错误. 故选AC.11.答案:BD解析:(x 2+y 2)3=16x 2y 2≤16⎝⎛⎭⎫x 2+y 222,解得x 2+y 2≤4(当且仅当x 2=y 2=2时取等号),则B 正确; 将x 2+y 2=4和(x 2+y 2)3=16x 2y 2联立, 解得x 2=y 2=2,即圆x 2+y 2=4与曲线C 相切于点(2,2),(-2,2),(-2,-2),(2,-2), 则A 和C 都错误;由xy >0,得D 正确.综上,选BD. 12.答案:AC解析:(x 0,x 0+1)区间中点为x 0+12,根据正弦曲线的对称性知f ⎝⎛⎭⎫x 0+12=-1, 故选项A 正确;若x 0=0,则f (x 0)=f (x 0+1)=-12,即sin φ=-12,不妨取φ=-π6,此时f (x )=sin ⎝⎛⎭⎫2πx -π6,满足条件, 但f ⎝⎛⎭⎫13=1为(0,1)上的最大值,不满足条件, 故选项B 错误;不妨令ωx 0+φ=2k π-5π6,ω(x 0+1)+φ=2k π-π6,k ∈Z ,两式相减得ω=2π3,即函数的周期T =2πω=3,故C 正确;区间(0,2 019)的长度恰好为673个周期, 当f (0)=0时,即φ=k π(k ∈Z )时,f (x )在开区间(0,2 019)上零点个数至少为673×2-1=1 345, 故D 错误.故正确的是AC. 13.答案:660解析:若甲小区2人,乙、丙、丁其中一小区2人,共有C 26C 24A 33种,若甲小区3人,乙、丙、丁每小区1人,共有C 36A 33种,则不同的分配方案共有C 26C 24A 33+C 36A 33=660种.14.答案:⎝⎛⎭⎫3-5π6,+∞ 解析:求导得f ′(x )=1-2sin x ,令f ′(x )=0,得x =π6,易得f (x )max =f ⎝⎛⎭⎫π6=π6+3+λ,f (x )min =f ⎝⎛⎭⎫π2=π2+λ,又由题意知f ⎝⎛⎭⎫π2=π2+λ>0,且f ⎝⎛⎭⎫π2+f ⎝⎛⎭⎫π2>f ⎝⎛⎭⎫π6,由此解得λ的取值范围为λ>3-5π6. 15.答案:2 5解析:抛物线y 2=2px (p >0)的焦点为F (1,0), 所以p =2,准线为x =-1,设过焦点的直线方程为x =my +1, 设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =my +1y 2=4x,得y 2-4my -4=0,∴y 1y 2=-4 ①又|AF |=4|BF |,y 1=-4y 2 ②由①②解得y 1=-4,y 2=1或y 1=4,y 2=-1, 所以|CD |=|y 1-y 2|=5,所以三角形CDF 的面积为12×2×5=5.16.答案:9π2或8989π6解析:如图,取AC 中点O ′,因为P A =PC =5,AB =BC , 所以AC ⊥PO ′,AC ⊥O ′B ,所以AC ⊥平面PO ′B ,所以平面PO ′B ⊥平面ABC , 易知∠O ′BP 即为PB 与底面ABC 所成的角或补角. O ′B =2,O ′P =3,所以在△O ′PB 中, (2)2+PB 2-2·2·PB ·cos ∠O ′BP =(3)2,因为sin ∠O ′BP =13,当cos ∠O ′BP =223时,求得PB =3,此时∠PCB =∠P AB =90°.故PB 为三棱锥P ABC 外接球直径,V =9π2;当cos ∠O ′BP =-223时,求得PB =13,延长BO ′交外接球于Q ,则BQ 为圆O ′的直径, 则△QBP 的外接圆直径为球的直径, 由PQ 2=BQ 2+BP 2-2·BQ ·BP ·cos ∠QBP=(22)2+⎝⎛⎭⎫132-2·22·13⎝⎛⎭⎫-223=899, 球的直径为2R =PQsin ∠QBP =89,可求得V =8989π6.综上外接球的体积为9π2或8989π6.17.解析:(1)设∠CBD =θ,因为tan θ=12, 又θ∈⎝⎛⎭⎫0,π2,故sin θ=55,cos θ=255, 则sin ∠ABC =sin 2θ=2sin θcos θ=2×55×255=45, cos ∠ABC =cos 2θ=2cos 2θ-1=2×45-1=35, 故sin A =sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π4+2θ =sin ⎝⎛⎭⎫π4+2θ=22(sin 2θ+cos 2θ) =22×⎝⎛⎭⎫45+35=7210. (2)由正弦定理BC sin A =AC sin ∠ABC, 即BC 7210=AC 45,所以BC =728AC , 又·=22||||=28, 所以||||=282,所以AC =42,又由AB sin C =AC sin ∠ABC ,得AB 22=AC 45,所以AB =5. 18.解析:方案一:选条件①.