遥感图像分类后处理
遥感图像分类后处理

一、实验目的与要求监视分类和决策树分类等分类方法得到的普通是初步结果,难于到达最终的应用目的。
因此,需要对初步的分类结果发展一些处理,才干得到满足需求的分类结果,这些处理过程就通常称为分类后处理。
常用分类后处理通常包括:更改分类颜色、分类统计分析、小斑点处理〔类后处理〕、栅矢转换等操作。
本课程将以几种常见的分类后处理操作为例,学习分类后处理工具。
二、实验内容与方法1. 小斑块去除Majority 和 Minority 分析聚类处理〔Clump〕过滤处理〔Sieve〕2. 分类统计3. 分类叠加4. 分类结果转矢量5. ENVI Classic 分类后处理浏览结果局部修改更改类别颜色6. 精度评价在中,分类后处理的工具主要位于 Toolbo*/Classification/Post Classification/;三、实验设备与材料装有的计算机以 ENVI 自带数据"can_tmr.img"的分类结果"can_tmr_class.dat"为例。
数据位于"...\13数据\"。
其他数据描述:•can_tmr.img ——原始数据•can_tmr_验证.roi ——精度评价时用到的验证 ROI四、实验步骤应用监视分类或者非监视分类以及决策树分类,分类结果中不可防止地会产生一些面积很小的图斑。
无论从专题制图的角度,还是从实际应用的角度,都有必要对这些小图斑发展剔除或者重新分类,目前常用的方法有 Majority/Minority 分析、聚类处理〔clump〕和过滤处理〔Sieve〕。
Majority/Minority 分析采用类似于卷积滤波的方法将较大类别中的虚假像元归到该类中,定义一个变换核尺寸,主要分析〔Majority Analysis〕用变换核中占主要地位〔像元数最多〕的像元类别代替中心像元的类别。
如果使用次要分析〔Minority Analysis〕,将用变换核中占次要地位的像元的类别代替中心像元的类别。
遥感图像的分类与解译技术

遥感图像的分类与解译技术随着科技的发展,遥感技术已经被广泛应用于农业、城市规划、环境保护等领域。
利用遥感技术获取的图像数据不仅有助于对地球物理现象的探测和研究,而且为许多应用提供有力的支持。
遥感图像的分类与解译技术就是其中的重要组成部分。
本文将重点介绍遥感图像的分类与解译技术。
一、图像分类的基本过程图像分类是一种将多光谱遥感图像分割成具有特定类别的区域的过程。
图像分类的基本过程可以分为以下几个阶段:1. 预处理阶段:对遥感图像进行去噪、几何校正和辐射校正等预处理工作。
2. 特征向量提取:将预处理后的图像转换为可供分类器使用的特征向量。
3. 分类器设计:选择适合该任务的分类器。
4. 图像分类:利用分类器对图像进行分类。
5. 后处理:对分类结果进行后处理,包括空间滤波、形态学操作等。
二、遥感图像的解译技术遥感图像的解译技术是指根据地物的形状、大小、纹理和空间分布等信息,对遥感图像中的地物进行语义识别和解译的过程。
遥感图像的解译技术可以分为以下几种类型:1. 监督分类法:监督分类法是指使用已知类别的训练样本对遥感图像进行分类。
常用的监督分类器包括最小距离分类、支持向量机、决策树、随机森林等。
2. 无监督分类法:无监督分类法是指不使用已知类别信息对遥感图像进行分类。
常用的无监督分类器包括K-means算法、ISODATA算法、自组织神经网络等。
3. 物体识别技术:物体识别技术是指利用遥感图像的几何和光谱信息对地物进行识别。
常用的物体识别技术包括形状分析、纹理分析、物体对比度分析等。
三、遥感图像分类的应用遥感图像分类技术在许多领域都有广泛的应用,以下是一些典型的应用:1. 农业领域:遥感图像分类技术可以用于农作物种植面积和类型的识别、土地质量分级、作物生长监测等。
2. 环境保护领域:遥感图像分类技术可以用于污染区域和水质等环境指标的监测和识别。
3. 城市规划领域:遥感图像分类技术可以用于城市土地利用类型的识别、城市扩张的监测等。
遥感影像解译-分类后处理及精度评价、分类新方法

三、分类新方法
• 随着模式识别与机器学习技术的不断发展,将先进的机器
学习技术应用到遥感影像分类中,并充分考虑影像本身的光
谱信息、空间信息、时间序列信息以及各类地理辅助信息可
以大大提高遥感影像分类的精度。
