遥感图像自动识别分类

合集下载

遥感图像分类技术研究

遥感图像分类技术研究

遥感图像分类技术研究一、遥感图像分类的基本概念及背景遥感图像分类是指利用计算机方法将遥感图像进行自动分类,将像元或像素点归类为不同的地物或地物类型。

遥感图像是指通过遥感传感器获取的地球表面信息的图像,主要包括航空遥感、卫星遥感等。

遥感图像分类技术可以广泛应用于国土资源调查、环境遥感监测、农业与林业等许多领域。

二、遥感图像分类技术因素1. 数据预处理数据预处理是遥感图像分类技术中非常重要的一步,主要是对遥感图像进行初步去噪、辐射校正等操作,以提高其质量和可用性。

常用的预处理方法包括滤波、辐射定标、大气校正等。

2. 特征提取遥感图像的特征提取是将遥感图像中的自然结构转换为计算机可识别的数字特征向量的过程。

常用的特征提取方法包括基于纹理的方法、基于谱特征的方法以及形状特征提取方法等。

3. 分类算法常见的遥感图像分类算法包括最大似然法、支持向量机、神经网络等。

其中,最大似然法和支持向量机算法是应用最广泛的两种算法,具有较高的分类准确性和泛化性能。

三、常见的遥感图像分类方法1. 基于纹理分析的方法纹理是指由几何形状、大小、密度、亮度等因素共同作用形成的某种规则的表现形式。

其基本特点是在局部区域内具有规则和可重复性。

利用遥感图像的纹理数据,可以利用基于灰度共生矩阵、滤波器和小波等方法进行纹理分析。

基于纹理分析的方法适用于研究土地利用类型、森林类型等需要区分细致的地物类型。

2. 基于谱信息的方法基于谱信息的遥感图像分类方法利用遥感图像数据的光谱特征进行分类。

这种方法主要基于多光谱数据分类和高光谱数据分类。

多光谱数据是指每个像元采集了数个波段的数据,而高光谱数据则包含了更多的波段数据。

采用基于谱信息的方法可以对土地覆盖类型、植被类型等大尺度空间范围的遥感图像进行分类。

3. 基于空间信息的方法基于空间信息的遥感图像分类方法是指利用遥感图像像素的空间位置信息,结合图像的特征提取和分类方法进行分析。

这种方法主要通过分析像素到邻域像素之间的距离、方向和大小等因素来提取空间信息。

遥感图像的分类课件

遥感图像的分类课件
通过模拟水流淹没过程,将图像 分割成不同区域,然后对每个区 域进行特征提取和分类。这种方 法能够充分利用图像的形状、纹
理等空间信息。
区域生长法
从种子点开始,根据像素之间的 相似性(如灰度值、纹理等)进 行区域扩展,直到无法再扩展为 止。然后对每个区域进行特征提
取和分类。
随机森林
随机森林是一种集成学习算法, 通过构建多个决策树并结合它们 的预测结果来进行分类。这种方 法能够处理高维特征,并在一定
支持向量机(SVM) SVM是一种二分类模型,通过寻找最优超平面来对像素进 行分类。对于多类别分类问题,可以通过构建多个二分类 器来解决。
K最近邻(KNN) KNN算法根据像素周围K个最近邻的类别来决定该像素的 类别。这种方法考虑了空间上下文信息,通常能够取得较 好的分类效果。
基于对象的分类算法
分水岭算法
遥感图像分类的基本流程
• 流程概述:遥感图像分类的基本流程包括数据预处理、特征提取、分类器设计和分类结果评价四个主要步骤。其中,数据 预处理是对原始遥感图像进行预处理操作,如去噪、增强等,以改善图像质量和提高分类精度;特征提取是从预处理后的 图像中提取出有效的光谱、空间、纹理等特征,为后续分类器设计提供输入;分类器设计是根据提取的特征,选择合适的 算法设计分类器,实现对图像的自动分类;分类结果评价是对分类结果进行评估和分析,以验证分类方法的有效性和可行性。
城市用地分 类
遥感图像分类可用于城市用地类型的 识别与划分,为城市规划提供基础数 据。
城市扩展与变化监测
利用遥感图像分类技术对城市扩展和 变化进行监测,为城市规划和管理提 供科学依据。
遥感图像分类的研究前沿与挑战
深度学习技术应用
将深度学习技术应用于遥感图像分类, 提高分类精度和自动化程度。

