《用待定系数法确定二次函数表达式》教学设计
《用待定系数法解二次函数解析式》教案

a-b+c=10
a+b+c=4
4a+2b+c=7例3、已知抛物线与 轴交于 并
去解这个三元一次方程组得:经过点 ,求抛物线的解析;
a=2,
b=-3,
c=5
所求二次函数
教学反思
a=2,b=-3,c=5;
所求二次函数
师分析:二次函数y=ax2+bx+c通过配方可得y=a(x-h)2+k的形式称为 顶点式,(h,k)为抛物线的顶点坐标,因为这个二次函数的图象顶点坐标是-1,-3),因此,可以设函数关系式为:y=a(x+1)2-3
由于二次函数的图象过点(0,-5),代入所设函数关系式,即可求出a的值。
教学难点
会选用适当函数表达式求二次函数的解析式
教学方法
操作、发现、理解、总结
教学手段
多媒体
课型
新授
课时
1
教学环节
教学内容
教师活动
学生活动
知识链接
在我们学习二次函数之前,我们学习过哪些函数?(学生回答)这些函数的解析式是?(学生回答)我们在前面刚刚学习了二次函数,二次函数的表达式有哪些?(一般式、顶点式、交点式)还记得我们是怎样求一次函数和正比例函数的解析式吗?(用待定系数法求解)如:一直线经过(2,3)和(-4,5)两点,求这个函数的解析式?(学生做,教师检查)
教师利用幻灯片出示问题,然后让学生回答问题,最后教师引出本节课课题。
今天,我们类比一次函数和正比例函数解析式的求法,同样采用待定系数法求二次函数解析式。(书写课题)
学生对教师提出的问题进行思考,积极回答,了解本节课要研究的方向。
用待定系数法求二次函数的解析式教案

用待定系数法求二次函数的解析式教案用待定系数法求二次函数的解析式教案(1)年级九年级课题 26.1 用待定系数法求二次函数的解析式教学媒体多媒体教学目标知识技能会用待定系数法求二次函数解析式.过程方法根据条件恰当设二次函数解析式形式,体会二次函数解析式之间的转换.情感态度体会学习数学知识的价值,提高学生学习的兴趣.教学重点运用待定系数法求二次函数解析式.教学难点根据条件恰当设二次函数解析式形式.教学过程设计教学程序及教学内容一、情境引入已知一次函数图像上的两点的坐标,可以利用待定系数法求出它的解析式,要求二次函数的解析式,需要知道抛物线上几个点的坐标?应该怎样求出二次函数解析式?引出课题:用待定系数法求二次函数的解析式.二、探究新知1.二次函数中有几个待定系数?需要几个抛物线上的点的坐标才能求出来?抛物线经过点(-1,10),(1,4),(2, 7),求出这个二次函数的解析式。
得到:已知抛物线上的三点坐标,可以设函数解析式为,代入后得到一个三元一次方程,解之即可得到的值,从而求出函数解析式,这种解析式叫一般式.2.二次函数中有几个待定系数?需要知道图像上几个点的坐标才能求出来?抛物线的顶点坐标为(1, 2),点(1,-1)也在图像上,能求出它的函数解析式吗?得到:知道抛物线的顶点坐标,可以设函数解析式是先代入顶点坐标(1, 2)得到,再代入点(1,-1)即可得到的值,从而求出函数解析式,这种解析式叫顶点式.用待定系数法求二次函数的解析式教案(2)《用待定系数法求二次函数解析式》教学案例《用待定系数法求二次函数解析式》,“待定系数法”是数学思想方法中的一种重要的方法,在实际生活和生产实践中有着广泛的应用.学生对于“待定系数法”的学习渗透在不同的学习阶段,在初中七、八年级学生学习了正比例函数、反比例函数、一次函数时已经初步学会了用待定系数法求函数解析式;.因此这节课的学习既是前面知识的延续和深化,又为后面的学习奠定基础,起着承前启后的作用.另外,待定系数法作为解决数学实际问题的基本方法和重要手段,在其他学科中也有着广泛的应用.一.教学目标:1、理解二次函数的三种不同形式,并选择恰当的形式用待定系数法确定其解析式。
数学人教版九年级上册《用待定系数法求二次函数的解析式》教学设计

【教学过程设计】
【课后研讨评议记录】
参加评议人员:万顷沙中学数学组全体成员
简要记录: 1、教师课前准备充分,目标性很强,能抓住重点。
