冻干工艺培训教材(东富龙)-第二章、真空冷冻干燥原理
真空冷冻干燥机工作原理

真空冷冻干燥机工作原理
真空冷冻干燥机工作原理是:冷冻干燥是利用升华的原理进行干燥的一种技术,是将被干燥的物质在低温下快速冻结,然后在适当的真空环境下,使冻结的水分子直接升华成为水蒸气逸出的过程.冷冻干燥得到的产物称作冻干物(lyophilizer),该过程称作冻干(lyophilization)。
物质在干燥前始终处于低温(冻结状态),同时冰晶均匀分布于物质中,升华过程不会因脱水而发生浓缩现象,避免了由水蒸气产生泡沫、氧化等副作用。
干燥物质呈干海绵多孔状,体积基本不变,极易溶于水而恢复原状。
在最大程度上防止干燥物质的理化和生物学方面的变性。
冷冻干燥机系由制冷系统、真空系统、加热系统、电器仪表控制系统所组成。
主要部件为干燥箱、凝结器、冷冻机组、真空泵、加热/冷却装置等。
它的工作原理是将被干燥的物品先冻结到三相点温度以下,然后在真空条件下使物品中的固态水份(冰)直接升华成水蒸气,从物品中排除,使物品干燥。
物料经前处理后,被送入速冻仓冻结,再送入干燥仓升华脱水,之后在后处理车间包装。
真空系统为升华干燥仓建立低气压条件,加热系统向物料提供升华潜热,制冷系统向冷阱和干燥室提供所需的冷量。
本设备采用高效辐射加热,物料受热均匀;采用高效捕水冷阱,并可实现快速化霜;采用高效真空机组,并可实现油水分离;采用并联集中制冷系统,多路按需供冷,工况稳定,有利节能;采用人工智能控制,控制精
度高,操作方便。
真空冷冻干燥原理ppt课件

.
11
真空冷冻干燥过程中关键的概念
1.共晶温度 2.共溶温度
.
12
真空冷冻干燥过程中关键的概念
共晶温度:当溶液温度达到某一温度时,其液态和所形成固态 中的组分完全相同,这时的温度称为共晶温度。 一般预冻过程应低于其共晶温度10-20℃。
.
13
真空冷冻干燥过程中关键的概念
共溶温度:固态混合液体在升温熔化过程中,当达到某一温度时,固体中开 始出现液态,此温度称为溶液的共溶温度。 在一次干燥中物料冻结层的温度一定要低于其共溶点。
.
7
真空冷冻干燥的程序
4、整个升华干燥的时间约12-24小时左右,与产品在每瓶内的装量,总装量, 玻璃容器的形状、规格,产品的种类,冻干曲线及机器的性能等等有关。 5、冻干结束后,要放干燥无菌的空气进入干燥箱,然后尽快地进行加塞封口, 以防重新吸收空气中的水份。
.
8
真空冷冻干燥有下列优点
1.冷冻干燥在低温下进行,因此对于许多热敏性的物质特 别适用。 2.在低温下干燥时,物质中的一些挥发性成分损失很小。 3.微生物的生长和酶的作用无法进行。
.
9
4.体积几乎不变,保持了原来的结构,不会发生浓缩现象。
5.干燥后的物质疏松多孔,呈海绵状,加水后溶解迅速而 完全。
6.干燥在真空条件下进行,一些易氧化的物质得到了保护。
7.干燥能排除95-99%以上的水份。
.
10
真空冷冻干燥缺点
冷冻干燥成本高(投资费用与运行成本都很高)。 冷冻干燥时间长,生产周期长。
真空冷冻干 燥原理
.ห้องสมุดไป่ตู้
1
注射用胸腺五肽为什么不直接加热干燥或者晾 干,而要真空冷冻干燥?
