有理数的乘法一.7(1)
1.9.1 有理数的乘法法则 课件(17张PPT) 华东师大版(2024)数学七年级上册

合作探究
相反数
试一试1:3×(-2) = ?-6 与 3×2 = 6 对比. 相反数
= (-2) + (-2) + (-2)
相反数
试一试2:(-3)×(-2) = ?6 与 (-3)×2 = -6 对比.
相反数
相反数
与 3 × (-2) = -6 对比呢?
知识总结
思考1:类比有理数加法的运算步骤,应用有理数乘 法法则进行计算时,应按照怎样的顺序进行计算?
位置
方向 向东为正方向,向西为负
距离 这时小虫位于原来位置的西边 6 m 处. 写成算式是:(-3)×2 = -6.
比较问题 l、问题 2 中的两个算式:左边的乘数有什么 不同,所得的积又有什么改变?你有什么发现?
相反数
3×2 = 6
(-3)×2 = -6
相反数
总结 两数相乘,若把一个乘数换成它的相反数,则
35
-35
90
90
180
180
100 -100
2. 计算: 解:
3. 气象观测统计资料表明,在一般情况下,高度每上升 1 km,气温下降 6 ℃. 已知甲地现在地面气温为 21 ℃, 问甲地上空 9 km 处的气温大约是多少?
解:(-6)×9 = -54, 21 + (-54) = -33.
答:甲地上空 9 km 处的气温大约为 -33 ℃.
2 有理数的乘法的应用
典例精析
例3 用正负数表示气温的变化量,上升为正,下降为 负. 登山队攀登一座山峰,每登高 1 km,气温的变化量 为 -6 ℃,登高 3 km 后,气温有什么变化?
解:(-6)×3 = -18. 答:登高 3 km 后,气温下降 18 ℃.
北师大版七年级数学上册 (有理数的乘法)有理数及其运算课件(第1课时)

乘法分配律:a(b+c)=ab+ac
知2-导
根据分配律可以推出:一个数同几个数的和相 乘,等于把这个数分别同这几个数相乘,再把 积相加.
知2-讲
例3 计算:
(1)
-
5 6
+
3 8
-24;
(2)
-7
-
4 3
5 14
.
解: (1)
倒数的性质: (1)如果a,b互为倒数,那么ab=1; (2)0没有倒数(因为0与任何数相乘都不为1); (3)正数的倒数是正数,负数的倒数是负数; (4)倒数等于它本身的数是±1; (5)倒数是成对出现的.
1.必做: 完成教材P51-52,随堂练习(1)、 (3), 习题T1(1)-(4)、2、3、4
知1-练
(来自《典中点》)
知1-练
3 若五个有理数相乘的积为正数,则五个数中负
数的个数是( D )
A.0 B.2 C.4 D.0或2或4
4
(中考·台湾)算式
-1
1 2
-3
1 4
2 3
之
值为何?( D )
A. 1 B. 11 C. 11 D. 13
4
12
4
4
(来自《典中点》)
知识点 2 有理数的乘法运算律
知1-讲
要点精析: (1)在有理数乘法中,每个乘数都叫做一个因数. (2)几个有理数相乘,先确定积的符号,然后将绝对
值相乘. (3)几个有理数相乘,如果有一个因数为0,那么积
就等于0;反之,如果积为0,那么至少有一个因 数为0.
知1-讲
例2 计算:
(1)(-5)×(-4)×(-2)×(-2);
有理数的乘除乘方运算(含答案)

有理数的运算(乘、除、乘方)教学目的:1、理解有理数的乘法法则;掌握异号两数的乘除运算的规律;2、会进行有理数的乘法、除法、乘方的运算,能灵活运用运算律进行简化运算。
教学重点:1、有理数的乘法、除法法则;2、熟练的进行有理数乘法、除法、乘方运算。
教学难点:若干个有理数相乘,积的符号的确定,乘方的符号确定。
有理数的乘法有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
例1:计算(1) )3()5(-⨯-(2) 4)7(⨯-(3))109()35(-⨯-例题目的:掌握有理数的乘法法则。
有理数乘法法则的推广:(1)几个不等于0的数相乘,积的符号由负因数的个数决定。
当负数的个数为奇数时,积为负,当负因数为偶数个时,积为正。
(2)几个数相乘,有一个因数为0,积为0。
例2:(1))4()37(21-⨯-⨯ (2) )253()5.2()94(321-⨯-⨯-⨯例题目的:会算两个以上有理数的乘法,并能判定积的符号。
有理数乘法的运算律:在有理数运算中,乘法的交换律,结合律以及乘法对加法的分配律仍然成立。
乘法交换律:两个数相乘,交换因数的位置,积不变,用式子表示为a·b =b·a 乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.用式子表示成(a·b)·c =a·(b·c)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘. 用字母表示成:a(b +c)=a·b +a·c例3:计算:(1) 25.18)5.4(⨯⨯- (2) )]23()3[()2(-+-⨯-(3) )8(161571-⨯例题目的:掌握有理数乘法的运算律。
有理数的除法法则1:两个有理数相除,同号得正,异号向负,并把绝对值相除。
0除以任何非0的数都得0。
倒数与负倒数的概念:乘积为1的两个有理数互为倒数,即若a , b 互为倒数,则1=ab ;乘积为1-的两个有理数互为负倒数,即若b a ,互为负倒数,则1-=⋅b a法则2:除以一个数等于乘以这个数的倒数,即a ÷b )0(1≠⋅=b ba 例4:1. 求下列各数的倒数,负倒数。
第二章 第7--11节 有理数的乘法