(1)由a 2n +1-a 2n =3,得{a 2n }是公差为3的等差数列,由a 1=1,得a 21=1,则a 2n =3n -2,又a n >0,所以a n =3n -2.(2)根据a 1,a n ,a m 成等比数列,得到a 2n =a 1a m ,即3n -2=3m -2,则有m =3n 2-4n +2,因为n ∈N *且n ≥2,所以m =3n 2-4n +2∈N *,当n =2时,m min =6;方案二:选条件②.(1)因为a 2n -a n a n -1-3a n -1-9=0⇔(a n +3)(a n -a n -1-3)=0,因为a 1=1,所以a n -a n -1-3=0,则{a n }是等差数列,则a n =3n -2.(2)要使得a 1,a n ,a m 成等比数列,只需要a 2n =a 1a m ,即(3n -2)2=3m -2,则有m =3n 2-4n +2,因为n ∈N *且n ≥2,所以m =3n 2-4n +2∈N *,当n =2时,m min =6;方案三:选条件③.(1)由S n =n 2-2n +2,得a n =⎩⎪⎨⎪⎧1 n =12n -3 n ≥2. (2)要使得a 1,a n ,a m 成等比数列,只需要a 2n =a 1a m ,即(2n -3)2=2m -3,则有m =2n 2-6n +6,因为n ∈N *且n ≥2,所以m =2n 2-6n +6∈N *,当n =2时,m min =2.19.解析:(1)证明:因为PE ⊥EB ,PE ⊥ED ,EB ∩ED =E ,所以PE ⊥平面EBCD ,又PE ⊂平面PEB ,所以平面PEB ⊥平面EBCD ,而BC ⊂平面EBCD ,BC ⊥EB ,所以平面PBC ⊥平面PEB ,由PE =EB ,PM =MB 知,EM ⊥PB ,于是EM ⊥平面PBC .又EM ⊂平面EMN ,所以平面EMN ⊥平面PBC.(2)假设存在点N 满足题意,取E 为原点,直线EB ,ED ,EP 分别为x ,y ,z 轴,建立空间直角坐标系E xyz ,不妨设PE =EB =2,显然平面BEN 的一个法向量为n 1=(0,0,1),设BN =m (0<m <2),则=(1,0,1),=(2,m,0).设平面EMN 的一个法向量为n 2=(x ,y ,z ),则由·n 2=·n 2=0,即⎩⎪⎨⎪⎧ (1,0,1)·(x ,y ,z )=0(2,m ,0)·(x ,y ,z )=0,即⎩⎪⎨⎪⎧x +z =02x +my =0, 故可取n 2=(m ,-2,-m ),所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=(0,0,1)·(m ,-2,-m )2m 2+4=-m 2m 2+4, 依题意⎪⎪⎪⎪⎪⎪-m 2m 2+4=66, 解得m =1∈(0,2),此时N 为BC 的中点.综上知,存在点N ,使得二面角B EN M 的余弦值为66, 此时N 为BC 的中点.20.解析:(1)根据散点图可以判断,y =c e dx 更适宜作为平均产卵数y 关于平均温度x 的回归方程类型; 对y =c e dx 两边取自然对数,得ln y =ln c +dx ;令z =ln y ,a =ln c ,b =d ,得z =a +bx ; 因为=∑i =17(x i -x )(z i -z )∑i =17 (x i -x )2==40.1820147.7143≈0.272, =z -x =3.612-0.272×27.429≈-3.849;所以z 关于x 的回归方程为=0.272x -3.849;所以y 关于x 的回归方程为=e 0.272x -3.849.(2)①由f (p )=C 35·p 3·(1-p )2, 得f ′(p )=C 35·p 2(1-p )(3-5p ), 因为0<p <1,令f ′(p )>0,得3-5p >0,解得0<p <35; 所以f (p )在⎝⎛⎭⎫0,35上单调递增, 在⎝⎛⎭⎫35,1上单调递减,所以f (p )有唯一的极大值为f ⎝⎛⎭⎫35,也是最大值;所以当p =35时,f (p )max =f ⎝⎛⎭⎫35=216625; ②由①知,当f (p )取最大值时,p =35,所以X ~B ⎝⎛⎭⎫5,35, 所以X 的数学期望为E (X )=5×35=3, 方差为D (X )=5×35×25=65. 21.解析:(1)设以AP 为直径的圆的圆心为B ,切点为N ,则|OB |=2-|BA |,∴|OB |+|BA |=2.取A 关于y 轴的对称点A ′,连接A ′P ,故|A ′P |+|AP |=2(|BO |+|BA |)=4>2.所以点P 的轨迹是以A ′,A 为焦点,长轴长为4的椭圆.