编码器原理简介

合集下载

编码器工作原理

编码器工作原理

编码器工作原理
编码器是一种用于将机械运动转化为数字信号的装置。

它通常由一个旋转轴和一个光学或磁性传感器组成。

编码器的工作原理是通过测量旋转轴的位置和速度来生成相应的数字信号。

1. 光学编码器的工作原理:
光学编码器使用光学传感器来检测旋转轴的位置和速度。

它包含一个光源和一个光敏元件。

光源发出光束,经过旋转轴上的光栅或编码盘后被光敏元件接收。

光栅或编码盘上的刻线会使光束产生变化,光敏元件会将这些变化转化为电信号。

通过测量光敏元件接收到的电信号的变化,可以确定旋转轴的位置和速度。

2. 磁性编码器的工作原理:
磁性编码器使用磁性传感器来检测旋转轴的位置和速度。

它包含一个磁性编码盘和一个磁性传感器。

磁性编码盘上有一些磁性标记,当旋转轴旋转时,磁性传感器会感应到这些标记的磁场变化。

通过测量磁性传感器接收到的磁场变化,可以确定旋转轴的位置和速度。

编码器的输出通常是一个数字信号,可以是脉冲信号或者是数字序列。

脉冲信号的频率和方向表示旋转轴的速度和方向,而数字序列则可以被解码为旋转轴的绝对位置。

编码器在许多领域都有广泛的应用,例如机械工程、自动化控制和机器人技术等。

它们可以用于测量旋转轴的位置和速度,实现精确的位置控制和运动控制。

编码器的工作原理使其成为现代工业中不可或缺的设备之一。

编码器工作原理

编码器工作原理

编码器工作原理编码器是一种常见的电子设备,用于将物理量转换为数字信号或编码信号。

它通常用于测量、控制和通信系统中。

下面将详细介绍编码器的工作原理。

一、编码器的基本原理编码器的基本原理是利用光、磁、电或机械等物理效应来实现信号的转换。

根据不同的工作原理,编码器可以分为光电编码器、磁编码器、电容编码器、电感编码器和机械编码器等多种类型。

二、光电编码器的工作原理光电编码器是一种常用的编码器类型,它利用光电传感器和光栅来实现信号的转换。

光栅是由透明和不透明的条纹组成的,当光栅旋转时,光传感器会检测到光栅上的条纹变化,从而产生脉冲信号。

具体工作原理如下:1. 光电传感器发射一束光线照射在光栅上。

2. 光栅上的条纹会使光线发生衍射,形成一个周期性的光斑。

3. 光电传感器检测到光斑的变化,并将其转换为电信号。

4. 通过计算脉冲的数量和方向,可以确定光栅的位置和运动方向。

三、磁编码器的工作原理磁编码器是利用磁场变化来实现信号转换的编码器类型。

它通常由磁头和磁性标尺组成。

磁头感应到磁性标尺上的磁场变化,并将其转换为电信号。

具体工作原理如下:1. 磁头感应到磁性标尺上的磁场变化。

2. 磁性标尺上的磁场变化可以通过改变磁极的极性、磁场的大小或磁场的方向来实现。

3. 磁头将磁场变化转换为电信号。

4. 通过计算脉冲的数量和方向,可以确定磁性标尺的位置和运动方向。

四、电容编码器的工作原理电容编码器是利用电容变化来实现信号转换的编码器类型。

它通常由固定电容和可变电容组成。

可变电容的值随着物体的位置或运动而变化,从而产生电信号。

具体工作原理如下:1. 固定电容和可变电容组成一个电容电路。

2. 可变电容的值随着物体的位置或运动而变化。

3. 电容变化导致电路中的电荷变化,产生电信号。

4. 通过测量电信号的大小和变化,可以确定物体的位置和运动方向。

五、电感编码器的工作原理电感编码器是利用电感变化来实现信号转换的编码器类型。

它通常由固定电感和可变电感组成。

编码器工作原理

编码器工作原理

编码器工作原理编码器是一种用于将输入信号转换为特定编码形式的设备。

它在许多领域中被广泛应用,如自动化控制系统、数码通信、机器人技术等。