简述冷冻干燥工艺的原理

简述冷冻干燥工艺的原理
冷冻干燥工艺是一种通过冷却、真空、加热等多重工艺步骤将液态物质(如药物、食品等)转换成干燥粉末的技术。
其基本原理是利用物质的三相变化(固态、液态、气态)来实现物质的干燥过程。
具体原理如下:
1. 冷冻:将液态物质在低温下冷冻成为固体,从而减缓或阻止水分子的活动,使物质处于稳定的固态状态。
2. 减压:将冷冻固体在真空环境中加热,造成水分子的升华,从固态直接转变为气态,减少干燥过程中水分子对物质的破坏。
3. 冷凝:将水分子升华为水蒸气后,通过冷凝器将水蒸气转变为液态,从而保证水分子不会再次附着在干燥物质上。
4. 除气:通过加热干燥室中的物体,逐渐升高干燥室中的压力,使物质中还存在的残留水分分子升华到气态,在真空环境中通过冷凝器凝结、去除水分子。
通过以上步骤,达到将液态物质转变为干燥粉末的目的。
在整个工艺过程中,通过控制温度、压力等参数,使物质能够以最优的状态完成干燥,从而保证其质量。
真空冷冻干燥的原理

真空冷冻干燥的原理目录第一节冷冻干燥的原理 (2)第二节冻干机的组成和冻干程序 (2)第三节共溶点及其测量方法 (5)第四节产品的预冻 (7)第五节产品的第一阶段干燥 (10)第六节产品的第二阶段干燥 (12)第七节影响干燥过程的因素 (14)第八节冻干曲线时序的制定 (16)第九节冻干的后处理 (19)第一节冷冻干燥的原理干燥是保持物质不致腐败变质的方法之一。
干燥的方法许多,如晒干、煮干、烘干、喷雾干燥和真空干燥等。
但这些干燥方法都是在0℃以上或更高的温度下进行。
干燥所得的产品,一般是体积缩小、质地变硬,有些物质发生了氧化,一些易挥发的成分大部分会损失掉,有些热敏性的物质,如蛋白质、维生素会发生变性。
微生物会失去生物活力,干燥后的物质不易在水中溶解等。
因此干燥后的产品与干燥前相比在性状上有很大的差别。
而冷冻干燥法不同于以上的干燥方法,产品的干燥基本上在0℃以下的温度进行,即在产品冻结的状态下进行,直到后期,为了进一步降低产品的残余水份含量,才让产品升至0℃以上的温度,但一般不超过40℃。
冷冻干燥就是把含有大量水分物质,预先进行降温冻结成固体,然后在真空的条件下使水蒸汽直接升华出来,而物质本身剩留在冻结时的冰架中,因此它干燥后体积不变,疏松多孔在升华时要吸收热量。
引起产品本身温度的下降而减慢升华速度,为了增加升华速度,缩短干燥时间,必须要对产品进行适当加热。
整个干燥是在较低的温度下进行的。
冷冻干燥有下列优点:一.冷冻干燥在低温下进行,因此对于许多热敏性的物质特别适用。
如蛋白质、微生物之类不会发生变性或失去生物活力。
因此在医药上得到广泛地应用。
二.在低温下干燥时,物质中的一些挥发性成分损失很小,适合一些化学产品,药品和食品干燥。
三.在冷冻干燥过程中,微生物的生长和酶的作用无法进行,因此能保持原来的性装。
四.由于在冻结的状态下进行干燥,因此体积几乎不变,保持了原来的结构,不会发生浓缩现象。
五.干燥后的物质疏松多孔,呈海绵状,加水后溶解迅速而完全,几乎立即恢复原来的性状。
真空冷冻干燥原理

真空冷冻干燥原理真空冷冻干燥是一种常用的生物制品、药品、食品、化工产品等领域的干燥方法。
它通过将物料在低温下冷冻固化,然后在真空条件下将固化的水分直接升华为水蒸气,从而达到干燥的目的。
本文将对真空冷冻干燥的原理进行详细介绍。
首先,真空冷冻干燥的过程可以分为三个主要阶段,冷冻阶段、升华阶段和干燥阶段。
在冷冻阶段,通过将物料置于低温环境下,使其水分迅速冷冻并形成冰晶。
接着,在升华阶段,将冷冻的物料置于真空环境下,通过提供足够的热量,使冰晶直接升华为水蒸气,从而去除物料中的水分。