第二章 第7节 有理数的乘法(第1课时)教学目标1.使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性; 2.培养学生观察、归纳、概括及运算能力.教学重点:会进行有理数乘法的运算.能运用乘法运算律简化运算。
难点:有理数乘法中的符号法则.知识点1. 有理数乘法法则:①两数相乘,同号得_____, 异号得______, 并把____________________.②任何数与0相乘,积仍为________。
知识点2. 有理数乘法的运算 步骤:① 定号 ②绝对值相乘 例1. 计算下列各题4)3)(1(⨯- )7()4)(2(-⨯- )37()73)(3(-⨯- )41()4)(4(-⨯- 221)5(⨯变式练习:421)8)(1(⨯- )45(32)2(-⨯ )143(107)3(-⨯ )21()321)(4(-⨯-知识点3.倒数的定义(1) 如果两个有理数的乘积为______,就称这两个有理数互为________,也称其中一个数是另一个的__________. (2) a 的倒数为__________(0≠a )(3) 如果两个有理数的乘积为-1,就称这两个数互为负倒数。
例2.求下列各数的倒数。
3的倒数是 _________, 0.25的倒数 _________ ,3-的倒数_______,32-的倒数是_______知识点4.多个有理数的乘法运算 (1) 几个不是0的数相乘,负因数的个数是____________ 时,积是正数;负因数的个数是 ____________ 时,积是负数,把_______________相乘。
(2) 几个有理数相乘,有一个因数为0,积就是________. 例3. 计算(1))15.0(5)4(-⨯⨯- )2()65()52)(2(-⨯-⨯- 340)726()1324)(3(⨯⨯-⨯-变式练习1. )107()825(54)1(-⨯-⨯ )158()21()73)(2(-⨯-⨯- )91()2.1(45)3(-⨯-⨯(4)5812()()121523-⨯⨯⨯- 2122)5()5(-⨯⨯-- )100(121)12.0)(6(-⨯⨯-)1431(7)7(+-⨯ 253)3.2(25.2)8(⨯-⨯ )511()5()2(3)9(-⨯-⨯-⨯-*变式练习2:(1).如果ab >0,a+b >0,确定a 、b 的正负。
初一数学教案:《有理数的乘法》9篇

初一数学教案:《有理数的乘法》优秀9篇初中数学《有理数的乘法》教学设计篇一一、知识与能力掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力二、过程与方法经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算三、情感、态度、价值观培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性四、教学重难点一、重点:熟练进行有理数的乘除运算二、难点:正确进行有理数的乘除运算预习导学通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律五、教学过程一、创设情景,谈话导入我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律二、精讲点拨质疑问难根据预习内容,同学们回答以下问题:1、有理数的乘法法则:(1)同号两数相乘___________________________________(2)异号两数相乘___________________________________(3)0与任何自然数相乘,得____2、有理数的乘法运算律:(1)乘法交换律:ab=_________(2)乘法结合律:(ab)c=_______(3)乘法分配律:(a+b)c=________3、有理数的除法法则:除以一个不等于0的数,等于乘这个数的__________比较有理数的乘法,除法法则,发现_________可能转化为__________有理数的乘法数学教案篇二教材分析“数的运算”是“数与代数”学习领域的重要内容。
有理数的乘法运算是加法运算的另一种运算形式,它也是今后学习有理数的除法、乘方及混合运算的基础。
因此本节内容具有承前启后的重要作用。
学情分析1、让学生亲身经历将实际问题抽象成数学问题的过程,增加他们对问题的感性认识。
北师大版七年级数学上册《有理数的乘法(第1课时)》教学教案