2、课程设计很好,能由浅入深,逐步引出新课,所设计的题目一环扣一环,各环节过渡自然。
3、教师的专业知识过硬,表述严谨、科学,提炼总结归纳能力也很强。
4、教师对习题讲解清晰、透切,能注意学生解题出现的各种细节问题,同时也做好个别同学的指导与点拨。
【基于评价标准的教学反思】
1、目标差:学生练习的量相对偏少了,影响了巩固学生的新学知识的目标的实现。
2、产生目标差的原因:学生基础知识交往薄弱,做题速度较慢;教师解说的时间多了些;习题的设计略欠合理。
3、再教设计的改进与设想:(1)、删去“环节一、知识回顾”中的“(2)已知反比例函数的图像经过点(2,6),求此函数解析式。
”题目,节省引入时间。
(2)、在各环节中,尽量精简解说的内容。
(3)、在“环节三、课时训练”中增加3题的练习题目:
1、已知二次函数的图象经过点A(0,1)、B(2,15)、C(3,28);
2、二次函数的图象如图所示,根据图象求出二次函数的解析式。
3、已知二次函数,当x=2时,y有最大值5,且其图象经过点(8,-22),求此二次函数的函数关系式.。
初中数学_确定二次函数的表达式教学设计学情分析教材分析课后反思

2.3(1)确定二次函数的表达式教学设计一、教学目标经历用待定系数法求二次函数关系式的过程,加深对二次函数的理解,二、教学重点和难点重点:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式. 难点:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式.三、教学过程(一)复习回顾:1.二次函数表达式的一般形式是什么?2.二次函数表达式的顶点式是什么?3.若二次函数y=ax ²+bx+c(a ≠0)与x 轴两交点为(1x ,0),( 2x ,0)则其函数表达式可以表示成什么形式?4.我们在用待定系数法确定一次函数y=kx+b (k,b 为常数,k ≠0)的关系式时,通常需要 个独立的条件;确定反比例函数xk y =(k ≠0)的关系式时,通常只需要 个条件. 如果要确定二次函数的关系式y=ax ²+bx+c (a,b,c 为常数,a ≠0),通常又需要几个条件 ?(二)初步探索1、已知二次函数2ax y =的图象经过点A (2,-3)、B (3,m )(1)求a 与m 的值;(2)写出该图象上点B 的对称点的坐标:_________(3)当x_________时,y 随x 的增大而减小(4)当x_________时,y 有最_________值,是_________。
2.已知二次函数c ax y +=2的图象经过点(2,3)和(-1,-3),求二次函数的表达式3.已知二次函数bx ax y +=2的图象经过点(1,2)、(2,3),求二次函数的表达式.4.已知二次函数c bx x y ++=2图象经过点M (1,—2)、N(—1,6),求二次函数的表达式.探索1:在什么情况下,一个二次函数只知道其中两点就可以确定它的表达式?小结:用一般式y=ax ²+bx+c 确定二次函数时,如果系数a,b,c 中有两个是未知的,知道图象上两个点的坐标,也可以确定二次函数的表达式.如果系数a,b,c 中三个都是未知的,这个我们将在下节课中进行研究.(三)深入探索5.如图是一名学生推铅球时,铅球行进高度y(m)与水平距离x(m)的图象,你能求出其 表达式吗?6.已知二次函数的图象与y 轴的交点的横纵坐标是为1,且经过点M(2,5)、N(-2,13),(1)求这个二次函数的解析式;(2)写出抛物线的开口方向,对称轴和顶点坐标.(3)求这个二次函数的最大值或最小值。
九年级数学下册第5章二次函数5.3用待定系数法确定二次函数表达式教案新版苏科版