最后,在干燥阶段,通过不断提高物料的温度和减小压力,使残留的水分得以彻底去除,从而完成干燥过程。
其次,真空冷冻干燥的原理主要依赖于两个基本的物理过程,冷冻和升华。
在冷冻过程中,物料中的水分会形成冰晶,从而减小了水分分子的活动性,使其不易挥发。
而在升华过程中,通过提供适当的热量和在真空条件下,冰晶直接升华为水蒸气,从而实现了水分的快速去除。
这两个过程的结合,使得真空冷冻干燥具有了高效、温和、不易引起热敏性物质的降解等优点。
最后,真空冷冻干燥的原理在实际应用中有着广泛的适用性。
它不仅可以用于生物制品、药品、食品、化工产品的干燥,还可以用于保护热敏性物质、维持产品的活性成分、延长产品的保质期等方面。
同时,真空冷冻干燥还可以避免了传统热风干燥所带来的高温、氧化、热敏性物质降解等问题,因此在现代工业生产中得到了广泛的应用。
综上所述,真空冷冻干燥通过冷冻和升华两个基本物理过程,实现了对物料的高效干燥。
其原理简单清晰,具有广泛的适用性,因此在各个领域都有着重要的地位。
希望本文的介绍能够帮助大家更好地理解真空冷冻干燥的原理,为实际应用提供参考。
真空冷冻干燥的原理是如何的-

真空冷冻干燥的原理是如何的?冷冻干燥机的真空冷冻干燥的过程分为预冻、升华、二次升华。
但升华这一阶段的温度往往控制不好,当温度上升过快时造成制品中的水分升华不完全、有水分溶化,此时二次升华就不会产生多孔疏松的水分升华效果,相反,对液态水的真空加热干燥使制品成块甚至硬结,不利于制品溶解和从器皿上刮除。
这时候就需要在二次升华之前再次预冻、升华,多次预冻、升华对于较厚、表面积较小的制品是适用的。
一定的溶解状态是造成制品冷冻干燥后疏松多孔效果的必要条件,已经成块或硬结的制品拿去冷冻干燥还是一团。
将冷冻干燥不完全的制品隔夜后,制品原先的疏松多孔结构会因为通过自身内部水分吸潮而塌陷和成团成块,不利于再次冷冻干燥。
自动或半自动的真空冷冻干燥机会有十二或二十时段的温度设定进行升华和二次升华加热的控制,当一个时段的加热完成后自动进入下一个时段的加热。
在真空度和冷凝器的温度够低时,由于升华的速度受制于热传导和升华通道,因此升华是从制品的表面向内部缓慢进行。
预冻则只受制于温度传导的影响,因此预冻比升华相对快一些,但制品完全冻牢也要2-3小时。
有机溶剂提取物应该将有机溶剂挥干后再进行真空冷冻干燥,这对于冷冻干燥机真空泵的使用寿命和实验安全十分重要。
非水溶剂的冷冻干燥,像乙醇类溶液,其冷冻干燥点在-111℃以下,不能用普通冷凝器。
真空冷冻干机的工作原理真空冷冻干燥机是针对目前现有的常规真空干燥及烘箱,进行改造升级换代而设计,主要由制冷系统和真空系统两部分组成。
其工作原理在于:利用真空干燥原理,通过将湿物料冻结到共晶点温度下,使物料中的水分变成固态冰,然后在较高真空环境下,通过给物料加热,将冰直接升华成水蒸气,再用真空系统中的水汽凝结器将水蒸气冷凝,从而达到物质脱水干燥的目的。
真空冷冻干燥机的发展趋势随着产业的扩大化和对产能和降低能耗的追求,真空冷冻干燥机常常会与其他设备一起组成干燥设备组合,如喷雾真空冷冻干燥机。
或是将其他干燥技术与之组合使用,如微波真空冷冻干燥机,不仅可以通过微波加热改善真空环境中传热不良的问题,还由于升华界面温度高,有利于水蒸气扩散,更适用于热敏性物料的干燥。
冷冻干燥原理培训课件冻干原理

▪ 6.由于干燥在真空下进行,氧气极少, 因此一些易氧化的物质得到了保护。
▪ 7.干燥能排除95-99%以上的水份,使干 燥后产品能长期保存而不致变质。
三、冻干机的组成
1、冻干机的组成按系统分