• 分类新方法
- 半监督分类;
- 面向对象分类;
- 分类器集成
- ……
26
1 半监督分类
• 机器学习 (Machine Learning)模式: - 监督学习:仅仅利用已标注类别的样本进行训练以确定 分类器; - 非监督学习:只利用未标注类别的数据进行聚类分析; - 半监督学习:利用已标注类别的样本+未标注样本来确 定分类器。
3×3窗口分析结果
(4) 分类后处理-平滑处理
• 针对问题 分类结果斑点噪声严重
• 解决方法: a. MRF随机场建模 b. Majority Voting 方法
原始多光谱遥感影像与地面真实值
(1) IKONOS 多光谱影像
原始多光谱遥感影像与地面真实值
(1) IKONOS 多光谱影像
(2) 地表真实值
25446 Aprod 52987 48.02% 1 Eo
(e) 用户精度(User’s Accuracy)
• 用户精度(User’s Accuracy): - 影像类中,某类像元被正确分类为该类的概率,利用 混淆矩阵的行来计算。如水的用户精度:
Auser
9180 56104
16.36%
a. SVM vs 高斯混合模型+MRF
(3) SVM 水体提取结果
a. SVM vs 高斯混合模型+MRF
(3) SVM 水体提取结果
(4) 高斯混合模型+MRF方法
遥感图像分类与测绘应用的技术要点和操作流程

遥感图像分类与测绘应用的技术要点和操作流程遥感技术的发展使得遥感图像分类和测绘应用成为现代测绘领域的重要技术手段。
本文将从技术要点和操作流程两个方面介绍遥感图像分类与测绘应用的关键内容。
一、技术要点1. 遥感图像的预处理遥感图像的预处理是进行图像分类和测绘应用的前提。
预处理包括图像去噪、辐射校正、大气校正以及几何校正等步骤。
其中,辐射校正和大气校正是必不可少的,以确保图像的准确性和一致性。
大气校正可以将图像中的大气干扰进行校正,辐射校正可以提高图像的灰度级,减少图像的噪声。
2. 特征提取与选择特征提取是遥感图像分类和测绘应用的重要步骤。
特征提取的目的是将原始图像转化为可以进行分类和测绘的特征向量。
常用的特征包括光谱特征、纹理特征和形状特征等。
特征选择是在特征提取的基础上,通过选择最具代表性的特征,减少数据维度,提高分类和测绘的效果。
3. 分类算法与模型分类算法是遥感图像分类和测绘应用中的核心技术内容。
常见的分类算法包括最大似然分类、支持向量机、随机森林和深度学习等。
对于不同的遥感图像任务,可以选择适当的分类算法进行应用。
模型的选择和训练是分类算法的关键步骤,通过合理选择和训练模型,可以提高分类和测绘的准确性和效率。
4. 精度评价与结果验证精度评价和结果验证是遥感图像分类和测绘应用的重要环节。
通过对分类和测绘结果的精度进行评价和验证,可以判断分类和测绘的准确性和可靠性。
常用的精度评价指标包括准确度、召回率、精确度和F1值等。
结果验证可以通过野外调查和实地验证等手段进行。
二、操作流程1. 数据搜集与选择在进行遥感图像分类和测绘应用之前,首先需要搜集和选择需要的数据。
数据可以从遥感卫星、无人机、航空摄影等渠道获得。
同时,需要考虑数据的时空分辨率、波段和质量等因素,以满足具体的应用需求。
2. 遥感图像的预处理获得数据后,需要进行图像的预处理。
首先进行辐射校正和大气校正,然后进行几何校正和图像去噪等处理,以保证图像的质量和可用性。
遥感图像分类后处理

遥感图像分类后处理一、实验目的与要求监督分类和决策树分类等分类方法得到的一般是初步结果,难于达到最终的应用目的。
因此,需要对初步的分类结果进行一些处理,才能得到满足需求的分类结果,这些处理过程就通常称为分类后处理。
常用分类后处理通常包括:更改分类颜色、分类统计分析、小斑点处理(类后处理)、栅矢转换等操作。
本课程将以几种常见的分类后处理操作为例,学习分类后处理工具。
二、实验内容与方法1.实验内容1.小斑块去除●Majority和Minority分析●聚类处理(Clump)●过滤处理(Sieve)2.分类统计3.分类叠加4.分类结果转矢量5.ENVI Classic分类后处理●浏览结果●局部修改●更改类别颜色6.精度评价1.实验方法在ENVI 5.x中,分类后处理的工具主要位于Toolbox/Classification/Post Classification/;三、实验设备与材料1.实验设备装有ENVI 5.1的计算机2.实验材料以ENVI自带数据"can_tmr.img"的分类结果"can_tmr_class.dat"为例。