本文将详细介绍编码器的工作原理和常见的编码器类型。

一、编码器的基本原理编码器的工作原理基于信号的编码和解码过程。

它将输入信号转换为特定的编码形式,以便在接收端进行解码和处理。

编码器通常由两个主要部分组成:输入部分和输出部分。

输入部分接收来自传感器或其他输入设备的信号,并将其转换为数字信号或模拟信号。

输出部分将编码后的信号传输给接收端进行解码。

编码器的工作原理可以简单描述为以下几个步骤:1. 信号输入:编码器接收来自传感器或其他输入设备的信号。

这些信号可以是模拟信号(如电压、电流)或数字信号(如脉冲信号)。

2. 信号编码:编码器将输入信号转换为特定的编码形式。

常见的编码方式包括二进制编码、格雷码、脉冲编码等。

编码的目的是将输入信号转换为一系列离散的编码值,以便在传输和解码过程中能够准确还原原始信号。

3. 编码传输:编码后的信号通过传输介质(如电缆、光纤)传输到接收端。

传输过程中可能会受到噪声和干扰的影响,因此编码器通常采用一定的纠错码或差错检测机制以提高传输可靠性。

4. 信号解码:接收端接收到编码后的信号后,进行解码处理。

解码器根据编码器的编码规则,将接收到的编码信号转换为原始信号。

5. 信号输出:解码后的信号输出给后续的处理设备或系统,以实现相应的功能。

二、常见的编码器类型1. 绝对值编码器:绝对值编码器将每个位置的编码值与特定的位置对应,能够准确表示位置信息。

常见的绝对值编码器包括光电编码器、磁性编码器等。

2. 增量式编码器:增量式编码器输出的编码值与位置信息相关,但无法准确表示位置。

它通常输出两个相位差异的信号,用于测量位置的变化和速度。

增量式编码器常用于测量旋转运动或线性位移。

3. 旋转编码器:旋转编码器用于测量旋转运动,通常采用光电传感器和光栅等技术。

它可以输出角度信息和方向信息,广泛应用于机械控制和位置测量领域。

编码器工作原理

编码器工作原理

编码器工作原理编码器是一种用于将输入信号转换成特定输出信号的设备。

它广泛应用于自动控制系统、通信系统、数码产品等领域。

本文将详细介绍编码器的工作原理和其常见的工作方式。

一、编码器的基本原理编码器的基本原理是将输入信号转换成特定的输出信号,以实现信息的编码和传输。

它通常由输入部份、编码部份和输出部份组成。

1. 输入部份:输入部份接收来自外部的输入信号,可以是电流、电压、光信号等。

输入信号的特点决定了编码器的适合范围和工作方式。

2. 编码部份:编码部份是编码器的核心部份,它将输入信号转换成特定的编码形式。

常见的编码方式有脉冲编码、格雷码、二进制编码等。

不同的编码方式适合于不同的应用场景。

3. 输出部份:输出部份将编码部份生成的编码信号转换成输出信号,可以是电流、电压、光信号等。

输出信号的特点决定了编码器的输出方式和使用方式。

二、编码器的工作方式编码器的工作方式主要分为绝对编码和增量编码两种。

1. 绝对编码:绝对编码器可以直接读取出物体的精确位置信息,不需要通过计数或者复位等操作。

它的工作原理是将每一个位置对应一个惟一的编码,通过读取编码信号来确定物体的位置。

绝对编码器通常具有高精度和高分辨率的特点,适合于对位置要求较高的应用。

2. 增量编码:增量编码器通过计数脉冲的方式来确定物体的位置。

它的工作原理是将物体的运动转换成脉冲信号,通过计数脉冲的数量和方向来确定物体的位置和运动状态。

增量编码器通常具有较低的成本和较简单的结构,适合于对位置要求不太严格的应用。

三、编码器的应用领域编码器广泛应用于各个领域,以下是一些常见的应用领域:1. 自动控制系统:编码器可以用于测量和控制机械设备的位置、速度和角度等参数,实现精确的运动控制。