▪ 1.1 制冷系统 ▪ 1.2 真空系统 ▪ 1.3 加热系统 ▪ 1.4 控制系统
4、冻干箱内的压强
▪ 4.3 当压强太高时,产品内冰的升华速率减慢, 产品吸热量将减少。于是产品自身的温度上升, 当高于共熔点温度时,产品将发生熔化,造成冻 干失败。
▪ 4.4 冻干箱的合适压强一般认为是在10-30Pa之 间,在这个压强范围内,既利于热量的传递又利 于升华的进行。超过30Pa时,产品可能熔化, 此时将发出真空报警信号,切断对产品的加热, 甚至启动冷冻机对冻干箱进行降温,以保护产品 不致发生熔化。
4、冻干箱内的压强
▪ 4.1 冷冻干燥时冻干箱内的压强,过去认为是越 低越好,现在则认为不是越低越好,而是要控制 在一定的范围之内。
▪ 4.2 压强低当然有利于产品内冰的升华。但由于 压强太低时对热传递不利,产品不易获得热量, 升华速率反而降低。实验表明:在冻干箱的压强 低于10Pa时,气体的对流传热小到可以忽略不 计;而压强大于10Pa时,气体的对流传热就明 显增加。在同样的板层温度下,压强高于10Pa 时,产品容易获得热量,因而升华速率增加。
▪ 冷凝器的功用是把冻干箱内产品升华 出来的水蒸气冻结吸附在其金属表面 上。
四、共溶点及其测量方法
1.共熔点的概念
▪ 制品内的各种组份全部冻结成固体的 温度即为共熔点。
2、共熔点的意义
▪ 由于冷冻干燥是在真空状态下进行。只有 制品全部冻结后才能在真空下进行升华, 否则有部分液体存在时,在真空下不仅会 迅速蒸发,造成液体的浓缩使冻干制品的 体积缩小;而且溶解在水中的气体在真空 下会迅速冒出来,造成象液体沸腾的样子, 使冻干产品鼓泡,甚至冒出瓶外。
真空冷冻干燥机的原理

真空冷冻干燥机的原理00冷冻干燥(以下简称冻干)就是将含水物质,先冻结成固态,而后使其中的水分从固态升华成气态,以除去水分而保存物质的方法。
冻干加工工艺对于某些生物制品、药品的制造起到关键性作用。
如麻疹疫苗和卡介苗冻干前在保冷情况下的有效期只有3个月,而卡介苗的安全试验就需耗时2个月才能完成。
冻干工艺使卡介苗的活菌数经4~5年存放后仍保持在合格水平。
目前冻干工艺生物制药中主要应用于生物、生化制品、中药注射剂制品和热不稳定的抗生素类制品的生产。
冷冻干燥机的工作原理冷冻干燥是利用升华的原理进行干燥的一种技术,是将被干燥的物质在低温下快速冻结,然后在适当的真空环境下,使冻结的水分子直接升华成为水蒸气逸出的过程.冷冻干燥得到的产物称作冻干物(lyophilizer),该过程称作冻干(lyophilization)。
物质在干燥前始终处于低温冻结状态),同时冰晶均匀分布于物质中,升华过程不会因脱水而发生浓缩现象,避免了由水蒸气产生泡沫、氧化等副作用。
干燥物质呈干海绵多孔状,体积基本不变,极易溶于水而恢复原状。
在最大程度上防止干燥物质的理化和生物学方面的变性。
冷冻干燥机系由制冷系统、真空系统、加热系统、电器仪表控制系统所组成。
主要部件为干燥箱、凝结器、冷冻机组、真空泵、加热/冷却装置等。
它的工作原理是将被干燥的物品先冻结到三相点温度以下,然后在真空条件下使物品中的固态水份(冰)直接升华成水蒸气,从物品中排除,使物品干燥。
物料经前处理后,被送入速冻仓冻结,再送入干燥仓升华脱水,之后在后处理车间包装。
真空系统为升华干燥仓建立低气压条件,加热系统向物料提供升华潜热,制冷系统向冷阱和干燥室提供所需的冷量。
本设备采用高效辐射加热,物料受热均匀;采用高效捕水冷阱,并可实现快速化霜;采用高效真空机组,并可实现油水分离;采用并联集中制冷系统,多路按需供冷,工况稳定,有利节能;采用人工智能控制,控制精度高,操作方便。