二、例题:
三、小结:
促进了学 生的表达 与交流,为 后续学习 打下基础。 课件展示 归纳使知 识更系统 化,便于学 生记忆。
理数的乘
(raciprocal),也称这两个有理数互为倒数 教师追问:同学们你知道怎样求一个的道数吗? 1.非零整数——直接写成这个数分之一 2.分数——把分子、分母颠倒位置即可 带分数要化成假分数,小数化为分数再求
法法则解 决两个例 题,且明确 倒数的定 义在有理 数范围内
例 2:(3)(-4)×5 ×(-0.25)(从左向右依次运算)
仍有意义。
(4)( 3)( 5)( 2)
5
6
[(3 5)] (2) 56
1 (2) 2
1
根据上面例题,教师提问:几个有理数相乘,因数都不为 0 时, 积的符号怎样确定? 有一个因数为 0 时,积是多少? 积的符号又负数的个数确定,若是奇数,结果为负, 若是偶数,结果为正 有一个因数为 0 时,积是 0 3、出示课件: 试一试 : 教师鼓励学生主动解决问题
加法法则引出有理数的乘法来解决了一些实际问题。
1、培养学生的动态观察 、对比、分析生活问题的能力;让学生能综合运用有理数及其加、
减法的有关知识灵活地解决简单的实际问题。
学习 2、在师生、生生的交流活动中,复习巩固加减运算,逐步把学生牵引到对较复杂数据的
目标 灵活处理。使学生感受到折 线统计图确实可以直观地反映事物的变化情况。
1、11 8 1 (1) 4 22 2
11 8 1 4 22 2
1 2
2、0×(-3) ×(-4) ×(-5) ×(-6)
=0
几个有理数相乘有一个因数为 0 时,积是 0
课堂 1、两个数的积为正,那么这两个数( C )
(完整版)有理数的乘法知识点总结

(完整版)有理数的乘法知识点总结有理数的乘法知识点总结1. 有理数的定义有理数是可以表示为分数形式的数,分为正有理数、负有理数和 0。
2. 有理数的乘法有理数的乘法满足以下性质:- 正数与正数相乘,结果仍为正数。
- 负数与负数相乘,结果仍为正数。
- 正数与负数相乘,结果为负数。
- 任何数与 0 相乘,结果都为 0。
3. 有理数的乘法的计算方法3.1 有理数的乘法运算法则- 正数与正数相乘,直接相乘并保留正号。
- 负数与负数相乘,直接相乘并保留正号。
- 正数与负数相乘,直接相乘并改变结果的符号为负号。
3.2 有理数的乘法性质- 乘法交换律:a * b = b * a,对于任意有理数 a 和 b 成立。
- 乘法结合律:(a * b) * c = a * (b * c),对于任意有理数 a、b 和c 成立。
- 乘法分配律:a * (b + c) = (a * b) + (a * c),对于任意有理数 a、b 和 c 成立。
4. 带有变量的有理数的乘法带有变量的有理数的乘法遵循与实数乘法相同的规则,即乘法交换律、结合律和分配律。
需要注意的是,当变量的符号与数的符号不同时,结果为负数。
5. 实际应用有理数的乘法在日常生活中的应用非常广泛,例如:- 购物时计算打折后的价格。
- 解决家庭预算问题。
- 勾股定理中的边长关系。
6. 总结有理数的乘法遵循特定的规则,可以通过直接相乘并根据符号进行判断来计算结果。
了解有理数的乘法规则可以帮助我们更好地理解数学问题,并在实际应用中得到运用。
七年级(人教版)集体备课教学设计:1.4.1《有理数的乘法(1)》

七年级(人教版)集体备课教学设计:1.4.1《有理数的乘法(1)》一. 教材分析《有理数的乘法(1)》是七年级数学的重要内容,主要让学生掌握有理数乘法的基本运算方法。
本节课的内容是在学生已经掌握了有理数加法、减法、除法的基础上进行的,对于学生来说,有理数的乘法是一种新的运算方法,需要他们能够理解和掌握。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于有理数的加法、减法、除法有一定的了解。
但是,对于有理数的乘法,他们还是初次接触,可能存在一定的困难。
因此,在教学过程中,教师需要耐心地引导学生,通过实例和练习,让学生理解和掌握有理数的乘法。
三. 教学目标1.让学生理解有理数乘法的概念和运算方法。
2.让学生能够熟练地进行有理数的乘法运算。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.教学重点:有理数乘法的基本运算方法。
2.教学难点:理解有理数乘法的概念,能够熟练地进行有理数的乘法运算。
五. 教学方法1.采用讲授法,教师讲解有理数乘法的概念和运算方法。
2.采用示范法,教师示例有理数的乘法运算。
3.采用练习法,学生通过练习,巩固所学知识。
4.采用小组讨论法,学生分组讨论,共同解决问题。
六. 教学准备1.教师准备PPT,内容包括有理数乘法的概念、运算方法、例题和练习题。
2.准备黑板,用于板书和展示解题过程。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过提问,引导学生回顾已学的有理数加法、减法、除法知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师利用PPT呈现有理数乘法的概念和运算方法,让学生初步了解有理数乘法。
3.操练(15分钟)教师出示例题,让学生独立完成,然后集体讲解解题过程。
接着,教师给出一些练习题,让学生分组练习,共同解决问题。
4.巩固(10分钟)教师挑选一些典型的练习题,让学生在黑板上展示解题过程,其他学生跟随讲解。
通过这种方式,巩固所学知识。