2. 通信系统:编码器可以用于数字通信系统中的信号编码和解码,实现信息的传输和处理。

3. 数码产品:编码器可以用于数码相机、数码音乐播放器等产品中的位置和控制功能,提供更好的用户体验。

编码器工作原理

编码器工作原理

编码器工作原理编码器是一种用于将物理量转换为数字信号的设备,常用于测量和控制系统中。

它可以将输入的摹拟信号转换为数字信号,以便计算机或者其他数字设备进行处理和分析。

编码器的工作原理取决于其类型,包括旋转编码器和线性编码器。

1. 旋转编码器工作原理:旋转编码器主要用于测量旋转运动,例如测量机电转速或者位置。

它通常由一个旋转轴和一个固定的编码盘组成。

编码盘上有一系列刻度线或者孔,旋转轴上安装有一个光电传感器。

当旋转轴转动时,光电传感器会检测到刻度线或者孔的变化,并将其转换为数字信号。

根据刻度线或者孔的数目,可以确定旋转轴的位置或者旋转速度。

2. 线性编码器工作原理:线性编码器主要用于测量直线运动,例如测量机床的挪移距离或者位置。

它通常由一个固定的刻度尺和一个挪移的读头组成。

刻度尺上有一系列刻度线或者孔,读头上安装有一个光电传感器。

当读头沿着刻度尺挪移时,光电传感器会检测到刻度线或者孔的变化,并将其转换为数字信号。

根据刻度线或者孔的数目,可以确定读头的位置或者挪移距离。

编码器的工作原理基于光电传感器的原理。

光电传感器使用光电效应来检测光的变化,并将其转换为电信号。

在编码器中,光电传感器通常由一个发光二极管和一个光敏电阻或者光电二极管组成。

发光二极管发出光线,光线经过刻度线或者孔后被光敏电阻或者光电二极管接收。

当光线受到刻度线或者孔的遮挡时,光电传感器会产生电信号的变化。

这些变化经过放大和处理后,转换为数字信号输出。

编码器的输出信号可以是脉冲信号或者摹拟信号。

脉冲信号通常用于测量旋转或者线性运动的位置或者速度。

每一个刻度线或者孔的变化都会产生一个脉冲信号,通过计算脉冲数量或者脉冲频率,可以确定运动的位置或者速度。

摹拟信号通常用于测量连续变化的物理量,例如温度或者压力。

摹拟信号经过模数转换后,转换为数字信号输出。

编码器在自动化控制系统中具有广泛的应用。

它可以用于位置反馈、速度控制、定位和测量等方面。

通过使用编码器,可以实现高精度的测量和控制,提高系统的性能和稳定性。

编码器工作原理

编码器工作原理

编码器工作原理引言概述编码器是一种用于将运动或位置转换为数字信号的设备,广泛应用于工业自动化、机器人技术、数控系统等领域。

编码器工作原理的了解对于工程师和技术人员来说至关重要。

一、编码器的类型1.1 光电编码器:通过光电传感器和光栅盘的相互作用来测量位置或运动。

1.2 磁性编码器:利用磁性传感器和磁性标尺进行位置或运动测量。

1.3 光栅编码器:采用光栅盘和光电传感器来实现高精度的位置检测。

二、编码器的工作原理2.1 光电编码器工作原理:光电编码器通过光栅盘上的透明和不透明区域,使光电传感器检测到光信号的变化,从而转换为数字信号。

2.2 磁性编码器工作原理:磁性编码器利用磁性标尺上的磁性信号,通过磁性传感器检测磁场的变化,实现位置或运动的测量。

2.3 光栅编码器工作原理:光栅编码器利用光栅盘上的光栅结构,通过光电传感器检测光信号的变化,实现高精度的位置检测。

三、编码器的精度和分辨率3.1 精度:编码器的精度取决于光栅盘或磁性标尺上的刻度数量和检测器的灵敏度。

3.2 分辨率:编码器的分辨率是指编码器能够分辨的最小位移量,通常以脉冲数或线数表示。

3.3 精度和分辨率的提高可以通过增加光栅盘或磁性标尺上的刻度数量、提高检测器的灵敏度等方式实现。

四、编码器的应用领域4.1 工业自动化:编码器在数控机床、自动化生产线等设备中广泛应用,实现位置和速度的精确控制。

4.2 机器人技术:编码器用于机器人的定位、导航和运动控制,提高机器人的精度和稳定性。

4.3 数控系统:编码器在数控系统中用于测量工件位置、实现自动化加工,提高生产效率和产品质量。

五、编码器的发展趋势5.1 高精度:随着科技的不断发展,编码器的精度和分辨率将不断提高,满足更高精度的应用需求。

5.2 多功能化:未来的编码器将具备更多功能,如温度补偿、自动校准等,提高设备的稳定性和可靠性。

5.3 无接触式:随着无接触式编码器的发展,将减少机械磨损,延长设备的使用寿命。

编码器工作原理

编码器工作原理