对冻干制品的质量要求是:生物活性不变、外观色泽均匀、形态饱满、结构牢固、溶解速度快,残余水分低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浒干工艺培训教材(东富龙)一,二章、真空冷冻干燥原理第二章冷冻干燥基础理论第一节冷冻干燥的原理一、冻干的概念、目的及应用冷冻干燥就是把含有大量水分的物质,预先进行降温冻结成固体。
然后在真空的条件下使水蒸汽直接从固体中升华出来,而物质本身留在冻结的冰架子中,从而使得干燥制品不失原有的固体骨架结构,保持物料原有的形态,且制品复水性极好。
利用冷冻干燥目的是为了贮存潮湿的物质,通常是含有微生物组织的水溶液,或不含微生物组织的水溶液。
产品在冻结之后置于一个低水气压下,这时包含冰的升华,直接由固态在不发生熔化的情况下变成汽态。
与其他干燥方式相比避免了化学、物理和酶的变化,从而确保了制品物性在保存时不易改变。
实际需要的低水汽压是靠真空的状况下达到的。
真空冷冻干燥技术主要应用于:(1)热稳定性差的生物制品,生化类制品,血液制品,基因工程类制品等药物冻干;(2)为保持生物组织结构和活性,外科手术用的皮层、骨骼、角膜、心瓣膜等生物组织的处理;(3)以保持食物色、香、味和营养成分以及能迅速复水的咖啡、调料、肉类、海产品、果蔬的冻干;(4)在微胶囊制备、药品控释材料等方面的应用。
以保持生鲜物质不变性的人参、蜂皇浆、龟鳖等保健品及中草药制剂的加工;(5)超微细粉末功能材料如:光导纤维、超导材料、微波介质材料、磁粉以及能加速反应工程的催化剂的处理等。
二、冷冻干燥的原理及优点1、水的状态平衡图物质有固、液、汽三态,物质的状态与其温度和压力有关。
图示出水(乩0)的状态平衡图。
图中OA、OB、0C三条曲线分别表示冰和水、水和水蒸汽、冰和水蒸汽两相共存时其压力和温度之间的关系。
分别称为溶化线、沸腾线和升华线。
此三条曲线将图面分为I、u、in三个区域,分别称为固相区、液相区和气相区。
箭头1、2、3分别表示冰溶化成水,水汽化成水蒸汽和冰升华成水蒸汽的过程。
曲线0B的顶端有一点K,其温度为374-C,称为临界点。
若水蒸汽的温度高于其临界温度374c时,无论怎样加大压力,水蒸汽也不能变成水。
三曲线的交点0,为固、液、汽三相其存的状态,称为三相点,其温度为0.01℃, 压力为610P”。
在三相点以下,不存在液相。
若将冰面的压力保持低于610Pa,且给冰加热,冰就会不经液相直接变成汽相,这一过程称为升华。
图2-1水的三相平衡图真空冷冻干燥是先将湿料冻结到共晶点温度以下,使水分变成固态的冰,然后在较高的真空度下,使冰直接升华为水蒸气,再用真空系统中的水汽凝结器将水蒸气冷凝,从而获得干燥制品的技术。
干燥过程是水的物态变化和移动的过程。
这种变化和移动发生在低温低压下。
因此,真空冷冻干燥的基本原理就是低温低压下传质传热的机理。
2、冷冻干燥的优点冷冻干燥与常规的晒干、烘干、煮干、喷雾干燥及真空干燥相比,有许多突出的优点:(1)冷冻干燥在低温下进行,因此在对于许多热敏性的物质特别适用。
如蛋白质、微生物之类,不会发生变性或失去生物活力。
(2)在冻干过程中,微生物的生长和酶的作用无法进行。
因此能保持原来的性状。
(3)在低温下干燥时,物质中的一些挥发性成份和受热变性的营养成分损失很小,适合一些化学制品、药品和食品的干燥。
(4)由于在冻结的状态下进行干燥,因此制品的体积、形状几乎不变,保持了原来的结构,不会发生浓缩现象。
干燥后的物质疏松多孔,呈海绵状,加水后溶解迅速而完全,几乎立即恢复原来的性状。
(5)在真空下进行干燥,物料处于高度缺氧状态下,容易氧化的物质得到了保护。