数据位于"...\13数据\"。
其他数据描述:•can_tmr.img ——原始数据•can_tmr_验证.roi ——精度评价时用到的验证ROI四、实验步骤1.小斑块去除应用监督分类或者非监督分类以及决策树分类,分类结果中不可避免地会产生一些面积很小的图斑。
无论从专题制图的角度,还是从实际应用的角度,都有必要对这些小图斑进行剔除或重新分类,目前常用的方法有Majority/Minority分析、聚类处理(clump)和过滤处理(Sieve)。
1)Majority和Minority分析Majority/Minority分析采用类似于卷积滤波的方法将较大类别中的虚假像元归到该类中,定义一个变换核尺寸,主要分析(Majority Analysis)用变换核中占主要地位(像元数最多)的像元类别代替中心像元的类别。
图像处理技术在卫星遥感图像分类中的应用效果

图像处理技术在卫星遥感图像分类中的应用效果随着卫星技术和遥感技术的不断发展,获取和处理卫星遥感图像成为了现代地球科学领域中重要的研究手段之一。
而图像分类是遥感图像处理中一个核心的任务,它的目的是将卫星遥感图像中的不同地物或环境元素进行划分和分类。
为了实现准确且高效的遥感图像分类,图像处理技术被广泛应用并取得了显著的效果。
一、图像预处理图像预处理是卫星遥感图像分类的第一步,它的主要目的是减少噪声、改善图像质量以及增强图像特征。
常见的图像预处理方法包括图像去噪、边缘增强、图像增强和图像分割等。
图像去噪是为了减少图像中的噪声干扰,在卫星遥感图像分类中,由于图像拍摄环境的复杂性和传输过程中的干扰,图像中常存在不同类型的噪声。
通过使用低通滤波器如均值滤波器或高斯滤波器,可以有效去除高频噪声,提高图像的质量。
边缘增强是为了突出图像中物体的轮廓和边界,在卫星遥感图像分类中,物体的形状和边界信息对于分类非常重要。
常用的边缘增强算法包括索贝尔、拉普拉斯和Canny等算法。
图像增强是为了改善图像的视觉效果和增强目标物体的特征。
通过灰度调整、直方图均衡化、对比度增强等方法,可以使目标物体在图像中更加明显和突出。
图像分割是将图像划分为不同的区域,以便更好地进行分类和分析。
在卫星遥感图像分类中,图像分割是一个非常重要的步骤,它可以将不同地物或环境元素从图像中提取出来,为后续的分类任务提供更准确的输入。
常见的图像分割方法包括阈值分割、区域生长、边缘检测和聚类分析等。
二、特征提取特征提取是将图像的内容转换为数值特征向量的过程,通过提取图像中的特征信息,可以将图像内容表示为计算机可处理的形式。
在卫星遥感图像分类中,有效的特征提取对于分类结果的准确性和稳定性起着重要的作用。
常见的特征提取方法包括颜色特征、纹理特征和形状特征等。
颜色特征可以通过提取图像的颜色直方图、颜色矩和颜色统计信息来表示,它可以反映图像中不同地物的颜色分布情况。
遥感图像的分类实验报告

一、实验名称遥感图像的监督分类与非监督分类二、实验目的理解遥感图像监督分类及非监督分类的原理;掌握用ENVI对影像进行监督分类和非监督分类的方法,初步掌握图像分类后的相关操作;了解整个实验的过程以及实验过程中要注意的事项;三、实验原理监督分类:又称训练分类法,用被确认类别的样本像元去识别其他未知类别像元的过程;它是在分类之前通过目视判读和野外调查,对遥感图像上某些样区中影像地物的类别属性有了先验知识,对每一种类别选取一定数量的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些种子类别对判决函数进行训练,使其符合于对各种子类别分类的要求,随后用训练好的判决函数去对其他待分数据进行分类;非监督分类:也称为聚类分析或点群分类;在多光谱图像中搜寻、定义其自然相似光谱集群的过程;它不必对影像地物获取先验知识,仅依靠影像上不同类地物光谱或纹理信息进行特征提取,再统计特征的差别来达到分类的目的,最后对已分出的各个类别的实际属性进行确认;目前比较常见也较为成熟的是ISODATA、K-Mean和链状方法等;四、数据来源本次实验所用数据来自于国际数据服务平台;landsat4-5波段30米分辨率TM 第三波段影像,投影为WGS-84,影像主要为山西省大同市恒山地区,中心纬度:中心经度:;鉴于实验内容及图像大小等问题,故从一景TM影像中裁取一个含有较丰富地物信息区域作为待分类影像;五、实验过程1.