基于深度学习的遥感图像分类与识别研究

基于深度学习的遥感图像分类与识别研究

基于深度学习的遥感图像分类与识别研究摘要随着遥感技术的快速发展,遥感图像分类与识别的研究变得越来越重要。

深度学习作为一种强大的机器学习方法,具有在遥感图像分类和识别任务中取得显著效果的潜力。

本文主要探讨了基于深度学习的遥感图像分类与识别的研究现状和未来发展方向,并提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)的遥感图像分类与识别框架。

1. 引言遥感图像分类与识别是分析和解释遥感图像所具有的地物和地表覆盖类型的过程。

传统的遥感图像分类与识别方法需要手动提取特征并设计分类器,但这些方法对图像特征的选择和分类器的设计非常依赖于专业知识和经验。

而深度学习通过自动学习高级特征和特征表达,可以有效地解决这个问题。

2. 基于深度学习的遥感图像分类与识别方法2.1 卷积神经网络卷积神经网络是一种前馈神经网络,能够自动从数据中学习特征。

卷积神经网络通过卷积层、池化层和全连接层构成。

卷积层可以自动提取图像中的局部特征,池化层能够减小特征的维度并保持其空间结构信息,全连接层用于进行分类。

2.2 数据预处理在应用深度学习方法进行遥感图像分类与识别之前,需要对数据进行预处理。

常见的预处理方法包括图像增强、数据增广和特征标准化等。

图像增强可以提升图像的质量,数据增广可以增加数据的多样性,特征标准化可以使数据具有可比性。

2.3 深度学习模型训练与优化深度学习模型的训练与优化是遥感图像分类与识别中的关键环节。

训练深度学习模型的主要步骤包括初始化模型参数、选择损失函数、选择优化算法和定义评估指标等。

常用的优化算法有随机梯度下降法(Stochastic Gradient Descent,SGD)、Adam算法等。

3. 实验与结果本研究使用了公开的遥感图像数据集进行实验,包括地表覆盖分类、目标检测和场景识别等任务。

实验结果表明,基于深度学习的遥感图像分类与识别方法相比传统方法具有更高的准确率和泛化能力。

遥感图像分类方法及应用示例

遥感图像分类方法及应用示例

遥感图像分类方法及应用示例遥感技术是通过卫星、飞机等远距离传感器获取地表信息的一种技术手段。

遥感图像分类是遥感技术中的一项重要任务,它可以将遥感图像中的像素按照其特征进行分类,并生成分类结果。

本文将介绍遥感图像分类的方法,并给出一些应用示例。

一、遥感图像分类方法1. 基于像元的分类方法基于像元的分类方法是将遥感图像中的每个像素点看作一个样本进行分类,通过像素点的光谱特征来确定其所属类别。

常见的方法有最大似然法、支持向量机等。

最大似然法是一种基于统计学原理的分类方法,它通过求解样本的概率密度函数来确定像素点的类别。

支持向量机是一种基于样本间距离的分类方法,它通过构建超平面将不同类别的样本分开。

2. 基于对象的分类方法基于对象的分类方法是将遥感图像中的像素组成的对象进行分类,通过对象的形状、纹理等特征来确定其所属类别。

常见的方法有基于区域的分割和基于对象的分类。

基于区域的分割将遥感图像中的像素按照相似性进行分组,形成具有相同特征的区域。

基于对象的分类是在分割得到的区域基础上,通过提取区域的特征来确定其所属类别。

3. 基于深度学习的分类方法随着深度学习技术的发展,基于深度学习的分类方法在遥感图像分类中得到了广泛应用。

深度学习通过构建深层神经网络模型,可以自动学习遥感图像中的特征表示。