(6)干燥能排除95-99%以上的水份,使干燥后产品能长期保存而不变质。
第二节冷冻干燥的一般过程需要冻干的物品需配制成一定浓度的液体,为了能保证干燥后有一定的形状,一般冻干产品应配制成含固体物质浓度在4%〜25%之间的稀溶液,以浓度为10%〜15%最佳。
这种溶液中的水,大部分是以分子的形式存在于溶液中的自由水;少部分是以分子吸附在固体物质晶格间隙中或以氢键方式结合在一些极性基团上的结合水。
固定于生物体和细胞中的水,大部分是可以冻结和升华的自由水,还有一部分不能冻结、很难除去的结合水。
冻干就是在低温、真空环境中除却物质中的自由水和一部分的吸附于固体晶格间隙中的结合水。
因此,冷冻干燥过程一般分三步进行,即预冻结、升华干燥(或称第一阶段干燥)、解析干燥(或称第二阶段干燥〉。
一、预冻结预冻就是将溶液中的自由水固化,赋予干后产品与干燥前相同的形态,防止抽空干燥时起泡、浓缩和溶质移动等不可逆变化发生,尽量减少由温度引起的物质可溶性减少和生命特性的变化。
1、预冻的方法溶液的预冻方法有两种:冻干箱内预冻法和箱外预冻法。
箱内预冻法是直接把产品放置在冻干机内的多层搁板上,由冻干机的冷冻机来进行冷冻,大量的小瓶和安瓶进行冻干时为了进箱和出箱方便,一般把小瓶或安瓶分放在若干金属盘内,再装进箱子,为了改善热传递。
有些金属盘制成可抽活底式,进箱时把底抽走,让小瓶直接与冻干箱的金属板接触;对于不可抽底的盘子,要求盘底平整,以获得产品的均一性。
采用旋冻法的大血浆瓶要事先冻好后加上导热用的金属架后再进箱进行冷冻。
箱外预冻法有二种方法。
有些小型冻干机没有进行预冻产品的装置,只能利用低温冰箱或酒精加干冰来进行预冻。
另一种是专用的旋冻器,它可把大瓶的产品边旋转边冷冻成壳状结构,然后再进入冻干箱内。
图2-2旋转型冷冻还有一种特殊的离心式预冻法,离心式冻干机就采用此法。
利用在真空下液体迅速蒸发,吸收本身的热量而冻结。
旋转的离心力防止产品的气体逸出,使产品能“平静地”冻结成一定的形状。
转速一般为800 转/分左右。
图2—3靠离心或旋转液体形成楔状或壳状2、预冻的过程:水溶液温度降到一定时,根据溶液共晶浓度,浓度淡溶液里开始结 冰,这个温度就叫结冰点。
一般来说结冰点受浓度的支配与浓度一起下 降。
溶液温度低于结冰点时,溶液中的一部分会结晶析出,剩下的溶液 浓度将会上升,就这样结冰点下降,接着继续冷却,冰结晶随着冷却而 增加,剩下的溶液浓度随之而增大。
可是温度降到某一点时剩下的溶液 就全部冻结,这时的冻结物里混杂着冰晶体,这时的温度就是共晶点。
溶液需过冷到冰点以后,其内产生晶核以后,自由水才会开始以冰的形式结晶, 同时放出结晶热使其温度上升到冰点,随着晶体的生长,溶液浓度的增加,当浓度达 到共晶浓度,温度下降到共晶点以下时,溶液就会全部冻结。
溶液结晶的晶粒数量和大小除了与溶液本身的性质有关以外,还与 晶核生成速率和晶体生长速率有关。
而晶核生成速率和晶体生长速率这 两个因素又是随温度和压强的变化而变化的,因此,我们可以通过控制 温度和压强来控制溶液结晶的晶粒数量和大小。
一般来说,冷却速度越 快,过冷温度越低,所形成的晶核数量越多,晶体来不及生长就被冻结, 此时所形成的晶粒数量越多,晶粒越细;反之晶粒数量越少,晶粒越大。
晶体的形状也与冻结温度有关。
在0℃附近开始冻结时,冰晶呈六 角对称形,在六个主轴方向向前生长,同时,还会出现若干副轴,所有 冰晶连接起来,在溶液中形成一个网络结构。
随着过冷度的增加,冰晶将逐渐丧失容量辨认的六角对称每分80 0-10 00转旋耨形式,加之成核数多,冻结速度快,可能形成一种不规则的树枝型,它们有任意数目的轴向柱状体,而不象六方晶型那样只有六条。