监督分类打开并显示影像文件,选择合适的波段组合加载影像打开并显示TM影像文件,从ENVI 主菜单中,选择File →Open Image File选择影像,为了更好地区分不同地物以及方便训练样本的选取,选择5、4、3波段进行相关操作,点击Load Band 在主窗口加载影像;使用感兴趣区ROI工具来选择训练样区1主影像窗口菜单栏中,选择 Overlay >Region of Interest;出现ROI Tool对话框,2根据不同的地物光谱特征,在图像上画出包含该类地物的若干多边形区域,建立相应的感兴趣区域,输入对应的地物名称,更改感兴趣区对应的显示色彩;由于该地区为山西省北部,地物相对单一,故分为以下几类:裸地、草地、灌木林、农田、水体、人类活动区、云层,阴影;选择分类方法进行分类1主菜单中,选择Classification>Supervised,在对应的选项菜单中选择分类方法,对影像进行分类;以最小距离法Minimum Distance为例进行说明;选择Minimum Distance选项,出现Classification Input File对话框,在该对话框中选择待分类图像;2在出现的Minimum Distance Parameters对话框中,select Ttems选择训练样本,定义相关参数,选择输出路径;点击ok完成分类,结果如图:2.非监督分类非监督分类方法有K-均值分类法及ISOData 重复自组织数据分析技术,本次实验报告以K-均值分类方法为例进行说明;1主菜单中 , 选择 Classincation>Unsupervised>K-Means;在Classification Input File对话框中选择待分类影像文件;2在K-Means Parameters对话框中定义相关参数,其中,可定义参数有:分类类别数,像元变化阈值,用于分类的最多迭代次数以及可选的距离阈值;选择结果输出位置,点击OK完成分类;3.分类后处理我们需要对分类后的影像进行后处理,评价其分类的精度,这里以监督分类结果为例进行说明;更改类别名称及颜色主图像窗口,Overlay->classification,出现Select Input file对话框,选择分类结果,点击OK;在Interactive Class TOOL对话框的option下拉菜单中选择Edit colors/names选项,在弹出的对话框中选择类别更改其名称颜色;分类结果微调包括删除或者合并小斑点;1将要修改的类别置于激活状态,点击Edit下拉菜单,选择Mode :polygon Add to class 将分类错误的点与周围区域点合并;选择Mode :polygon delete from class将错误点剔除;2主菜单classification->Post classification->sieve classes打开sieve parameters对话框,选择训练样本,及最小剔除像素,选择输出位置,完成操作;图为采用八联通域将像素小于5的点删除;混淆矩阵精度验证1选取验证样本,与监督分类操作类似,选择不同的感兴趣区域,保存ROI,作为选择训练样本;2进行精度验证,主菜单classification->Post classification->Using Ground Truth ROI,选择分类图像;对应分类结果和验证样本点击ok得到精度验证结果;分类统计主菜单classification->Post classification->class statistics,在弹出的对话框中输入分类结果,点ok下一个对话框输入原图像ok;在弹出的select classes对话框中选择训练样本;选择输出显示类型,点击ok得到统计结果;分类结果转换为矢量主菜单classification->Post classification-> classification to