常见的方法有卷积神经网络(CNN)、循环神经网络(RNN)等。

卷积神经网络可以有效地提取图像的空间特征,循环神经网络可以捕捉图像序列的时序特征。

二、遥感图像分类的应用示例1. 农作物类型分类农作物类型分类是农业生产中的重要任务,可以帮助农民了解农田的分布情况和种植结构,指导农作物管理和精细化农业。

通过遥感图像分类方法,可以将农田遥感图像中的不同农作物进行分类,比如小麦、玉米、水稻等。

这样可以帮助农民进行农作物识别和农田监测,提高农业效益。

2. 土地利用分类土地利用分类是城市规划和土地资源管理中的重要任务,可以帮助决策者了解土地利用的分布情况和变化趋势,指导城市规划和土地资源开发。

如何进行遥感影像的目标识别与分类

如何进行遥感影像的目标识别与分类

如何进行遥感影像的目标识别与分类遥感影像的目标识别与分类在现代科技发展中扮演着重要的角色。

利用遥感技术,我们能够获取到大规模的影像数据,这些数据可以用来进行目标识别与分类,以支持各种应用领域,如环境监测、城市规划、农业管理等。

本文将探讨如何进行遥感影像的目标识别与分类。

一、遥感影像的目标识别遥感影像的目标识别是指从遥感影像中提取出特定目标的过程。

目标可以是建筑物、道路、农田等。

在进行目标识别之前,我们需要处理原始影像数据,进行预处理。

预处理包括辐射校正、几何校正等步骤,以确保影像数据的准确性和一致性。

接下来的关键步骤是特征提取。

特征提取是将影像数据转化为可量化的特征向量的过程。

常用的特征包括颜色、纹理、形状等。

在选择特征时,需要考虑目标的特点和任务需求。

例如,如果要进行建筑物的识别,可以考虑使用建筑物的形状和纹理作为特征。

特征提取后,我们可以使用机器学习算法进行目标的分类。

常用的机器学习算法包括支持向量机、随机森林、神经网络等。

这些算法可以根据提取的特征向量进行学习,构建分类模型,并对新的影像数据进行分类。

二、遥感影像的目标分类目标分类是将遥感影像中的特定目标分为不同的类别的过程。

例如,将影像中的土地分类为农田、水域、城市等。

目标分类与目标识别紧密相关,但目标分类更加注重对整个影像场景的分类。

对于目标分类,我们可以采用监督学习和无监督学习两种方法。

监督学习是指利用有标记的训练样本进行学习和分类。

在进行监督学习时,我们需要手动标记一部分影像数据,给出它们所属的类别。

然后,使用这些标记好的数据进行模型训练,构建分类器。

最后,使用分类器对未标记的数据进行分类。

无监督学习是指在没有标记的训练样本的情况下进行学习和分类。

该方法通常使用聚类算法,将影像数据分为不同的簇。

聚类算法通过计算数据点之间的相似性来划分簇,以实现目标分类。

除了监督学习和无监督学习,我们还可以采用半监督学习和深度学习等方法进行目标分类。

第8章遥感图像自动识别分类

第8章遥感图像自动识别分类
• 3、将男错判为女,或将女错判为男,其产 生消极后果没有区别,但现实中“弃真”造 成的消极后果一般要大于“存伪”错误。
• 本健康但错判断为癌症:存伪,虚惊一场;
第八章 遥感图像自动识别分类 §8.1 基础知识
三、模式识别系统
1、数据获取: 图像,波形,物理参量 2、预处理: 去噪、增强、退化复原 3、特征提取与选择 4、分类决策
4、其它方法:模拟退火法、遗传算法等。
12/13
第八章 遥感图像自动识别分类 §8.3 分类器设计