图2-4冷冻干燥碎片,表示冰升华后空隙(无比例)生物体液(如血液血浆、肌肉浆液、玻璃体液等)结冰形成的结晶单元,往往与单一成分的水溶液形成的冰晶类型相似。
结晶类型主要取决于冷却速度和体液浓度,例如血浆、肌肉浆液等在正常浓度下结冰时,在较高零下温度、慢冷却速度下形成六方结晶单元,快速冷却至低温时形成不规则树枝状晶体。
细胞悬浮液(如红血球、白血球、精子、细菌等悬浮于蒸储水、血浆或其他悬浮介质中),在高零下温度缓慢结冰时,悬浮液中大量的冰生长,将细胞挤在两冰柱之间的狭窄管道中,管道内的悬浮介质因水析出结冰而溶质浓缩,细胞内的水通过细胞膜渗透出细胞,又造成细胞内溶质的浓缩。
与此同时,胞外冰的生长,还将迫使细胞物质体积缩小、变形。
但此时细胞内不结冰。
当在低温下快速结冰时,则细胞内将形成胞内冰。
冰的大小、形状和分布与冷却速度、保护剂的存在与否、保护剂的性质以及细胞内水的含量有关,一般说来,冷却速度越快、温度越低,细胞内形成的冰越多。
悬浮液中添加非渗透性保护剂,可以使快速结冰时细胞内形成的冰数目减少。
溶液结晶的形式对冻干速率有直接的影响。
冰晶升华后留下的空隙是后续冰晶升华时水蒸气的逸出通道,大而连续的六方晶体升华后形成的空隙通道大,水蒸汽逸出的阻力小,因而制品干燥速度快,反之树枝形和不连续的球状冰晶通道小或不连续,水蒸汽靠扩散或渗透才能逸出,因而干燥速度慢。
因此仅从干燥速率来考虑,慢冻为好。
此外,冻结的速率还与冻结设备的种类、能力和传热介质等有关。
预冻会对细胞和生命产生一定的破坏作用,其机理是非常复杂的,一般认为,预冻过程中水结冰所产生的机械效应和溶质效应是引起生化药品在冻干过程中失活或变性的重要因素。
机械效应是指水结冰时体积增大,致使活性物质活性部位中一些弱分子力键受到破坏,从而使活性损失;溶质效应是指水结冰以后引起溶质浓度上升以及由于各种溶质在各种温度条件下溶解度变化不一致引起pH值的变化,导致活性物质所处的环境发生变化而造成失活或变性。
对这种现象可采用下列措施解决:①预冻采用速冻法,先将搁板温度降至-45℃,再放入产品急速冷冻,形成细微冰晶,使其来不及产生机械效应。
②选用缓冲剂时要选用溶解度相当的缓冲配对盐。
③加入产品保护剂。
升华阶段时间的长短与下列因素有关:①产品的品种:共熔点温度较高的产品容易干燥,升华的时间短些;②每瓶内的装量(正常的干燥速率大约为lmm/h)、总装量、玻璃容器的形状、规格;③升华时提供的热量;④冻干机本身的性能。
二、升华干此(第一阶段干燥)升华干燥也称为第一阶段干燥。
将冻结后的产品置于密封的真空容器中加热,其冰晶就会升华成水蒸汽逸出而使产品脱水干燥。
干燥是从外表面开始逐步向内推移的,冰晶升华后残留下的空隙变成尔后升华水蒸汽的逸出通道。
已干燥层和冻结部分的分界面称为升华界面。
在生物制品干燥中,升华界面约为每小时1mm的速度向下推进。
当全部冰晶除去时,第一阶段干燥就完成了,此时约除去全部水分的90%左右。
产品在升华干燥时要吸收热量,一克冰全部变成水蒸汽大约需要吸收670卡左右的热量。
因此升华阶段必须对产品进行加热。
当冻干箱内的真空度降至10Pa(可根据制品要求而定)以下,就可以开始给制品加热,为产品升华提供能量,且冻干箱内的真空度应控制在10-30Pa之间最有利于热量的传递,利于升华的进行。
第一阶段升华干燥是冷冻干燥的关键阶段,大部分的水在这一阶段被升华。
若控制不好,会直接影响产品的外观质量和冻干时间。
若搁板的温度过高,搁板向产品提供的热量大于水分升华所吸收的热量,则产品温度持续上升,当产品温度超过其共熔点时,则产生喷瓶或瓶底变空的现象,影响产品的外观质量。