编码器工作原理引言概述:编码器是一种常见的电子设备,用于将输入的模拟信号转换为数字信号。

它在许多领域中都有广泛的应用,如通信、音频和视频处理等。

本文将详细介绍编码器的工作原理。

正文内容:1. 编码器的基本原理1.1 模拟信号采样:编码器首先对输入的模拟信号进行采样。

采样是将连续的模拟信号转换为离散的数字信号的过程。

通常,采样频率越高,转换的数字信号越接近原始模拟信号。

1.2 量化:采样后,编码器对每个采样点的幅度进行量化,将其转换为离散的数值。

量化的精度决定了编码器能够表示的信号范围。

较高的量化精度可以提高信号的准确性,但会增加数据的存储和传输成本。

1.3 编码:在量化后,编码器将数字信号转换为特定的编码格式。

常见的编码格式包括二进制编码、格雷码等。

编码的目的是提高数据的可靠性和传输效率。

2. 编码器的工作模式2.1 增量式编码器:增量式编码器通过检测旋转轴的旋转方向和步长来确定位置信息。

它通常由一个光电传感器和一个旋转编码盘组成。

光电传感器检测到编码盘上的刻度线,根据刻度线的变化来确定位置信息。

2.2 绝对式编码器:绝对式编码器可以直接读取出当前位置的绝对值。

它通常由一个编码盘和多个传感器组成。

编码盘上的刻度线和传感器之间的关系被预先编码,传感器读取刻度线上的编码信息,从而确定位置。

3. 编码器的应用领域3.1 通信领域:编码器在通信领域中广泛应用,用于将模拟语音信号转换为数字信号进行传输和处理。

它可以提高语音信号的质量和传输效率。

3.2 音频和视频处理:编码器用于将音频和视频信号转换为数字格式,以便于存储和传输。

常见的音频编码器包括MP3、AAC等,视频编码器包括H.264、HEVC等。

3.3 工业自动化:编码器在工业自动化中用于测量和控制系统中的位置和速度。

它可以提供准确的位置反馈,实现精确的控制。

4. 编码器的性能指标4.1 分辨率:编码器的分辨率决定了它能够表示的位置或速度的最小变化量。

编码器的工作原理

编码器的工作原理

编码器的工作原理编码器是一种数字电子器件,其工作原理是将输入信号转换为对应的数字编码输出。

它在通信系统、自动控制、数字电路和计算机系统等领域中得到广泛应用。

本文将介绍编码器的工作原理以及常见的编码器类型。

一、编码器的工作原理:1.信号采样:在编码器中,输入信号通常是模拟信号或数字信号。

在信号采样阶段,输入信号会被周期性地采样,将连续的信号转换为离散的信号。

采样的频率取决于实际应用的要求以及系统的采样率。

2.编码处理:在信号采样后,采样的信号需要被编码成数字形式的编码输出。

编码过程是将离散信号映射为二进制编码的过程。

编码器根据特定的编码规则将信号的不同状态映射为二进制编码。

常见的编码规则有格雷码、二进制编码等。

二、编码器的分类:编码器根据信号特性和应用领域的不同,可以分为多种类型。

常见的编码器有以下几种。

1.绝对值编码器:绝对值编码器将每个位置上的输入信号映射为唯一的编码输出。

常见的绝对值编码器有二进制编码器和格雷码编码器。

二进制编码器将每个位置上的输入信号映射为二进制数,例如4位二进制编码器可以表示0-15的数字。

格雷码编码器是一种独特的编码方式,相邻的任意两个编码仅有一个位数发生变化,以减少误差和问题。

2.相对值编码器:相对值编码器将信号的变化状态编码为相对于前一状态的变量。

常见的相对值编码器有增量式编码器和霍尔效应编码器。

增量式编码器将每个位置上的输入信号与上一状态进行比较,以计算输出信号的变化量。

霍尔效应编码器通过利用霍尔传感器感测磁场的变化来实现编码。

三、编码器的应用:1.通信系统:在通信系统中,编码器用于将模拟信号转换为数字信号,以便传输和处理。

例如,音频编码器用于将声音信号编码为数字信号,以便在数字音频播放器和计算机上播放。

2.自动控制系统:在自动控制系统中,编码器用于检测和测量旋转的位置和速度。

例如,在机械系统中,旋转编码器用于测量电机的角度和速度,并将其转换为数字信号,以便控制系统对电机进行精确控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编码器原理(1)光电编码器光电编码器是一种二进制光电位置指示器,其基本原理是由不同等分的明暗相间的条纹,通过光电元件取得角度位置的二进制数字信号,最后进行解码取得角度位置的绝对值或相对值。