• 本课主要内容 • 分类器(判别准则)概念 • 最小错误率分类器(Bayes 准则) • 线性判别分类器 (Fisher准则) • 非线性判别分类器(最短距离法) • 本课重点内容 • Bayes判别准则 • 最短距离分类器
主分量变换的优良特性 1、变换后Y的协方差阵是对角阵,表明新特征矢量直接 彼此不相关 2、变换后,信息主要集中在前几个主成分中,根据统 计,对于landsat MSS四个波段的影像经KL变换后, PC1占90%的总信息量,PC2占7%的总信息量,PC3和 PC4共占3%的总信X息2 量。 Y2(第二分量)
第八章 遥感图像自动识别分类 §8.4 监督/非监督分类
• 上节主要内容 • 贝叶斯分类器 • 线性分类器(以Fisher准则为例) • 非线性分类器(以最短距离方法为例) • 本节主要内容 • 监督分类的思想 • 监督/非监督分类的区别 • 监督分类步骤 • K-均值聚类算法
第八章 遥感图像自动识别分类 §8.4 监督/非监督分类
参数估计:点估计/区间估计/最大似然估计 非参数估计:Parzen窗法、k-近邻估计法 Bayes分类器的理论作用大于实际作用 能否直接利用特征设计分类器呢?
第八章 遥感图像自动识别分类 §8.3 分类器设计

遥感图像自动识别分类

遥感图像自动识别分类
光谱特征空间:以各波段图像的亮度分布为 坐标轴组成的空间.
5
B5
水 B7
地物与光谱特征空间的关系
6
特征点集群在特征空间中的分布大致可 分为如下三种情况:
Bj
理想情况——不同
类别地物的集群至
植被
少在一个特征子空
间中的投影是完全
可以相互区分开的

Bi
7
一般情况——无论在总的特征空间中,还是 在任一子空间中,不同类别的集群之间总是 存在重叠现象。这时重叠部分的特征点所对 应的地物,在分类时总会出现不同程度的分 类误差,这是遥感图像中最常见的情况。
► 最大似然法 根据概率判别函数和贝叶斯判别规则来
进行的分类称为最大似然分类法。
22
概率判别函数:把某特征矢量X落入某 类集群wi的条件概率P (wi/X)当成分类判决 函数(概率判决函数)。
贝叶斯判别规则:把X落入某集群wi的 条件概率P (wi/X)最大的类为X的类别。
贝叶斯判别规则以错分概率或风险最小 为准则的判别规则。
10
特征变换的目的:
► 减少特征之间的相关性,使得用尽可能 少的特征来最大限度地包含所有原始数 据的信息。
► 使得待分类别之间的差异在变换后的特 征中更明显,从而改善分类效果。
11
特征变换的方法:
主分量变换 哈达玛变换 生物量指标变换 比值变换 穗帽变换
12
特征选择的目的: 用最少的影像数据最好地进行分类。
另外还有一种现象,分类是正确的,但 某种类别零星分布于地面,占的面积很小, 我们对大面积的类型感兴趣,因此希望用综 合的方法使它从图面上消失。
52
多数平滑:平滑时中心像元值取周围占多数的类别。

遥感图像分类与识别研究

遥感图像分类与识别研究

遥感图像分类与识别研究随着遥感技术的不断进步,从空中和卫星上获取的大量遥感图像成为我们认识和了解地球表面和自然资源的一个重要途径。

而遥感图像分类与识别则是对这些海量数据进行处理,从中提取出可用的信息用于实际应用。

遥感图像分类是将遥感图像中的像素按照一定的规则进行分类和划分的过程。

一直以来,遥感图像分类一直是遥感研究的一个热点问题,因为遥感图像大多是高维度、高分辨率的数据,传统的分类方法难以胜任,因此,如何有效进行遥感图像分类一直是学术界和应用界共同关注的问题。