其中,a =2,c =1,曲线C 方程为x 24+y 23=1. (2)设直线l 的方程为x =ty +(2-3t ),设E (x 1,y 1),F (x 2,y 2),M (x 0,y 0),直线DE 的方程为y =y 1x 1-2(x -2), 故y S =y 1x 1-2(x 0-2), 同理y T =y 2x 2-2(x 0-2); 所以2y 0=y S +y T =y 1x 1-2(x 0-2)+y 2x 2-2(x 0-2), 即2y 0x 0-2=y 1x 1-2+y 2x 2-2=y 1t (y 1-3)+y 2t (y 2-3)=2y 1y 2-3(y 1+y 2)t [y 1y 2-3(y 1+y 2)+3]③ 联立⎩⎨⎧x =ty +(2-3t )3x 2+4y 2-12=0, 化简得(3t 2+4)y 2+(12t -63t 2)y +9t 2-123t =0,所以y 1+y 2=63t 2-12t 3t 2+4,y 1y 2=9t 2-123t 3t 2+4代入③得,2y 0x 0-2=2×⎝ ⎛⎭⎪⎫9t 2-123t 3t 2+4-3×63t 2-12t 3t 2+4t ⎣⎢⎡⎦⎥⎤9t 2-123t 3t 2+4-3×63t 2-12t 3t 2+4+3 =-123t 12t=-3⇒3x 0+2y 0-23=0, 所以点M 都在定直线3x +2y -23=0上.22.解析:(1)证明:对f (x )求导得f ′(x )=e x +sin x -a ,显然e x >0,sin x ≥-1,所以e x +sin x -a >0-1-a ≥0,即f ′(x )>0,所以f (x )在其定义域上是单调递增函数,故f (x )无极值点;(2)解法一:对g (x )求导得g ′(x )=e x +1x +1-a +sin x (x >-1), 又注意到g ′(0)=2-a ,令g ′(0)=2-a =0,得a =2.此时g ′(x )=e x +1x +1-2+sin x , 令h (x )=g ′(x )=e x +1x +1-2+sin x , 则h ′(x )=e x -1(x +1)2+cos x , 显然,在x ∈⎝⎛⎭⎫0,π2上,e x >1>1(x +1)2,cos x >0, 此时h ′(x )=e x -1(x +1)2+cos x >0, 故h (x )在⎝⎛⎭⎫0,π2上是增函数, 所以h (x )>h (0)=0,即g ′(x )=e x +1x +1-2+sin x >0; 又当x ∈(-1,0)时,令s (x )=(x +1)2e x ,t (x )=(x +1)2cos x ,则s ′(x )=(x +1)(x +3)e x >0,s (x )是(-1,0)上的增函数,所以s (-1)<s (x )<s (0),即0<s (x )<1,故存在区间(x 1,0)⊂(-1,0),使s (x )>12,即e x >12(x +1)2; 又0<(x +1)2<1,cos 1<cos x <1,即0<t (x )<1,故存在区间(x 2,0)⊂(-1,0),使t (x )>12,即cos x >12(x +1)2, 现设(x 1,0)∩(x 2,0)=(x 0,0),则在区间(x 0,0)上,e x >12(x +1)2,cos x >12(x +1)2同时成立, 即h ′(x )=e x -1(x +1)2+cos x >0, 故h (x )在(x 0,0)上是增函数,h (x )<h (0)=0.从而存在区间(x 0,0),使得g ′(x )=e x +1x +1-2+sin x <0; 因此存在a =2,使得g (x )在x =0处取得极小值.解法二:x =0是f (x )的极小值点的必要条件是f ′(0)=2-a ,即a =2.此时,g ′(x )=e x +11+x-2+sin x , 显然当x ∈⎝⎛⎭⎫0,π2时, g ′(x )=e x +11+x-2+sin x≥1+x +11+x-2+sin x >0; 当-14<x <0时, (1+x )⎝⎛⎭⎫1-x +32x 2=1+x 22(3x +1)>1⇒11+x<1-x +32x 2. 令m (x )=⎝⎛⎭⎫1+x +x 22e -x ,m ′(x )=-x 22e -x ≤0, 故m (x )是减函数.因此,当x <0时,m (x )>m (0)=1,即e x <1+x +x 22. 令h (x )=sin x -12x ,h ′(x )=cos x -12. 当-1<x <0时,h ′(x )>cos 1-12>0, 故h (x )在(-1,0)上单调递增.因此,当-1<x <0时,h (x )<h (0)=0,即sin x <12x . 故当x ∈⎝⎛⎭⎫-14,0时, g ′(x )=e x +11+x-2+sin x ≤⎝⎛⎭⎫1+x +x 22+⎝⎛⎭⎫1-x +32x 2-2+x 2=2x 2+x 2<0; 因此,a =2时x =0是g (x )的极小值点.。