vector,弹出对话框中选择分类结果影像;选择训练样本及矢量文件输出位置,点击ok完成矢量化;矢量化结果如下:六、实验结果与分析1、监督分类结果分析将分类结果与原图像进行对比可发现分类结果基本符合要求,农田与建筑的分布具有较强的统一性,符合相关常识;2、非监督分类结果分析3、图为经过主次要分析的分类结果与原图对比,可发现去除了一些噪声点,分类结果相对较好;4、分类结果精度评价分析由于监督分类,训练样本及验证样本的选择失误,图像的分类精度为83%基本符合要求,但不是太高,从精度报表中可看出,误差来源主要为灌木林与草地之间的差异,其他地物的分类结果基本上比较精确;七、实验心得与体会本次实为遥感影像的监督分类与非监督分类以及分类后处理,通过本次实验,初步掌握了影像的分类过程,在影像的监督分类中,训练样本的选择是本实验的关键点,如何较为准确的选择感兴趣区域确定正确的训练样本需要在以后的学习中积累相关经验;实验中相近地物信息的不同地物该如何分类需要思考;。
遥感图像分类

原始遥感图像
对应的专题图像
用光谱信息 对影像逐个 像元地分类, 在结果的分 类地图上会 出现“噪声”
产生噪声的原因有原始影像本身的噪声,在地类 交界处的像元中包括有多种类别,其混合的幅射 量造成错分类,以及其它原因等
另外还有一种现象,分类是正确的,但某种类别 零星分布于地面,占的面积很小,我们对大面积 的类型感兴趣,因此希望用综合的方法使它从图 面上消失
简单集群分类方法
K-均值法(K-means Algorithm) Cluster分类法 迭代自组织数据分析技术方法(Iterative
Self-Organization Data Analysis Techniques, ISODATA)
通过自然的聚类,把它分成8类
K-均值算法的聚类准则是使每一聚类中,像元到 该类别中心的距离的平方和最小
A. 按照某个原则选择一些初始聚类中心 B. 计算像元与初始类别中心的距离,把像素分配
到最近的类别中
C. 计算并改正重新组合的类别中心 D. 过程重复直到满足迭代结束的条件
仅凭遥感影像地物的光谱特征的分布 规律,即自然聚类的特性,进行“盲 目”的分类
其分类的结果只是对不同类别达到了 区分,但并不能确定类别的属性;其 类别的属性是通过分类结束后目视判 读或实地调查确定的
遥感图像计算机分类
色调、颜色、阴影、形状、纹理、大小、位置、图型、相关布局
基于光谱的
基于空间关系的
遥感图像特征集
遥感图像 遥感图像计算机分类流程框图
将影像数据的连续变化转化为地图模式, 以提供给用户有意义的信息
获得关于地面覆盖和地表特征数据的更深 刻的认识
较目视解译客观,在分析大数据集时比较 经济
基本思想:通过迭代,逐次移动各类的中心,直 至得到最好的聚类结果为止
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遥感图像分类后处理一、实验目的与要求监督分类和决策树分类等分类方法得到的一般是初步结果,难于达到最终的应用目的。
因此,需要对初步的分类结果进行一些处理,才能得到满足需求的分类结果,这些处理过程就通常称为分类后处理。
常用分类后处理通常包括:更改分类颜色、分类统计分析、小斑点处理(类后处理)、栅矢转换等操作。
本课程将以几种常见的分类后处理操作为例,学习分类后处理工具。
二、实验内容与方法1.实验内容1.小斑块去除●Majority和Minority分析●聚类处理(Clump)●过滤处理(Sieve)2.分类统计3.分类叠加4.分类结果转矢量5.ENVI Classic分类后处理●浏览结果●局部修改●更改类别颜色6.精度评价1.实验方法在ENVI 5.x中,分类后处理的工具主要位于Toolbox/Classification/Post Classification/;三、实验设备与材料1.实验设备装有ENVI 5.1的计算机2.实验材料以ENVI自带数据"can_tmr.img"的分类结果"can_tmr_class.dat"为例。
数据位于" (13)据\"。
其他数据描述:•can_tmr.img ——原始数据•can_tmr_验证.roi ——精度评价时用到的验证ROI四、实验步骤1.小斑块去除应用监督分类或者非监督分类以及决策树分类,分类结果中不可避免地会产生一些面积很小的图斑。
无论从专题制图的角度,还是从实际应用的角度,都有必要对这些小图斑进行剔除或重新分类,目前常用的方法有Majority/Minority分析、聚类处理(clump)和过滤处理(Sieve)。