5.3 用待定系数法确定二次函数表达式教学目标:1.通过对用待定系数法求二次函数表达式的探究,掌握求二次函数表达式的方法;2.能灵活的根据条件恰当地选择表达式,体会二次函数表达式之间的转化;3.从学习过程中体会学习数学知识的价值,从而提高学习数学知识的兴趣.教学重点:会用待定系数法求二次函数的表达式.教学难点:会选用适当方法求二次函数的表达式.一、课前专训1.二次函数关系式有哪几种表达方式?2.还记得我们是怎样求一次函数和反比例函数的表达式吗?二、新知活动一:由一般式确定二次函数的表达式.例1:已知二次函数的图像经过点,求的值.例2:已知二次函数的图像经过点和,求的值.例3:已知二次函数的图像经过点和,求这个二次函数的表达式.归纳总结.求二次函数的表达式,关键是求出待定系数的值,由已知条件列出关于的方程或方程组,并求出就可以写出二次函数的表达式.要求:通过例题讲解,学生交流,学生讲解等方法让学生熟悉二次函数表达式的求法.总结方法时,让学生明确解题方法及规范解题过程.活动二:由顶点式确定二次函数的表达式.例4 已知抛物线的顶点为,与y轴交点为,求抛物线的表达式.方法一:设抛物线的表达式为,函数图像经过点,得.解得.所求的抛物线表达式为.方法二:由抛物线的顶点为,与y轴交点为,得解得.所求的抛物线表达式为.学生可能还会有不同于以上解法的其他解法,教师可给予鼓励.归纳总结.当给出的坐标或点中有顶点,可设顶点式,将h,k换为顶点坐标,再将另一点的坐标代入即可求出a的值.要求:1.使学生能够灵活的选择二次函数的表达式来求函数关系式.2.通过对比,让学生感受到适当选择函数表达式求解的便捷之处.3.总结方法,让学生明确解题方法及规范解题过程.三、小结:1.已知图像上三点的坐标或给定x与y的三对对应值,通常选择一般式.2.已知图像的顶点坐标,对称轴和最值,通常选择顶点式.确定二次函数的表达式时,应该根据条件的特点,恰当地选用一种函数表达方式.四、练习1、根据下列已知条件,选择合适的方法求二次函数的解析式:(1).已知二次函数的图像经过点和,求这个二次函数的表达式.(2).已知二次函数的图像经过原点,且当x=1时,y有最小值-1,求这个二次函数的表达式.拓展延伸:如图所示,已知抛物线的对称轴是过(3,0)的直线,它与x轴交于A、B两点,与y轴交于C点,点A、C的坐标分别是(8,0)、(0,4),求这个抛物线的表达式。
苏科版数学九年级下册《5.3 用待定系数法确定二次函数表达式》教学设计2

苏科版数学九年级下册《5.3 用待定系数法确定二次函数表达式》教学设计2一. 教材分析苏科版数学九年级下册《5.3 用待定系数法确定二次函数表达式》这一节主要让学生掌握用待定系数法确定二次函数表达式的方法。
在学习了二次函数的一般形式y=ax^2+bx+c后,学生已经了解了二次函数的图象和性质。
本节课通过待定系数法,让学生进一步理解二次函数的表达式,提高他们解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了二次函数的一般形式,对二次函数的图象和性质有一定的了解。
但他们在实际问题中运用待定系数法确定二次函数表达式的能力还有待提高。
因此,在教学过程中,教师需要引导学生将已知的二次函数性质与待定系数法相结合,从而解决问题。
三. 教学目标1.让学生掌握用待定系数法确定二次函数表达式的方法。
2.培养学生运用二次函数解决实际问题的能力。
3.提高学生分析问题、解决问题的能力。
四. 教学重难点1.重点:用待定系数法确定二次函数表达式。
2.难点:如何将实际问题转化为用待定系数法确定二次函数表达式的问题。
五. 教学方法1.情境教学法:通过生活中的实际问题,激发学生的学习兴趣,引导学生主动参与课堂。
2.启发式教学法:教师引导学生运用已知的二次函数性质解决实际问题,从而发现待定系数法的运用。
3.小组合作学习:学生分组讨论,共同解决问题,提高合作能力。
六. 教学准备1.教学课件:制作课件,展示二次函数的图象和性质。
2.实际问题:准备一些与二次函数相关的生活问题,用于引导学生运用待定系数法。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,让学生观察二次函数的图象和性质,引导学生发现待定系数法的运用。