绝对编码器的码形总是唯一的,这种码形给出了长度或角度的位置。

光电编码器由光源,码盘和光电接收器所组成。

码盘是编码器中的最重要的器件。

图3.17是一个八位编码器的码盘和编码器的工作原理图。

这里的码盘是一种自然码盘。

绝对编码器的码形有多种形式。

一种叫做格瑞码的码盘特别适用于光学编码器(见图3.18(a))。

这种码<!--[if !vml]--><!--[endif]-->盘每进一格仅改变一个数码,不易产生错码现象。

<!--[if !vml]--><!--[endif]--><!--[if !vml]--><!--[endif]-->图 3.18 (a) 格瑞码的码盘和(b)增量编码器的码盘<!--[if !vml]--><!--[endif]--> 图 3.19 增量编码器码盘脉冲信息细分的工作原理,图中z表示零位光电编码器的另一类是增量编码器。

增量编码器的码盘如图3.18(b)所示。

它的码盘是由明暗相间的条纹所构成。

一般来讲同样分辨精度的增量编码器要比绝对编码器便宜得多。

增量编码器还有一些提高分辨精度的方法。

通常增量光栅码盘有四个刻道,其中两个是明暗相间的条纹码,另外两个是电源亮度指示码。

这两个条纹码之间相互错开,这样这种码盘的编码器就不但可以给出码盘运动的角度和大小,而且可以给出码盘运动的方向。

同时当光栅码盘的方波脉冲信息输入到顺时针 <!--[if !vml]--><!--[endif]-->和逆时针<!--[if !vml]--><!--[endif]-->的增减计数器中时,这种两个条纹码的方波信息就可以分解为一倍、两倍或四倍的精细信号以提高编码器的分辨本领。

如果光栅码盘的质量好,这种精细的四倍的信号可以精确到每一个信号脉冲的二分之一。

为了获得更为精细的分辨本领一种用光栅读头的方法可以达到这个目的。

(见图3.20)这时在旋转光栅的后面加上了一个小的子光栅。

当相干光照射在光栅盘上时,在子光栅面上的光强为(leki,1999):<!--[if !vml]-->(3.58)<!--[endif]--><!--[if !vml]--><!--[endif]-->图 3.20 增量编码器中子光栅码盘细分的工作原理图(leki,1999)式中 <!--[if !vml]--><!--[endif]-->是光栅的投射率。

如果第一个光栅的周期是 <!--[if !vml]--><!--[endif]-->,第二个光栅的周期也是 <!--[if !vml]--><!--[endif]-->。

用 <!--[if !vml]--><!--[endif]-->作为在焦面上的空间频率,则在焦面上的光能量为: <!--[if !vml]--><!--[endif]-->(3.59) 如果用傅里叶级数来表示 <!--[if !vml]--><!--[endif]-->,有: <!--[if !vml]--><!--[endif]--> (3.60)式中 <!--[if !vml]--><!--[endif]-->是傅里叶系数,它的表达式为: <!--[if !vml]--><!--[endif]-->(3.61)如果 <!--[if !vml]--><!--[endif]-->是小光栅的长度, <!--[if !vml]--><!--[endif]-->,则双光栅引起的光强为:<!--[if !vml]--><!--[endif]-->(3.62 )式中<!--[if !vml]--><!--[endif]-->是光栅之间在<!--[if !vml]--><!--[endif]-->方向的相对位移。

<!--[if !vml]--> <!--[endif]--><!--[if !vml]--> <!--[endif]--><!--[if !vml]--><!--[endif]--><!--[if !vml]--><!--[endif]-->(3.63 )<!--[if !vml]--><!--[endif]--> 图 3.21增量编码器中子光栅码盘细分的光强信号和位移的关系,A.U表示任意单位(leki,1999) Reprinted with permission from Taylor & Francis, Inc.。