1)Majority和Minority分析Majority/Minority分析采用类似于卷积滤波的方法将较大类别中的虚假像元归到该类中,定义一个变换核尺寸,主要分析(Majority Analysis)用变换核中占主要地位(像元数最多)的像元类别代替中心像元的类别。
如果使用次要分析(Minority Analysis),将用变换核中占次要地位的像元的类别代替中心像元的类别。
下面介绍详细操作流程:(1)打开分类结果——"\12.分类后处理\数据\can_tmr_class.dat";(2)打开Majority/Minority分析工具,路径为Toolbox /Classification/Post Classification/Majority/Minority Analysis,在弹出对话框中选择"can_tmr_class.dat",点击OK;(3)在Majority/Minority Parameters面板中,点击Select All Items选中所有的类别,其他参数按照默认即可,如下图所示。
然后点击Choose按钮设置输出路径,点击OK执行操作。
图1 Majority/Minority Parameters面板参数设置(4)查看结果如图所示,可以看到原始分类结果的碎斑归为了背景类别中,更加平滑。
注:参数说明如下•Select Classes时,用户可根据需要选择其中几个类别;•如果选择Analysis Methods为Minority,则执行次要分析;•Kernel Size为核的大小,必须为奇数×奇数,核越大,则处理后结果越平滑;•中心像元权重(Center Pixel Weight)。
在判定在变换核中哪个类别占主体地位时,中心像元权重用于设定中心像元类别将被计算多少次。
例如:如果输入的权重为1,系统仅计算1次中心像元类别;如果输入5,系统将计算5次中心像元类别。
权重设置越大,中心像元分为其他类别的概率越小。
图2 原始分类结果(左),Majority分析结果(右)2)聚类处理(Clump)聚类处理(clump)是运用数学形态学算子(腐蚀和膨胀),将临近的类似分类区域聚类并进行合并。
分类图像经常缺少空间连续性(分类区域中斑点或洞的存在)。
低通滤波虽然可以用来平滑这些图像,但是类别信息常常会被临近类别的编码干扰,聚类处理解决了这个问题。
首先将被选的分类用一个膨胀操作合并到一块,然后用变换核对分类图像进行腐蚀操作。
下面介绍详细操作流程:(1)打开分类结果——"\分类后处理\数据\can_tmr_class.dat";(2)打开聚类处理工具,路径为Toolbox /Classification/Post Classification/Clump Classes,在弹出对话框中选择"can_tmr_class.dat",点击OK;(3)在Clump Parameters面板中,点击Select All Items选中所有的类别,其他参数按照默认即可,如下图所示。
然后点击Choose按钮设置输出路径,点击OK执行操作。
图3 Clump Parameters面板参数设置结果(4)查看结果如下图所示,可以看到原始分类结果的碎斑归为了背景类别中,更加平滑。
注:参数说明如下•Select Classes时,用户可根据需要选择其中几个类别;•Operator Size Rows和Cols为数学形态学算子的核大小,必须为奇数,设置的值越大,效果越明显。
图4 原始分类结果(左),聚类处理结果(右)3)过滤处理(Sieve)过滤处理(Sieve)解决分类图像中出现的孤岛问题。
过滤处理使用斑点分组方法来消除这些被隔离的分类像元。
类别筛选方法通过分析周围的4个或8个像元,判定一个像元是否与周围的像元同组。
如果一类中被分析的像元数少于输入的阈值,这些像元就会被从该类中删除,删除的像元归为未分类的像元(Unclassified)。
下面介绍详细操作流程:(1)打开分类结果——"\12.分类后处理\数据\can_tmr_class.dat";(2)打开过滤处理工具,路径为Toolbox /Classification/Post Classification/Sieve Classes,在弹出对话框中选择"can_tmr_class.dat",点击OK;(3)在Sieve Parameters面板中,点击Select All Items选中所有的类别,Group Min Threshold设置为5,其他参数按照默认即可,如下图所示。