2.呈现(10分钟)教师讲解待定系数法的原理,并通过示例演示如何用待定系数法确定二次函数表达式。
3.操练(15分钟)学生分组讨论,尝试用待定系数法解决实际问题。
教师巡回指导,解答学生的疑问。
九年级数学上册《用待定系数法求二次函数的解析式》教案、教学设计

九年级的学生已经在之前的学习中掌握了二次函数的基本概念、图像及其性质,具备了一定的数学基础。在此基础上,学生对于用待定系数法求二次函数解析式这一内容,虽然在理论上有一定的认知,但在实际操作中,可能仍存在以下问题:对于待定系数法的理解不够深入,难以灵活运用;在求解过程中,对于参数的选择和方程组的建立可能存在困难。此外,学生对于将实际问题抽象为二次函数模型的能力有待提高。因此,在教学过程中,应注重引导学生理解待定系数法的原理,通过实例分析,培养学生的建模能力和解决问题的策略。同时,关注学生的个体差异,给予不同层次的学生有针对性的指导,激发学生的学习兴趣,提高学生的数学素养。
4.分层教学,关注个体差异
针对不同层次的学生,设置不同难度的练习题,使每个学生都能在原有基础上得到提高。同时,加强对学困生的辅导,帮助他们克服困难,提高自信心。
5.及时反馈,巩固提高
在教学过程中,及时了解学生的学习情况,对学生的疑问进行解答,巩固所学知识。通过课堂练习、课后作业等形式,检验学生的学习效果,促使学生主动复习,提高知识掌握程度。
(二)讲授新知,500字
1.教师讲解待定系数法的原理,通过具体实例解释如何将实际问题抽象为二次函数模型,并引导学生理解待定系数法的基本步骤。
2.分步骤讲解待定系数法的求解过程,强调参数的选择和方程组的建立,让学生掌握求解二次函数解析式的方法。
3.结合课本例题,教师示范解题过程,强调注意事项,提醒学生关注细节。
6.拓展延伸,激发创新
在学生掌握基础知识的基础上,适当拓展延伸,引导学生探索二次函数在其他领域的应用,如物理、几何等,培养学生的创新意识和综合运用能力。
7.总结反思,提升素养
在教学结束时,组织学生进行总结反思,回顾学习过程,总结用待定系数法求二次函数解析式的关键步骤,提升学生的数学素养。
用待定系数法确定二次函数表达式优秀教案

用待定系数法确定二次函数表达式【教学目标】1.能根据所给待定系数的函数表达式和点的坐标,正确的列出方程求出系数。
2.能根据所给条件的特点,恰当地选用选设函数表达式并求出待定系数。
【教学重难点】正确的列出方程求出系数【教学过程】一、创设情境我们知道,用待定系数法可以确定一次函数、反比例函数的表达式。
类似地,用待定系数法也可以确定二次函数的表达式。
二、新知探究二次函数的一般式:我们把二次函数叫做二次函数的一般式。
在求二次函数解析式的过程中,还要能根据条件灵活选用___________,____________,_______________。
三、新知运用例1.已知函数的图像经过点(-2,8),求a的值。
分析:如果一个点在函数图像上,那么这个点的坐标适合函数的表达式。
要确定“a”的值,只要根据已知条件“图像经过点(-2,8)”列出关于a的一元一次方程。
解:由二次函数的图像经过点(-2,8)得解得例2.已知二次函数的图像经过点(-2,8)和(-1,5),求A.c的值。
分析:要确定“a”、“c”的值,只要根据已知条件“图像经过点(-2,8)和(-1,5)”列出关于A.c的二元一次方程组。
解:由二次函数的图像经过点(-2,8)和(-1,5)得解得例3.已知二次函数的图像经过点(-3,6)和(-2,-1)和(0,-3),求这个二次函数表达式。
解:由二次函数的图像经过点(-3,6)和(-2,-1)和(0,-3)得解得所求二次函数表达式为通常,要确定二次函数表达式中几个待定的系数,相应地需要几个已知的条件,根据这些已知条件列出方程(组)求解。
四、课堂小结你学到了什么?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对比三个例题的区别和联系,你能总结用一般式确定二次函数表达式的方法吗?