当<!--[if !vml]--><!--[endif]-->时这一信号的光能量可以表示为一个级数形式。

如果只取前面的两项的话,则焦点的光能是<!--[if !vml]--><!--[endif]-->的余弦函数。

这样通过电细分,我们还可能获得更为精细的分辨精度。

在实际应用中可以用四组子光栅,同时用于上下两组条纹上以提高电细分的精度。

但是正如图3.21所示周期光栅的焦点能量并不是真正的余弦曲线,所以如果采用如图3.22所示的调制子光栅其焦点能量才是真正的余弦曲线,则细分后的分辨率精度就会更为准确。

另外应用调制平行光源的方法,使用两个面积不同的面光源也可以使焦点能量成为正确的余弦函数。

通过应用不同分辨率的增量光栅的组合,可以获得不同频率的正弦和余弦的值,这样就可制成精度非常高的绝对编码器。

一般这种高精度的编码器总有多个码道,它们是直流参考码以及三至十五位的正余弦码。

<!--[if !vml]--><!--[endif]--> 图 3.22 增量编码器的两种调制子光栅的光栅具体尺寸(leki,1999)现代光栅技术结合<!--[if !vml]--><!--[endif]-->的本身的精度也可以极大地提高光电编码器的精度。

一个16位的增量编码器,如在其码盘上加上16位的绝对码图案,通过<!--[if !vml]--><!--[endif]-->使增量码两相邻条纹同时成像,则<!--[if !vml]--><!--[endif]-->会给出码盘的精确位置,以至于获得24位以上的绝对编码器的精度,这是十分重要的技术进展。

(2)圆感应同步器另一种类似的轴角编码装置是圆感应同步器。

与光电编码器不同,圆感应同步器是一种模拟装置。

各个数值的变化是连续的,而不是跳动式的。

圆感应同步器的基本原理如图3.23所示,它由定子和动子所组成。

它的动子只有一个线圈,而在它的定子上,有<!--[if !vml]--><!--[endif]-->个线圈构成<!--[if !vml]--><!--[endif]-->个极。

它的每一个线圈之间的夹角是<!--[if !vml]--><!--[endif]-->度。

当在动子中输入交流电压<!--[if !vml]--><!--[endif]--> <!--[if !vml]--><!--[endif]-->,并且动子轴线和定子的零点偏离一定角度<!--[if !vml]--><!--[endif]-->时,则在定子上的各个线圈内就会产生不同量的电流。

如图3.24中所示,有:<!--[if !vml]--><!--[endif]-->图3.23 圆感应同步器的基本原理<!--[if !vml]--><!--[endif]--><!--[if !vml]--><!--[endif]--><!--[if !vml]--><!--[endif]-->(3.64)<!--[if !vml]--><!--[endif]-->图3.24 圆感应同步器定子上的各个线圈内的输出电压是一比例常数。

如果将定子上的线圈如图3.23中所示式中<!--[if !vml]--><!--[endif]-->互相连结起来,则在定子上就会产生如下的电流:<!--[if !vml]--><!--[endif]-->(3.65)<!--[if !vml]--><!--[endif]--><!--[if !vml]--><!--[endif]-->利用圆感应同步器这一特性,就可以用来测定微小角度的变化。

在使用圆感应同步器时为了测定角度的绝对位置,还要加上一个粗码盘。

比较光电编码器,圆感应同步器有如下几个好处:(a)线圈动定盘比较便宜,(b)对环境要求较低,可以用于温度变化和有振动的场合。

(3)编码器的应用和其它角度测定方法应用光电编码器在控制回路中要采用数模转换装置,而圆感应同步器可以直接用于同步驱动的控制。

不过它们两种都能实现轴角位置的绝对指示或者增量指示。

它们的位置精度高,误差的重复性能好,只是高位数的指示器价格较高。

光栅带尺加摩尔条纹的轴角指示方法是近年新发展起来的,这种方法特别适用于大口径的望远镜。

这种光栅带尺的精度约小于1微米,一般是均匀地粘贴在大型驱动轮的边缘,并通过摩尔条纹给出高达的分辨精度。

光栅<!--[if !vml]--><!--[endif]-->带尺的缺点是不能保证全部条纹的一致性,这需要在计算机控制中使用列表法予以校正。

在望远镜中光栅带尺常用于位置的绝对定标。

望远镜绝对定位精度是为了准确导星、定位的需要,而增量定位则是为了精确导星的要求。

因此增量编码器要求有较高的分辨精度。

绝对编码器可以直接与望远镜传动轴连接,这时位置指示没有其它的误差因素。

相关文档
最新文档