然后点击Choose按钮设置输出路径,点击OK执行操作;图5 Sieve Parameters面板参数设置(4)查看结果如下图所示,可以看到原始分类结果的碎斑归为了背景类别中,更加平滑。
注:参数说明如下•Select Classes时,用户可根据需要选择其中几个类别;•过滤阈值(Group Min Threshold),一组中小于该数值的像元将从相应类别中删除,归为未分类(Unclassified);•聚类领域大小(Number of Neighbors),可选四连通域或八连通域。
分别表示使用中心像元周围4个或8个像元进行统计。
图6 原始分类结果(左),过滤处理结果(右)2.分类统计分类统计(Class statistics)可以基于分类结果计算源分类图像的统计信息。
基本统计包括:类别中的像元数、最小值、最大值、平均值以及类中每个波段的标准差等。
可以绘制每一类对应源分类图像像元值的最小值、最大值、平均值以及标准差,还可以记录每类的直方图,以及计算协方差矩阵、相关矩阵、特征值和特征向量,并显示所有分类的总结记录。
下面介绍详细操作流程:(1)打开分类结果和原始影像——"\12.分类后处理\数据\can_tmr_class.dat"和"can_tmr.img";(2)打开分类统计工具,路径为Toolbox/Classification/Post Classification/Class Statistics,在弹出对话框中选择"can_tmr_class.dat",点击OK;(3)在Statistics Input File面板中,选择原始影像"can_tmr.img",点击OK;(4)在弹出的Class Selection面板中,点击Select All Items,统计所有分类的信息,点击OK;注:可根据需要只选择分类列表中的一个或多个类别进行统计。
(5)在Compute Statistics Parameters面板可以设置统计信息(如下图所示),按照图中参数进行设置,点击Report Precision…按钮可以设置输入精度,按默认即可。
点击OK;图7 统计结果参数设置面板注1:统计功能包含三种统计类型,分别为:•基本统计(Basic Stats):基本统计信息包括所有波段的最小值、最大值、均值和标准差,若该文件是多波段的,还包括特征值。
•直方图统计(Histograms):生成一个关于频率分布的统计直方图,列出图像直方图(如果直方图的灰度小于或等于256)中每个DN值的Npts(点的数量)、Total (累积点的数量)、Pct(每个灰度值的百分比)、和Acc Pct(累积百分比)。
•协方差统计(Covariance):协方差统计信息包括协方差矩阵和相关系数矩阵以及特征值和特征向量,当选择这一项时,还可以将协方差结果输出为图像(Covariance Image)。
注2:输出结果的方式有三种:输出到屏幕显示(Output to the Screen)、生成一个统计文件(.sta)和生成一个文本文件。
其中生成的统计文件可以通过以下工具打开:•ENVI 5.x:Toolbox/Statistics/View Statistics File•ENVI Classic:Classification > Post Classification > View Statistics File(6)如下图所示为显示统计结果的窗口,统计结果以图形和列表形式表示。
从Select Plot下拉命令中选择图形绘制的对象,如基本统计信息、直方图等。
从Stats for标签中选择分类结果中类别,在列表中显示类别对应输入图像文件DN值统计信息,如协方差、相关系数、特征向量等信息。
在列表中的第一段显示的为分类结果中各个类别的像元数、占百分比等统计信息。
图7 显示统计结果的窗口3.分类叠加分类叠加(Overlay Classes)功能,可以将分类结果的各种类别叠加在一幅RGB彩色合成图或者灰度图像上,从而生成一幅RGB 图像。
如果要想得到较好的效果,在叠加之前,背景图像经过拉伸并保存为字节型(8bit)图像,下面是具体操作过程。