积极思考,归纳总结.
求二次函数 的表达式,关键是求出待定系数 的值,由已知条件列出关于 的方程或方程组,并求出 就可以写出二次函数的表达式.
总结方法,让学生明确解题方法及规范解题过程.
活动二
由顶点式 确定二次函数的表达式.
1.使学生能够灵活的选择二次函数的表达式来求函数关系式.
2.通过对比,让学生感受到适当选择函数表达式求解的便捷之处.
方法总结:
你能总结用顶点式求函数表达式的优点及方法吗?
积极思考,归纳总结.
当给出的坐标或点中有顶点,可设顶点式 ,将h,k换为顶点坐标,再将另一点的坐标代入即可求出a的值.
总结方法,让学生明确解题方法及规范解题过程.
会选用适当方法求二次函数的表达式.
教学过程(教师)
学生活动
达方式?
2.还记得我们是怎样求一次函数和反比例函数的表达式吗?
回忆旧知,回答问题.
1.一般式: .
顶点式: .
2.待定系数法.
回忆旧知,明确方法,用类比的方式来研究二次函数表达式的求法.
活动一
由一般式 确定二次函数的表达式.
2.已知图像的顶点坐标,对称轴和最值,通常选择顶点式.确定二次函数的表达式时,应该根据条件的特点,恰当地选用一种函数表达方式.
让学生谈自己的感受,说出自己已掌握和领会的,或是还困惑的,促进学生反思与提高.
课后作业
课本习题5.3第1、2、3题.
例4已知抛物线的顶点为 ,与y轴交点为 ,求抛物线的表达式.
积极思考,讨论交流,尝试解决问题.
参考答案:
方法一:设抛物线的表达式为 ,函数图像经过点 ,得 .解得 .
所求的抛物线表达式为 .
方法二:由抛物线的顶点为 ,与y轴交点为 ,得 解得 .
所求的抛物线表达式为 .
学生可能还会有不同于以上解法的其他解法,教师可给予鼓励.
课堂练习
根据下列已知条件,选择合适的方法求二次函数的解析式:
1.已知二次函数 的图像经过点 和 ,求这个二次函数的表达式.
2.已知二次函数的图像经过原点,且当x=1时,y有最小值-1,求这个二次函数的表达式.
拓展延伸:如图所示,已知抛物线的对称轴是过(3,0)的直线,它与x轴交于A、B两点,与y轴交于C点,点A、C的坐标分别是(8,0)、(0,4),求这个抛物线的表达式.
5.3 用待定系数法确定二次函数表达式
教学目标
1.通过对用待定系数法求二次函数表达式的探究,掌握求二次函数表达式的方法;
2.能灵活的根据条件恰当地选择表达式,体会二次函数表达式之间的转化;
3.从学习过程中体会学习数学知识的价值,从而提高学习数学知识的兴趣.
教学重点
会用待定系数法求二次函数的表达式.
教学难点
例1已知二次函数 的图像经过点 ,求 的值.
例2已知二次函数 的图像经过点 和 ,求 的值.
例3已知二次函数 的图像经过点 和 ,求这个二次函数的表达式.
1.先学生自己做.
2.讨论交流.
3.学生讲解,教师点拨.
参考答案:
例1 .
例2 .
例3 函数表达式为 .
通过例题讲解,学生交流,学生讲解等方法让学生熟悉二次函数表达式的求法.
部分学生板演,其余学生独立完成.
参考答案:
1.函数表达式为 .
2.函数表达式为 .
拓展延伸:抛物线表达式为 .
在掌握了两类求二次函数关系式的方法和技巧的基础上,通过本组题的练习进一步提升学生根据不同条件,求二次函数关系式的能力.
课堂小结
你学到哪些二次函数表达式的求法?
师生共同总结:
1.已知图像上三点的坐标或给定x与y的三对对应值,通常选择一般式.