目前,遥感图像分类的主要方法有以下几种:1. 基于像素的分类方法这种分类方法是从单个像素点入手,以像素点的各项属性为基础,对图像进行分类。

这种方法的最大优点就是简单,并且对计算机硬件设备要求低,但是其缺点显而易见,因为它忽略了像素之间的上下文关系,对于复杂的地物覆盖情况处理不够准确。

2. 基于纹理的分类方法这种分类方法主要依据地物表面的纹理特性对遥感图像进行分类。

地物表面的纹理特性是通过一定的空间分布和预处理技术加以提取,这样就能够对地物进行一定的分类。

3. 基于支持向量机的分类方法这种分类方法利用支持向量机理论,将遥感图像中的像素点分割为不同的类别,更好地提取出遥感图像中的特征。

除了分类方法外,遥感图像的识别也是一个非常重要的问题。

在实际应用中,最常见的是对城市道路、森林、湖泊等目标进行识别。

而在遥感图像识别中,特征提取是一个关键步骤,因为它直接影响到识别的准确性。

在特征提取方面,目前常用的方法有:1. 基于波谷模型的特征提取方法该方法利用遥感图像中不同地物所表现的光谱特性,在进行特征提取时,根据波谷模型和波峰模型提取出不同目标的特征。

因为不同的地物在波峰或波谷处表现不同的光谱特性,在利用这种方法进行特征提取时,可以更加准确地提取出不同地物的特征。

2. 基于动态分割的特征提取方法该方法利用区域生长算法,将遥感图像中的同种物体进行分割,再在此基础上提取出相应的特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遥感图像的自动识别分类主要采用决 策理论方法,按照决策理论方法,需要从 被识别的模式中,提取一组反映模式属性 的量测值,称之为特征,并把模式特征定 义在一个特征空间中,进而利用决策的原 理对特征空间进行划分。
2
一、基础知识
1. 模式与模式识别 所谓“模式”是指某种具有空间或几何特征
的东西。 对被识别的模式作一系列的测量,然后
将测量结果与“模式字典”中一组“典型的”测量 值相比较,得出所需要的分类结果。这一过程 称为模式识别。
3
分类器(或称判决器),可以根据一 定的分类规则,把某一测量矢量X划入某一 组预先规定的类别之中去。
自然模式
x1
接收器 (传感器)
…x2.
分类器 (判决器)
结果
xn
模式识别系统的模型
4
2. 光谱特征空间及地物在特征空间中聚类 的统计特性

8
典型情况——不同类别地物的集群,在任一 子空间中都有相互重叠的现象存在,但在 总的特征空间中可以完全区分的。这时可 采用特征变换使之变成理想情况进行分类。

9
二、特征变换及特征选择
特征变换,是将原有的m测量值集合并通过 某种变换,产生n个新的特征。 特征选择,是从原有的m个测量值集合中, 按某一准则选择出n个特征。
19
判别规则:判断特征矢量属于某类的依据。 当计算完某个矢量,在不同类别判别函
数中的值后,我们要确定该矢量属于某类 必须给出一个判断的依据。如若所得函数 值最大则该矢量属于最大值对应的类别。 这种判断的依据,我们称之为判别规则。
20
监督分类的方法:
► 最大似然法 ► 最小距离法 ► 盒式分类法
21
27
例如 对于A类的盒子,
其边界(最小值和最 大值)分别是X1=a、 X1=b;X2=c、X2=d。 这种分类法在盒子重 叠区域有错分现象。 错分与比较盒子的先 后次序有关。
28
监督分类的步骤:
(1)确定感兴趣的类别数。 首先确定要对哪些地物进行分类,这样就可
以建立这些地物的先验知识。
(2)特征变换和特征选择 根据感兴趣地物的特征进行有针对性的特征
10
特征变换的目的:
► 减少特征之间的相关性,使得用尽可能 少的特征来最大限度地包含所有原始数 据的信息。
► 使得待分类别之间的差异在变换后的特 征中更明显,从而改善分类效果。
11
特征变换的方法:
主分量变换 哈达玛变换 生物量指标变换 比值变换 穗帽变换
12
特征选择的目的: 用最少的影像数据最好地进行分类。
第九章 遥感图像自动识别分类
一、基础知识 二、特征变换及特征选择 三、监督分类 四、非监督分类 五、非监督分类与监督分类的结合 六、分类后处理和误差分析 七、非光谱信息在遥感图像分类中的应用 八、句法模式识别概述 九、计算机自动分类的新方法
1
遥感图像的计算机分类,就是利用计 算机技术来模拟人类的识别功能,对地球表 面及其环境在遥感图像上的信息进行属性 的自动判别和分类,达到提取所需地物信 息的目的。
光谱特征空间:以各波段图像的亮度分布为 坐标轴组成的空间.
5
B5
水 B7
地物与光谱特征空间的关系
6
特征点集群在特征空间中的分布大致可 分为如下三种情况:
Bj
理想情况——不同
类别地物的集群至
植被
少在一个特征子空
间中的投影是完全
可以相互区分开的

Bi
7
一般情况——无论在总的特征空间中,还是 在任一子空间中,不同类别的集群之间总是 存在重叠现象。这时重叠部分的特征点所对 应的地物,在分类时总会出现不同程度的分 类误差,这是遥感图像中最常见的情况。
代表性一方面指所选择区为某一地物的代表 ,另一方面还要考虑到地物本身的复杂性,所以 必须在一定程度上反映同类地物光谱特性的波动 情况。
23
► 最小距离法 基于距离判别函数和判别规则的分类
方法称为最小距离分类法。
24
距离判别函数是设法计算未知矢量X 到有关类别集群之间的距离,哪类距离它 最近,该未知矢量就属于那类。
距离判别函数不象概率判别函数那样 偏重于集群分布的统计性质,而是偏重于 几何位置。
距离判别规则是按最小距离判别的原 则。
变换,这部分内容在前面特征选择和特征变换 一节有比较详细的介绍。变换之后的特征影像 和原始影像共同进行特征选择,以选出既能满 足分类需要,又尽可能少参与分类的特征影像 ,加快分类速度,提高分类精度。
29
(3)选择训练样区 训练样区的选择要注意准确性、代表性和统
计性三个问题。
准确性就是要确保选择的样区与实际地物的 一致性。
17
监督分类的流程
原始影像数据的准备 图像变换及特征选择
分类器的设计
初始类别参数的确定
逐个像素的分类判别
形成分类编码图像
输出专题图
18
判别函数:当各个类别的判别区域确定后 ,用来表示和鉴别某个特征矢量属于哪个类 别的函数。
这些函数不是集群在特征空间形状的数 学描述,而是描述某一未知矢量属于某个类 别的情况,如属于某个类别的条件概率。一 般,不同的类别都有各自不同的判别函数。
► 最大似然法 根据概率判别函数和贝叶斯判别规则来
进行的分类称为最大似然分类法。
22
概率判别函数:把某特征矢量X落入某 类集群wi的条件概率P (wi/X)当成分类判决 函数(概率判决函数)。
贝叶斯判别规则:把X落入某集群wi的 条件概率P (wi/X)最大的类为X的类别。
贝叶斯判别规则以错分概率或风险最小 为准则的判别规则。
25
最小距离法中常使用的三种距离判别函数
马氏(Mahalanobis)距离 欧氏(Euclidean)距离 计程(Taxi)距离
26
► 盒式分类法
盒式分类法基本思想:首先通过训练样区 的数据找出每个类别在特征空间的位置和形状 ,然后以一个包括该集群的“盒子”作为该集群 的判别函数。
判别规则为若未知矢量X落入该“盒子”, 则X分为此类,否则再与其它盒子比较。
13
特征选择的方法: 定性:了解变换前后图像的特Байду номын сангаас 定量:距离测度和散布矩阵测度。
14
三、监督分类
自动识别分类
监督分类法
非监督分类法
15
监督分类法是选择有代表性的试验区 来训练计算机,再按一定的统计判别规则 对未知地区进行自动分类的方法。
16
监督分类的思想:
1)确定每个类别的样区 2)学习或训练 3)确定判别函数和相应的判别准则 4)计算未知类别的样本观测值函数值 5)按规则进行像元的所属判别
相关文档
最新文档